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Four Limits in Probability and Their Roles in Source Coding∗

Hiroki KOGA†a), Senior Member

SUMMARY In information-spectrum methods proposed by Han and
Verdú, quantities defined by using the limit superior (or inferior) in prob-
ability play crucial roles in many problems in information theory. In this
paper, we introduce two nonconventional quantities defined in probabilistic
ways. After clarifying basic properties of these quantities, we show that the
two quantities have operational meaning in the ε-coding problem of a gen-
eral source in the ordinary and optimistic senses. The two quantities can
be used not only for obtaining variations of the strong converse theorem
but also establishing upper and lower bounds on the width of the entropy-
spectrum. We also show that the two quantities are expressed in terms of
the smooth Rényi entropy of order zero.
key words: coding theorem, information-spectrum methods, optimistic
coding, strong converse property, smooth Rényi entropy

1. Introduction

In information-spectrum methods originating from a semi-
nal paper by Han and Verdú [4], quantities defined by the
limit inferior or superior in probability have operational
meanings in coding problems of general sources and chan-
nels [3]. Given a general source X = {Xn}∞n=1 with a
discrete alphabet X, let us consider the situation where a
source output Xn of blocklength n is encoded to a codeword
Wn = ϕn(Xn) by a fixed-to-fixed length code ϕn with Mn

codewords. Here, Xn is regarded as a random variable tak-
ing values in Xn. Suppose also that the codeword Wn is de-
coded to X̂n by a decoder ψn. We are interested in the opti-
mum value of the coding rate 1

n log Mn that is asymptotically
achievable for the pair (ϕn,ψn), n ≥ 1, satisfying εn → 0
as n → ∞, where log( · ) = log2( · ) throughout this paper
and εn = Pr{X̂n ! Xn} denotes the decoding error proba-
bility. It is known that the optimal rate coincides with the
spectral sup-entropy rate H(X) of the source X, which is de-
fined as the limit superior in probability of 1

n log 1
PXn (Xn) [4].

Roughly speaking, H(X) can be interpreted as the right end-
point of the distribution of 1

n log 1
PXn (Xn) (called the entropy-

spectrum) in an asymptotic sense.
However, H(X) actually means a tight upper bound of

the limit superior of the coding rates 1
n log Mn, n ≥ 1, at

which fixed-to-fixed coding with εn → 0 as n → ∞ is re-
alizable. Hence, for some blocklength n there may exist a
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fixed-to-fixed length code such that its coding rate 1
n log Mn

is less than H(X) and attains a sufficiently small decoding
error probability. Vembu and Verdú [16] defined the opti-
mistic coding rate as the coding rate at which εn becomes
sufficiently small for infinitely many n. Chen and Alajaji [2]
give an upper and a lower bounds on the minimum attain-
able optimistic coding rate.

Similarly, H(X) is defined as the limit inferior in prob-
ability of 1

n log 1
PXn (Xn) [4]. This H(X) corresponds to the left

endpoint of the entropy-spectrum in an asymptotic sense.
Han [3] gives the strong converse theorem which claims that
εn goes to one for any fixed-to-fixed length code with the
coding rate less than H(X) if and only if H(X) = H(X). In
addition, H(X) itself is known as the supremum achievable
rate of the intrinsic randomness problem [16].

In this paper we newly define H∗(X) and H∗(X) as
variants of H(X) and H(X), respectively, and discuss roles
of H(X), H(X), H∗(X) and H∗(X) in coding of a general
source X. In fact, H∗(X) and H∗(X) are defined as the
right and left endpoints of the entropy-spectrum in differ-
ent asymptotic senses, respectively. The roles of H(X) and
H∗(X) become clear if we consider the infimum achiev-
able rate Rε(X) of fixed-to-fixed length coding with ε-error
in ordinary senses, where the decoding error probability
εn is required to satisfy lim supn→∞ εn ≤ ε for a constant
ε ∈ [0, 1). On the other hand, the role of H∗(X) and H(X)
becomes more understandable if we consider the supre-
mum unachievable rate Uε(X) with ε-error such that any
fixed-to-fixed length code with rate less than Uε(X) satisfies
lim infn→∞ εn > ε. In particular, Uε(X) with ε = 0 turns
out to be equal to the infimum achievable rate R∗(X) with
the vanishing decoding error probability in optimistic sense.
We can regard the coding theorem on Uε(X) as a dual coun-
terpart of the ordinary coding theorem on Rε(X). We should
note that, while H∗(X) and H∗(X) coincide with U1− and U0
in [2], the main results in [2] are restricted to the formulas of
the optimum attainable coding rates in the optimistic sense.

