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Abstract

Baryon-baryon potentials are obtained from 3-flavor QCD simulations
with the lattice volume L ≃ 4 fm, the lattice spacing a ≃ 0.12 fm, and
the pseudo-scalar-meson mass Mps = 469 – 1171 MeV. The NN scattering
phase-shifts and the mass of H-dibaryon in the flavor SU(3) limit are ex-
tracted from the resultant potentials by solving the Schrödinger equation.
The NN phase-shifts in the SU(3) limit is shown to have qualitatively sim-
ilar behavior as the experimental data. A bound H-dibaryon in the SU(3)
limit is found to exist in the flavor-singlet JP = 0+ channel with the bind-
ing energy of about 26 MeV for the lightest quark mass Mps = 469 MeV.
Effect of flavor SU(3) symmetry breaking on the H-dibaryon is estimated
by solving the coupled-channel Schrödinger equation for ΛΛ-NΞ-ΣΣ with
the physical baryon masses and the potential matrix obtained in the SU(3)
limit: a resonant H-dibaryon is found between ΛΛ and NΞ thresholds in this
treatment.
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1. Introduction

The nucleon-nucleon (NN), hyperon-nucleon (Y N) and hyperon-hyperon
(Y Y ) interactions are crucial not only for understanding ordinary nuclei,
hypernuclei and the neutron-star interiors [1, 2] but also for exploring exotic
multi-quark systems such as the H-dibaryon [3, 4, 5, 6].

There are two methods proposed so far to study hadron interactions from
first principle lattice QCD simulations: the Lüscher’s finite volume method
for scattering phase-shifts [7] and the HAL QCD method for hadron-hadron
potentials [8, 9]. Both methods are extensively applied to the meson-meson,
meson-baryon and baryon-baryon systems in recent years and have been
shown to be useful to derive scattering and bound-state observables. In the
Lüscher’s method, effect of the finite lattice volume is utilized to extract
the scattering phase shifts directly [10, 11, 12]. In the HAL QCD method,
the notion of the “potential”, which is insenstive to the finite lattice vol-
ume, is introduced as a kernel of the scattering T-matrix to calculate the
observbles [13, 14, 15, 16, 17].

In our previous paper [14], we reported an exploratory study of the
baryon-baryon (BB) potentials by full QCD simulations in the flavor SU(3)
limit with a lattice volume L = 1.93 fm and a pseudo-scalar meson mass
Mps = 835, 1014 MeV: We have observed (i) flavor-spin dependence of the
short range part of the BB potentials and its connection to the quark Pauli
principle, and (ii) possible existence of a shallow six-quark bound state in
the flavor-single channel due to attractive core in this channel. The latter
observation was further strengthened by our simulations in the flavor SU(3)
limit with a larger volume (L = 3.87 fm) and a smaller mass Mps = 672
MeV [15] and by an independent study with the (2+1)-flavor simulations
with the pion mass mπ = 389 MeV analyzed by the Lüscher’s method [18].

One of the purposes of the present paper is to present a full account of the
BB potentials and H-dibaryon on the basis of the lattice data at L = 3.87
fm with the pseudo-scalar meson mass as small as Mps = 469 MeV. We note
that an extended HAL QCD method of extracting the BB potential from
the time-dependent Nambu-Bethe-Salpeter wave function [19] is employed in
the present paper as well as in our recent reports [15, 20]. Another purpose
of this paper is to pursue phenomenological estimate of the flavor SU(3)
breaking on the H-dibaryon by taking into account the mass splitting of
octet baryons. In contrast to the recent studies along this line using chiral
effective field theory [21, 22, 23], we fully utilize the BB potentials obtained in
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our simulations and solve the coupled channel ΛΛ-NΞ-ΣΣ system to obtain
the phase-shifts and complex poles. We find the H-dibaryon in the ΛΛ
continuum, a few MeV below the ΞN threshold. Similar result has been
reported before in a coupled channel analysis of the phenomenological quark
model with flavor SU(3) breaking [24].