Using not only H(X) and H(X) but also H∗(X) and
H∗(X) enriches terminologies for discussions of coding the-
orems in information-spectrum methods. We can easily ob-
tain variations of the strong converse theorem of a general
source [3]. While in this paper we can focus on general
sources where two or three out of the four quantities co-
incide, the strong converse theorem in [3] corresponds to
the case where all the four quantities coincide. Further-
more, we can discuss lower and upper bounds on the width
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W(X) of the entropy-spectrum by using these four quanti-
ties [6]. In particular, the lower bound W(X) ≥ max{H(X)−
H∗(X),H∗(X)−H(X)} is first obtained in this paper. We can
also show that the four quantities are expressed in terms of
the smooth Rényi entropy [10], [11] of order zero, where the
expressions for H(X) and H(X) are given in [14].

The rest of this paper is organized as follows. In
Sect. 2 we formally define H∗(X) and H∗(X) as well as H(X)
and H(X) and investigate their fundamental relationships.
We unveil a necessary and sufficient condition under which
H(X) ≤ H∗(X) ≤ H∗(X) ≤ H(X) is satisfied. Section 3 is
devoted to observation of the operational meanings of these
four quantities. We see that their operational meanings are
explained in the ε-source coding problems in the ordinary
and optimistic senses. In Sect. 4 we discuss variations of the
strong converse theorem [3]. The variations are obtained
as easy consequences of the results in Sect. 3. We give dif-
ferent interpretations of the four quantities in terms of the
smooth Rényi entropy of order zero in Sect. 5. In Sect. 6 we
consider two kinds of width of the entropy-spectrum of a
general source and establish their upper and lower bounds
expressed in terms of H(X), H(X), H∗(X) and H∗(X).

2. Four Limits in Probability

Let X be a finite or countably infinite alphabet. For each
n ≥ 1 let Xn be a random variable taking values in Xn. De-
note by PXn the probability distribution of Xn. The probabil-
ity of Xn = xn for an xn ∈ Xn is denoted by PXn (xn), where
throughout this paper random variables and their realiza-
tions are expressed italic upper-case and lower-case letters,
respectively. We do not require that PXn , n ≥ 1, satisfy the
consistency condition. We call X = {Xn}∞n=1 a general source
[3]. The class of general sources includes vast classes of
sources such as memoryless sources, Markov sources, sta-
tionary ergodic sources and stationary sources.

In this paper we observe basic properties of the follow-
ing four quantities:

Definition 2.1: Given a general source X = {Xn}∞n=1 we de-
fine:

H(X) = inf
{
α : lim inf

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≤ α
}
= 1
}
,

H∗(X) = inf
{
α : lim sup

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≤ α
}
= 1
}
,

H(X) = sup
{
β : lim inf

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≥ β
}
= 1
}
,

H∗(X) = sup
{
β : lim sup

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≥ β
}
= 1
}
,

where throughout this paper Pr{ · } means the probability
with respect to PXn unless stated otherwise.

Note that H(X) (resp., H(X)) is equal to the ordinary spec-
trum sup- (resp., inf-) entropy rate [3]. In addition, H∗(X)
and H∗(X) coincide with U1− and U0 in [2, p. 2024], respec-
tively. While it is known that 0 ≤ H(X) ≤ H(X) ≤ ∞ [3],

we assume that H(X) < ∞ throughout this paper so that we
can simplify arguments and clearly see essential contribu-
tions of this paper. Note that this assumption implies that all
of H(X), H∗(X), H∗(X) and H(X) are finite due to Proposi-
tion 2.2 appearing afterwards.

We show that each of the four quantities can be ex-
pressed in a different form. These expressions will be used
in the following sections. We give formal proofs in Ap-
pendix A for completeness of this paper.

Proposition 2.1: The four quantities in Definition 2.1 can
equivalently be written as follows, respectively:

H(X) = sup
{
β : lim sup

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≥ β
}
> 0
}
,

H∗(X) = sup
{
β : lim inf

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≥ β
}
> 0
}
,

H(X) = inf
{
α : lim sup

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≤ α
}
> 0
}
,

H∗(X) = inf
{
α : lim inf

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≤ α
}
> 0
}
.

It is important to notice that the definition of H∗(X) in
Definition 2.1 is equivalent to

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ H∗(X) + γ

}
= 1, (1)

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ H∗(X) − γ

}
< 1 (2)

for any constant γ > 0. Similarly, the expression of H∗(X)
in Proposition 2.1 is equivalent to

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H∗(X) − γ

}
> 0, (3)

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H∗(X) + γ

}
= 0 (4)

for any constant γ > 0. The relationships similar to (1)–(4)
hold for H(X), H(X) and H∗(X) as well.

We give several general sources for which we can eas-
ily find values of the four quantities in Definition 2.1.

Example 2.1: Consider the case where X = {Xn}∞n=1 is the
stationary memoryless source specified by a probability dis-
tribution PX on X satisfying H(PX) < ∞, where H(PX) de-
notes the entropy of PX . We have PXn (xn) =

∏n
k=1 PX(xk)

for all n ≥ 1 and xn = x1x2 · · · xn for this source. Then, it
holds that

H(X) = H∗(X) = H(X) = H∗(X) = H(PX)

owing to the weak law of large numbers.

Example 2.2: Next, consider the case where X = {Xn}∞n=1
is the mixed source [3] specified by two probability distri-
butions PX1 and PX2 on X satisfying H(PX1 ) < H(PX2 ) < ∞.
Define PXn

1
(xn) =

∏n
k=1 PX1 (xk) and PXn

2
(xn) =

∏n
k=1 PX2 (xk)

for each n ≥ 1 and xn ∈ Xn and set
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PXn (xn) = (1 − τ)PXn
1
(xn) + τPXn

2
(xn) for all n ≥ 1,

where τ ∈ (0, 1) is a constant. Then, it holds that

H(X) = H∗(X) = H(PX2 ) and H(X) = H∗(X) = H(PX1 ).

In particular, H∗(X) = H(PX2 ) is verified from

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H(PX2 ) − γ

}
≥ τ > 0, (5)

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H(PX2 ) + γ

}
= 0 (6)

for any constant γ > 0 and the expression of H∗(X) in
Proposition 2.1.

Example 2.3: Consider the following perturbing source.
Let PXn

1
(xn) and PXn

2
(xn) be the probability distributions

given in Example 2.2 and define PXn by

PXn (xn) =
{

PXn
1
(xn), if n is odd,

PXn
2
(xn), if n is even.

Then, it holds that

H(X) = H∗(X) = H(PX2 ) and H(X) = H∗(X) = H(PX1 ).

Note that, unlike Example 2.2, the left side of (5) coincide
with zero for any γ ∈ (0,H(PX2 ) − H(PX1 )). Instead of (5),
it actually holds that

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H(PX1 ) − γ

}
= 1 > 0, (7)

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H(PX1 ) + γ

}
= 0 (8)

for any constant γ > 0. Hence, H∗(X) = H(PX1 ) follows.