This paper is organized as follows. In the next section, we briefly review
the extended HAL QCD method to study multi-hadron systems in lattice
QCD [15, 19, 20]. In section 3, we explain setup of our numerical lattice QCD
simulations. In section 4, we present the resulting baryon-baryon potentials.
In section 5, we show lattice QCD implication for the NN scattering and
the H-dibaryon. In section 6, we estimate the flavor SU(3) breaking effect
on the H-dibaryon phenomenologically. Section 7 is devoted to summary.
In Appendix, we consider few-body nucleon systems by using the potential
obtained in section 4.

2. Formalism

In Refs. [8, 9], the Nambu-Bethe-Salpeter (NBS) wave function for the
two-baryon system,

φE(~r)e−Et =
∑

~x

〈0|Bi(~x + ~r, t)Bj(~x, t)|B = 2, E〉, (1)

where Bi is a baryon operator and subscript i distinguish octet-baryons, is
utilized to define a non-local potential

[∇2

2µ
− k2

2µ

]

φE(~r) =

∫

d3s U(~r, ~s)φE(~s), (2)

where E =
√

k2 + M2
1 +

√

k2 + M2
2 is the total energy in the center of mass

system for two baryons with masses M1,2 and µ is the reduced mass. An
important point is that a non-local potential U(~r, ~s) here is independent of
the energy E as long as E is below the meson production threshold Eth. (For
a generalization of the present formalism beyond the inelastic threshold, see
ref. [25].)

In lattice QCD simulations, we calculate the correlation function of two
baryons, defined by

Ψ(~r, t) =
∑

~x

〈0|Bi(~x + ~r, t)Bj(~x, t)BkBl(t = 0)|0〉, (3)
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which is expressed in terms of the NBS wave function as

Ψ(~r, t) = AgrφEgr
(~r)e−Egr t + A1stφE1st

(~r)e−E1st t · · · (4)

where BkBl(t = 0) is a wall source operator for two baryons at t = 0, defined
with a baryon wall source operator e.g. p̄ =

∑

x,y,z εa,b,c(ū
a T (x)Cγ5d̄

b(y))ūc(z)
for proton, and Egr (E1st) is an energy of the ground(first excited) state, and
Agr (A1st) is the corresponding coefficient. Hereafter we call Ψ(~r, t) a time(t)-
dependent NBS wave function. At large t such that (E1st−Egr)t ≫ 1, Ψ(~r, t)
converges to φEgr

(~r) up to the (t-dependent) overall normalization. In the
previous study [8, 9, 13, 14], potentials have been successfully extracted from
eq. (2) by the replacement that φE(~r) → Ψ(~r, t) at large t, together with the
velocity expansion of U(~r, ~s) = V (~r)δ3(~r−~s)+ · · · at the leading order, since
the spatial volume is not large so that (E1st − Egr)t > 1 can be satisfied at
moderate values of t.

The extraction of φEgr
(~r) from Ψ(~r, t), however, becomes more and more

difficult for larger volumes, since E1st − Egr is getting smaller and the t
we need becomes larger [20]. To overcome this practical difficulty for large
volumes, we have recently proposed an extended method to extract the po-
tential [15, 20, 19]. This uses the fact that Ψ(~r, t), with the non-relativistic
approximation, satisfies a time-dependent Schrödinger equation as

[

M1 + M2 −
∇2

2µ

]

Ψ(~r, t) +

∫

d3~r′ U(~r, ~r′) Ψ(~r′, t) = − ∂

∂t
Ψ(~r, t), (5)

at moderate values of t such that Eth t ≫ 1. (Note that relativistic kinematics
can be fully taken into account by introducing the second derivative in t in
the case M1 = M2 [19].) The leading term V (~r) of the velocity expansion is
thus obtained as

V (~r) =
1

2µ

∇2Ψ(~r, t)

Ψ(~r, t)
−

∂
∂t

Ψ(~r, t)

Ψ(~r, t)
− M1 − M2 . (6)

To ensure numerical stability, we evaluate the t-derivative of Ψ(~r, t) as

(

− ∂

∂t
− M1 − M2

)

Ψ(~r, t) ≃ 1

2
log

[

R(~r, t − 1)

R(~r, t + 1)

]