Example 2.4: We can also consider combinations of Ex-
amples 2.2 and 2.3. Letting PX1 , PX2 , PX3 and PX4 be prob-
ability distributions on X satisfying H(PX1 ) ≤ H(PX2 ) ≤
H(PX3 ) ≤ H(PX4 ) < ∞, define PXn

i
(xn) =

∏n
k=1 PXi (xk) for

each n ≥ 1 and i = 1, 2, 3, 4. We define P(1)
Xn by

P(1)
Xn (xn) =

{
(1 − τ)PXn

1
(xn) + τPXn

4
(xn), if n is odd,

(1 − τ′)PXn
2
(xn) + τ′PXn

3
(xn), if n is even,

where τ, τ′ ∈ (0, 1) are constants. Denote by X(1) the general
source specified by P(1)

Xn , n ≥ 1. In addition, define P(2)
Xn by

P(2)
Xn (xn) =

{
(1 − τ)PXn

1
(xn) + τPXn

3
(xn), if n is odd,

(1 − τ′)PXn
2
(xn) + τ′PXn

4
(xn), if n is even,

and denote by X(2) the general source corresponding to
P(2)

Xn , n ≥ 1. We can verify that H(X(i)) = H(PX1 ), H∗(X(i)) =
H(PX2 ), H∗(X(i)) = H(PX3 ) and H(X(i)) = H(PX4 ) for
i = 1, 2 (see Fig. 1).

In general, the following relationships hold.

Proposition 2.2: For a general source X it holds that

Fig. 1 Entropy spectrum of general sources X(1) (left) and X(2) (right).

(a) H(X) ≤ H∗(X) ≤ H(X),
(b) H(X) ≤ H∗(X) ≤ H(X).

Proof : We only prove (a). The definitions of H∗(X)
and H(X) in Definition 2.1 clearly imply H∗(X) ≤ H(X).
In addition, H(X) ≤ H∗(X) immediately follows from com-
parison of the definition of H(X) in Definition 2.1 with the
expression of H∗(X) in Proposition 2.1. We can prove (b) in
the same way. !

We have seen that the mixed source in Example 2.2
satisfies H∗(X) < H∗(X). On the other hand, the perturb-
ing source in Example 2.3 satisfies H∗(X) < H∗(X). These
examples suggest that H∗(X) ≤ H∗(X) does not hold in gen-
eral. In order to clarify a relationship between H∗(X) and
H∗(X), we introduce the following class of sources.

Definition 2.2: We say a general source X = {Xn}∞n=1 is
canonical if there exists a constant α0 such that for any γ > 0
both the following two inequalities hold:

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ α0 + γ

}
> 0, (9)

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ α0 − γ

}
> 0. (10)

Clearly, the stationary memoryless source in Exam-
ple 2.1 is canonical. That is, the law of large numbers guar-
antees that both (9) and (10) are satisfied by α0 = H(PX). In
addition, the mixed source in Example 2.2 is also canonical.
In fact, any choice of α0 satisfying H(PX1 ) ≤ α0 ≤ H(PX2 )
meets (9) and (10). The two sources in Example 2.4 are also
canonical. However, the perturbing source in Example 2.3
is not canonical because we cannot choose α0 so that both
(9) and (10) are satisfied.

The following theorem claims that the canonicality of
a source X is a key to judge whether H∗(X) ≤ H∗(X) holds
or not.

Theorem 2.1: A general source X satisfies H∗(X) ≤
H∗(X) if and only if X is canonical.

Proof : First, we prove that X is canonical if H∗(X) ≤
H∗(X). Let γ > 0 be an arbitrary constant. In view of H∗(X)
in Proposition 2.1 we have

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ H∗(X) + γ

}
> 0. (11)

On the other hand, H∗(X) in Proposition 2.1 implies that
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lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H∗(X) − γ

}
> 0,

which, together with H∗(X) ≤ H∗(X), leads to

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H∗(X) − γ

}
> 0. (12)

Then, (11) and (12) guarantee that X is canonical because
(9) and (10) are satisfied with α0 = H∗(X).

Next, we prove that H∗(X) ≤ H∗(X) if X is canonical.
Since X is canonical, there exists a constant α0 such that
both (9) and (10) hold for an arbitrarily fixed γ > 0. Then,
it follows from (9) and Proposition 2.1 that H∗(X) ≤ α0 +
γ. Similarly, owing to (10) and Proposition 2.1 we have
H∗(X) ≥ α0 − γ. Thus, it holds that H∗(X) − γ ≤ α0 ≤
H∗(X)+γ, which implies H∗(X) ≤ H∗(X)+2γ. Since γ > 0
is arbitrary, H∗(X) ≤ H∗(X) follows. !