Ψ(~r, t) (7)

where R(~r, t) is defined by R(~r, t) = Ψ(~r, t)/((B1(t)B2(t)) with B1,2(t) being
the single baryon temporal correlation function.
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Table 1: Lattice parameters such as a lattice size, an inverse coupling constant β, the
clover coefficient csw, a lattice spacing a and a physical extension L. See ref. [28] for
details.

size β csw a [fm] L [fm]
323 × 32 1.83 1.761 0.121(2) 3.87

It has been shown in refs. [15, 19, 20] that an unique V (r) within statis-
tical errors can be obtained, independent on the sink-time t of Ψ(~r, t) in the
range of t where a single baryon correlation function Bi(t) is saturated by
the ground state. It has been also shown that, if the spatial volume is large
enough, V (r) is independent of the lattice volume. Once we obtain such a
volume independent potential, we can study observables such as binding en-
ergy and scattering phase-shifts by solving the Schrödinger equation in the
infinite volume.

Here we mention the validity of the leading-order approximation of the
non-local potential U(~r, ~r′) as adopted in Eq.(6). In an extensive study with
quenched lattice QCD simulations at mπ ≃ 530 MeV, it was previously found
that the leading-order central and tensor potentials is a good approximation
at least for Tlab < 100 MeV with no sign of the next-to-leading order poten-
tials [26]. Since the lightest pseudo-scalar meson mass in the present paper
is close to that in the above study, we expect that the phase shift calcu-
lated by the leading-order potentials to be shown later would be valid up
to Tlab ∼ 100 MeV. It is, however, an important future problem to check
this fact by the explicit evaluation of the next-to-leading order potentials
following the method proposed in [26].

3. Lattice QCD simulations

For lattice QCD simulations with dynamical quarks in the flavor SU(3)
limit, we have generated gauge configurations at five different values of quark
masses on a 323 × 32 lattice, employing the renormalization group improved
Iwasaki gauge action [27] at β = 1.83 and the non-perturbatively O(a) im-
proved Wilson quark action. The lattice spacing a is found to be 0.121(2)
fm [28] and hence lattice size L is 3.87 fm. Some simulation parameters are
summarized in Table 1. Hadron masses measured on each ensemble, together
with the quark hopping parameter κuds, the length of thermalized trajectory
Ntraj and the number of configurations Ncfg, are given in Table 2.
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Table 2: Quark hopping parameter κuds and corresponding hadron masses, Mps, Mvec,
Mbar for pseudo-scalar meson, vector meson and octet-baryon, respectively.

κuds Mps [MeV] Mvec [MeV] Mbar [MeV] Ncfg /Ntraj

0.13660 1170.9(7) 1510.4(0.9) 2274(2) 420 / 4200
0.13710 1015.2(6) 1360.6(1.1) 2031(2) 360 / 3600
0.13760 836.5(5) 1188.9(0.9) 1749(1) 480 / 4800
0.13800 672.3(6) 1027.6(1.0) 1484(2) 360 / 3600
0.13840 468.6(7) 829.2(1.5) 1161(2) 720 / 3600

On each gauge configuration, baryon two-point and four-point correlation
functions are constructed from quark propagators for the wall source with the
Dirichlet boundary condition in the temporal direction. Baryon operators at
source are combined to generate the two-baryon state in a definite flavor
SU(3) irreducible representation, while the local octet-baryon operators are
used at sink. To enhance the signal, 16 measurements are made for each
configuration, together with the average over forward and backward prop-
agations in time. Statistical errors are estimated by the Jackknife method
with bin size equal to 12 for the κuds = 0.13840 and 6 for others.

4. Result of baryon-baryon potentials

In the flavor SU(3) limit, all the S-wave BB interactions are reduced to
six independent ones labeled by the flavor irreducible multiplet,

1S0 : V (27)(r), V (8s)(r), V (1)(r),
3S1 : V (10

∗)(r), V (10)(r), V (8a)(r) . (8)

At the leading order of the velocity expansion considered in the present re-
port, we have a central potential for each channel and an additional tensor
potential for each spin-triplet channel. Fig. 1 shows the potentials extracted
from the data at κuds = 0.13840 i.e. the lightest quark mass. The central
potentials are qualitatively similar to ones previously obtained at heavier
quark masses in a smaller volume [14], while the tensor potentials for spin-
triplet channels are presented for the first time in this paper. As discussed
in ref. [14], our lattice QCD results show that the S-wave BB interactions
strongly depend on their flavor and spin. As already discussed in ref. [14],
these results are consistent with the quark model prediction for S-wave BB
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Figure 1: Potentials of baryon-baryon S-wave interaction in the flavor SU(3) limit, labeled
by the flavor irreducible representation. These are obtained at κuds = 0.13840 correspond-
ing to the pseudo-scalar meson mass of 469 MeV. Vertical bars indicate statistical errors
estimated by the Jackknife method.
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Figure 2: Quark mass dependences of baryon-baryon potentials in the flavor SU(3) limit.

interactions at short distance, indicating an important role of quark Pauli
blocking effect.

Fig. 2 shows quark mass dependences of some of these potentials. We
observe that the repulsive cores become stronger and the ranges of attractive
part become longer, in particular, the tensor force is getting stronger rapidly,
as the quark mass decreases. We therefore expect that the tensor part of
NN force becomes very strong at the physical point, mπ = 135 MeV. This
expectation is consistent with the well-known feature of the phenomenological
NN force that the tensor force is responsible for a formation of the bound
deuteron.

In the flavor SU(3) limit, the potential matrix in the particle basis, Vij(r),
is obtained from the potential in the flavor basis diag(V (1)(r), V (8)(r), V (27)(r))
by the unitary transformation with the Clebsch-Gordan coefficients of the
SU(3) group. Fig. 3 shows examples of Vij(r) in the S = −2 sector con-
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Figure 3: Potentials Vij(r) in S = −2, I = 0 sector of 1S0 state, constructed from the
present lattice QCD result and Clebsch-Gordan coefficient of SU(3).

structed from our lattice QCD result at Mps = 469 MeV. (Here we parame-
terized V (a)(r) in terms of an analytic function with seven parameters.) One
notices that a diagonal NΞ interaction is the most attractive among three
while off diagonal ΛΛ-ΣΣ coupling and NΞ-ΣΣ coupling are rather strong. In
principle, we can extract Vij(r) with SU(3) breaking by the coupled-channel
(2+1)-flavor simulations [25]. Preliminary studies along this direction have
been already started [29]: Analyses for several values of (κud, κs) with a larger
volume will be reported elsewhere.

5. Observables from BB potentials in an infinite volume

5.1. NN phase-shifts

As already explained, observables in the BB system can be extracted
from (lattice) QCD by solving the Schrödinger equation involving the present
potential in an infinite volume. Fig. 4 shows observables of the S-wave NN
scattering obtained in our approach, such as the bar-phase-shifts and bar-
mixing-angles as a function of energy in the laboratory frame Tlab. Due to
the next-to-leading order contributions to V (r) in the velocity expansion,
systematic uncertainties neglected in these figures may become sizable for
Tlab > 100 MeV. Quark mass dependences in Fig. 4 reflect those of potentials
in Fig. 2. In the left panel of Fig. 4, experimental data are also plotted by
a black dashed line [30]. Although phase-shifts from lattice QCD depend
on quark mass in a rather complicated way, their shape approaches to the
experimental one as the quark mass decreases.
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Figure 4: Phases-shifts of NN scattering as a function of energy in the laboratory frame,
obtained from the flavor SU(3) limit of lattice QCD. In the right panel, the bar-phase-
shifts and the bar-mixing-angles in the Stapp parameterization of S-matrix are plotted.
A black dashed line in the left panel represents the partial wave analysis of experimental
data taken from NN-OnLine [30].

As can be seen from Fig. 4, there is no bound state of two-nucleon in
both 1S0 channel and 3S1-

3D1 channel. We do not find any two-nucleon
bound states at the wide range of κuds corresponding Mp.s. = 469 − 1172
MeV in the SU(3) limit as well as at several (κud, κs) combinations in 2+1
flavor QCD [19]. Absence of NN bound states for heavy quark masses in
our simulations is in contrast to results reported in quenched QCD ref. [31]
and in full QCD ref. [32] where two-nucleon bound states are found in both
spin-singlet and spin-triplet channels by using the Lüscher’s method. We
leave detailed comparison among these results for future investigations. In
Appendix A, we consider systems with more than 2 nucleons using the
present potentials: we do not find a three-nucleon bound state, while there
appears a shallow four-nucleon bound state in the case Mps = 469 MeV.