3. Operational Meanings

In this section we consider the operational meanings of
H(X), H∗(X), H(X) and H∗(X). It is well-known that H(X)
means the infimum achievable coding rate of fixed-length
codes with the vanishing decoding error probability [4],
while H(X) corresponds to the supremum achievable rate
of the intrinsic randomness problem [16]. We will see that
all the four quantities can be explained in the context of the
ε-source coding problem [2].

We describe the ordinary ε-source coding problem as
follows. Given a general source X = {Xn}∞n=1, let an encoder

ϕn : Xn →Mn
def
= {1, 2, . . . ,Mn} and a decoder ψn : Mn →

Xn be deterministic mappings. Define the decoding error
probability by

εn
def
= Pr{ψn(ϕn(Xn)) ! Xn}.

We are interested in the infimum of the coding rates at which
εn is asymptotically bounded by an arbitrarily given constant
ε ∈ [0, 1).

Definition 3.1: Let ε ∈ [0, 1) be an arbitrary constant.
A rate R is called ε-achievable if there exists a sequence
{(ϕn,ψn)}∞n=1 of pairs of an encoder and a decoder satisfying

lim sup
n→∞

1
n

log Mn ≤ R (13)

and

lim sup
n→∞

εn ≤ ε. (14)

Denote by Rε(X) the infimum of the ε-achievable rates.

For simplifying notations we define

Jε(X) = inf{R : F(R) ≤ ε}, (15)
J
∗
ε (X) = inf{R : F∗(R) ≤ ε}, (16)

where

F(R) = lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ R
}
,

F∗(R) = lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ R
}
.

Clearly, it holds that J0(X) = H(X) and J
∗
0 (X) = H∗(X).

The following theorem gives a formula of Rε(X).

Theorem 3.1 ([2], [3], [13]): Rε(X) = Jε(X), ε ∈ [0, 1).

Theorem 3.1 indicates the following operational mean-
ings of H(X) and H∗(X). Notice that the equality on H(X)
is mentioned in [2], [3].

Corollary 3.1: It holds that

R0(X) = H(X) and lim
ε↑1

Rε(X) = H∗(X). (17)

Proof : Since the first equality in (17) is obvious from
the operational meaning of H(X) in fixed-length coding [4],
we prove the second equality in (17). In view of Theo-
rem 3.1, we have only to prove H∗(X) = limε↑1 Jε(X). We
note that F(R) is a monotone decreasing function of R and
Jε(X) is a monotone decreasing function of ε. In partic-
ular, the expression of H∗(X) in Definition 2.1 guarantees
that F(R) = 1 if R < H∗(X) and F(R) < 1 if R > H∗(X).
Hence, letting γ > 0 be an arbitrarily small constant, for
any ε ∈ (0, 1) it holds that Jε(X) ≥ H∗(X) − γ because
F(H∗(X) − γ) = 1 > ε. By letting ε ↑ 1, we have

lim
ε↑1

Jε(X) ≥ H∗(X) − γ. (18)

In addition, since F(H∗(X) + γ) < 1, there exists a positive
number δ0 such that F(H∗(X) + γ) ≤ 1 − δ0. Therefore,
owing to the definition of Jε(X) it holds that

lim
ε↑1

Jε(X) ≤ J1−δ0 (X) ≤ H∗(X) + γ, (19)

where the first inequality follows because Jε(X) is a mono-
tone decreasing function of ε and the second inequality fol-
lows from the definition of J1−δ0 (X). Since γ > 0 is arbitrary
in (18) and (19), H∗(X) = limε↑1 Jε(X) follows. !

Next, let us consider the operational meanings of H(X)
and H∗(X). To this end, we take a nonconventional approach
and define the supremum of unachievable rates in the strong
sense.