5.2. Bound H-dibaryon in the SU(3) limit

As shown in the lower left panel of Fig. 1, the flavor-singlet potential is en-
tirely attractive even at very short distance [14]. By solving the Schrödinger
equation with this potential, we find a bound state in this channel [15]: The
binding energy of the H-dibaryon and its quark mass dependence are shown
in Fig. 5, where the energy and the size of the obtained bound state are
plotted at each quark mass. Despite the fact that the attractive potential
becomes stronger as the quark mass decreases as shown in the left lower panel
of Fig. 2, the resultant binding energies of the H-dibaryon B̃H = −E0 de-
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creases in the present range of the quark mass: This is because the increase of
the attraction toward the lighter quark mass is compensated by the increase
of the kinetic energy of the baryons. The rooted-mean square (rms) distance
√

〈r2〉 is a measure of the ”size” of H-dibaryon, which may be compared to
the rms distance of the deuteron in nature, 1.9 × 2 = 3.8 fm. Although our
simulations are done for relatively heavy quark masses, such a comparison
may indicate that the H-dibaryon is much more compact than the deuteron.

By including a small systematic error caused by the choice of sink-time
t in the t-dependent NBS wave function, the final result for the H-dibaryon
binding energy becomes

Mps = 1171 MeV : B̃H = 49.1(3.4)(5.5) MeV (9)

Mps = 1015 MeV : B̃H = 37.2(3.7)(2.4) MeV (10)

Mps = 837 MeV : B̃H = 37.8(3.1)(4.2) MeV (11)

Mps = 672 MeV : B̃H = 33.6(4.8)(3.5) MeV (12)

Mps = 469 MeV : B̃H = 26.0(4.4)(4.8) MeV (13)

with statistical error (first parenthesis) and systematic error (second paren-
thesis). A bound H-dibaryon is also reported by the full QCD simulation
with a different approach [18, 32]: Their binding energy from the ΛΛ thresh-
old reads BH = 13.2(1.8)(4.0) MeV at (Mπ,MK) ≃ (389, 544) MeV, which is
consistent with our result. Fig. 6 gives a summary of the binding energy of
the H-dibaryon obtained in recent full QCD simulations.

6. SU(3) breaking and H dibaryon

When the flavor SU(3) symmetry is broken, masses of octet baryons are
not degenerated any more. Fig. 7 shows masses of “octet” baryons in the
real world MPhys

Y plotted at the right side, while those in the flavor SU(3)
symmetric world with κuds = 0.13840 is plotted at the left side. The degener-
ated octet baryon mass M

SU(3)
Y is more or less equal to an average of physical

“octet” baryon masses. For later purpose, we introduce a phenomenological
linear interpolation between the two limits, MY (x) = (1−x)M

SU(3)
Y +xMPhys

Y

with a parameter x, as shown by the dashed lines in the figure.
In broken flavor SU(3) world, the H-dibaryon belongs to the S = −2,

I = 0 sector of B = 2, JP = 0+ states, instead of the flavor singlet channel.
There are three BB channels in this sector i.e. ΛΛ, NΞ and ΣΣ, which
couple each other and whose interactions are described by a 3 by 3 potential
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and NPL stands for the result in ref. [32].

matrix Vij(r) in the particle basis. Observables in the real world in this
sector, including the mass of the H-dibaryon, can be extracted from such a
potential matrix and the baryon masses at the physical point.

Although we do not have lattice data at the physical point yet, let us
try to make a qualitative estimate on the fate of the H-dibaryon in the
SU(3) broken world by using the dashed lines in Fig. 7 together with the
potential matrix Vij(r) in the flavor SU(3) limit in Fig. 3. This is based on
the assumptions that (i) the major effect of the SU(3) breaking comes from
the baryon mass splittings, and (ii) the qualitative features of the hyperon
interactions in Fig.3 remain intact even with the SU(3) breaking. Validity
of these assumptions should be checked in the future lattice simulations with
explicit flavor SU(3) breaking.

With the assumptions (i) and (ii), we study the spin-singlet S-wave scat-
tering in the coupled channel system, ΛΛ-NΞ-ΣΣ, to trace the H-dibaryon
as a function of the parameter x in Fig. 7.

We use the bar-phase-shift δ̄i and the elasticity ηi for the i-th channel,
defined by the on-energy-shell element of the S-matrix, Sl=0

ii = ηi e
2iδ̄i . The

scattering length ai is the amplitude at the corresponding threshold; for
example, aNΞ = lim√

s→MN+MΞ
(Sl=0

NΞ,NΞ − 1)/(2ik) with the on-energy-shell
momentum k. To obtain the S-matrix, we solve the Lippmann-Schwinger

12
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equation for the T-matrix in momentum space, which is given by

Tαβ = V αβ +
∑

γ

V αγ G(0)
γ T γβ, G(0)

γ =
1

E − H
(0)
γ + iǫ

, (14)

where the momentum indices are suppressed and H
(0)
γ = −p2/(2µγ) + Mγ

1 +
Mγ

2 is the free Hamiltonian of a channel γ. With the analytic expression
of the potentials Vij(r) obtained by fitting the lattice result, their matrix
elements in momentum space are evaluated straightforwardly by numerical
integration.

In Fig. 8, δ̄i is plotted as a function of energy in the center of mass frame at
several values of the parameter x. At x = 0, an attractive nature of the flavor
singlet potential can be seen in the ΛΛ phase-shift. The sign of an existence
of the H dibaryon, however, can not be clearly seen in the behaviors of the
ΛΛ bar-phase-shift at x = 0, contrary to the single channel analysis with
the flavor singlet potential, since the H-dibaryon is deeply bounded, 26 MeV
below the ΛΛ threshold in this case. As x increases from zero, attractive ΛΛ
phase-shift is getting smaller and it finally becomes repulsive. For example,
the scattering length is negative (a = −0.91 fm) at x = 0.4 since the H
dibaryon exists below but close enough to the ΛΛ threshold. At x = 0.6, the
binding energy of the H dibaryon becomes almost zero, so that the scattering
length becomes very large( a = −29.8 fm). As x further increases, the H
dibaryon goes above the ΛΛ threshold at a little above x = 0.6. In the
bottom two panels of Fig. 8, we observe an appearance of the H dibaryon as
the resonance at δ̄ ≃ π/2 in the case that x = 0.8 and 1.0.
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The behavior of the H dibaryon (either bound state or resonance) can be
seen more directly by its energy eigenvalue in the complex scaling method as
shown in Fig. 9. In this method, Hamiltonian of the system H is rotated to
H(θ) by “scaling” the coordinate r to reiθ, so that the eigenvalue equation
H(θ)Ψθ = E(θ)Ψθ can be easily solved by using a set of square-integrable
functions such as the Gaussian function. There is a theorem, known as the
ABC theorem, that an eigenvalue E(θ) of a bound or resonance state is in-
dependent of the scaling angle θ [33]. Aligned dots in Fig. 9 correspond to
the continuum of scattering states, which are discrete due to a finite num-
ber of bases. We observe one isolated energy eigenvalue on the real axis at
x = 0.0, 0.2 and 0.4, corresponding to a bound H-dibaryon, and a complex
one between two continua at x = 0.8 and 1.0, corresponding to a resonant
H-dibaryon. With the physical value of the flavor SU(3) breaking at x = 1,
the H-dibaryon exists at 3 MeV below the NΞ threshold and has a width
of 2.7 MeV in the present estimate. Similar results were obtained in phe-
nomenological models [24, 34].

Shown in Fig. 10 is the invariant-mass-spectrum of the process ΛΛ → ΛΛ

given by ρΛΛ(
√

s) =
∣

∣Sl=0
ΛΛ,ΛΛ − 1

∣

∣

2
/k with an assumption of S-wave domi-

nance. A peak which corresponds to the H-dibaryon can be clearly seen at
x = 0.6, 0.8 and 1.0. This demonstrates that there is a chance for experiments
of counting two Λ’s to confirm the existence of the resonant H-dibaryon in
nature. Deeply bound H-dibaryon with the binding energy BH > 7 MeV
from the ΛΛ threshold has been ruled out by the discovery of the double Λ
hypernucleus, 6

ΛΛHe [5]. On the other hand, an enhancement of the two Λ’s
production has been observed at a little above the ΛΛ thresholds in E224
and E522 experiments at KEK, though statistics is not enough for a definite
conclusion [6]. New data with high statistics from such an experiment at
J-PARC [35] as well as the data from heavy-ion experiments at RHIC and
LHC [36] will shed more lights on the nature of the H-dibaryon.

7. Summary

In this paper, we have derived baryon-baryon potentials from lattice QCD
simulations with flavor SU(3) symmetry. The lattice volume is taken to be
L ≃ 4 fm and the pseudo-scalar-meson mass Mps ranges from 469 MeV to
1171 MeV. Observables such as the NN scattering phase-shifts and the mass
of H-dibaryon are extracted from obtained potentials. The NN phase-shifts
(or more precisely the phase-shifts in the flavor 27-plet) shows qualitatively
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nance, at several values of the SU(3) breaking parameter x.
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similar behavior with the experimental data and the similarity becomes bet-
ter as the quark mass decreases. By solving the few-body Schrödinger equa-
tion, we found that the present NN potential does not yet provide bound
deuteron nor 3He, but there is a shallow bound state for 4He for Mps = 469
MeV.

We have also shown that a stable H-dibaryon exists in the flavor-singlet
JP = 0+ channel with the binding energy of about 26 MeV for the lightest
quark mass Mps = 469 MeV. To estimate the effect of flavor SU(3) symme-
try breaking on the H-dibaryon, we solve the coupled-channel Schrödinger
equation in the S = −2 sector (ΛΛ-NΞ-ΣΣ) by using the baryon masses
with approximate SU(3) breaking and the BB potential in the SU(3) limit.
We found that the pole position of the H-dibaryon crosses the ΛΛ threshold
as the flavor SU(3) breaking become larger, and a resonant H-dibaryon ap-
pears below NΞ threshold at the physical point. This is however not a final
conclusion due to various approximations about the SU(3) breaking in the
Schrödinger equation. Coupled channel (2+1)-flavor simulations with flavor
SU(3) breaking are currently underway. Such lattice QCD simulations to-
gether with the laboratory experiments will eventually clarify the nature of
the elusive H-dibaryon.
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Appendix A. Few-nucleon systems from lattice QCD in the flavor
SU(3) limit

In this appendix, we study few-nucleon systems using the NN potentials
obtained in the present calculation. For simplicity, an effective central po-
tential, which contains a contribution from the tensor potential implicitly, is
employed for the spin-triplet sector, while the central potential is used for
the spin-singlet sector. Since we have determined the leading-order potentials
through S and D waves, only the parity-even part of potentials is obtained.
We therefore consider two cases: the Wigner type force where the odd part
of potentials is equal to the even part, and the Serber type force where the
odd part is absent. Since the parity-odd part is known to have little effect
to the S-shell nuclei, our approximation is reasonable at least for three and
four nucleon systems.

By searching for the ground state in the stochastic variational method [37],
we find a four-nucleon bound state in (L, S)JP = (0, 0)0+ configuration cor-
responding to the 4He nucleus at the lightest quark mass (Mps = 469 MeV),
while no three-nucleon bound state is found in the present range of the quark
masses. Fig. A.11 shows the energy of the bound state against the number
of bases. Result with the Wigner-type force and that with the Serber-type
force agree, so that the effect of parity-odd potential is small as expected.
We observe that the binding energy of 4He is about 5.1 MeV for Mps = 469
MeV. Note that the three-nucleon and four-nucleon forces are absent in the
present calculation.

An indication of very shallow four-nucleon bound state is seen also for
the heaviest quark mass and the second heaviest quark mass corresponding
to Mps = 1171 MeV and Mps = 1015 MeV, respectively. Since the obtained
binding energy is very small (0.8 MeV for Mps = 1171 MeV and 1.1 MeV for
Mps = 1015 MeV), and the error of the potentials due to lattice discretization
may be large at heavy quark, we leave the conclusion on these signals for a
future investigation.
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