Definition 3.2: Let ε ∈ [0, 1) be an arbitrary constant. A
rate R is called ε-unachievable in the strong sense if

lim inf
n→∞

εn > ε (20)

holds for any sequence {(ϕn,ψn)}∞n=1 of pairs of an encoder
and a decoder satisfying (13). Denote by Uε(X) the supre-
mum of the ε-unachievable rates in the strong sense.

It is obvious from the definition of Uε(X) that for any
R > Uε(X) there exists a sequence {(ϕn,ψn)}∞n=1 of pairs of
an encoder ϕn and a decoder ψn satisfying (13) and
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lim inf
n→∞

εn ≤ ε. (21)

Hence, Uε(X) equals to the infimum achievable coding rate
the codes satisfying (13) and (21). Thus, the formula for
Uε(X) coincides with the formula of R†(ε|p̄) in [5, Theo-
rem 1]. However, since Uε(X) is closely related to the infi-
mum ε-achievable coding rate in the optimistic sense, which
originates from [17] and is discussed in [2], [12], [14], we
take the following approach.

Definition 3.3 ([2], [12], [17]): Let ε ∈ [0, 1) be an arbi-
trary constant. A rate R is called ε-achievable in the opti-
mistic sense if there exists a sequence {(ϕn,ψn)}∞n=1 of pairs
of an encoder and a decoder such that for any γ > 0 there
exists a subsequence {ni}∞i=1 satisfying

1
ni

log Mni ≤ R + γ and εni ≤ ε + γ for all i ≥ 1. (22)

Denote by R∗ε(X) the infimum of the ε-achievable rates in
the optimistic sense.

The following theorem is obtained from simple obser-
vations on Uε(X) and R∗ε(X).

Theorem 3.2: R∗ε(X) = Uε(X) for all ε ∈ [0, 1).

Proof : If R < Uε(X), then any {(ϕn,ψn)}∞n=1 satisfies (20)
and therefore cannot satisfy the second inequality in (22) for
any γ > 0. This implies that R∗ε(X) ≥ Uε(X). On the other
hand, if R > Uε(X), there exists a {(ϕn,ψn)}∞n=1 satisfying
(13) and (21). Such a {(ϕn,ψn)}∞n=1 obviously satisfies the
two inequalities in (22) for some subsequence {ni}∞i=1. This
establishes R∗ε(X) ≤ Uε(X). !

Theorem 3.2 leads to the following formula of Uε(X).

Theorem 3.3 ([2], [5], [12]): Uε(X) = J
∗
ε (X), ε ∈ [0, 1).

Similarly to Corollary 3.1, we can obtain the follow-
ing operational meaning of H∗(X) and H(X), where the first
equality in (23) is mentioned in [2].

Corollary 3.2: It holds that

U0(X) = H∗(X) and lim
ε↑1

Uε(X) = H(X). (23)

The proof of Corollary 3.2 is omitted because the proof is
essentially the same as the proof of Corollary 3.1.

4. Variations of the Strong Converse Theorem

In this section we discuss variations of the strong converse
theorem using the four quantities in Definition 2.1. Wol-
fowitz defined that a source satisfies the strong converse
property if for any coding rate R < R0(X) any sequence
{(ϕn,ψn)}∞n=1 of pairs of an encoder and a decoder meeting
the rate constraint (13) satisfies εn → 1 as n → ∞ [18].
Han shows that a general source X satisfies the strong con-
verse property if and only if H(X) = H(X) [3]. Note that,
in view of Proposition 2.2, H(X) = H(X) actually means
that H(X) = H∗(X) = H∗(X) = H(X). This motivates us

to investigate the source coding problems in which different
kinds of equalities, say, two or three out of the above four
quantities being equal, are obtained as necessary and suffi-
cient conditions.

We first define the ε-strong converse property.

Definition 4.1: Let ε ∈ [0, 1) be an arbitrary constant. A
general source X is said to satisfy the ε-strong converse
property if for any coding rate R < Rε(X) any {(ϕn,ψn)}∞n=1
meeting (13) satisfies (20). In particular, we say that a
source satisfies the zero-strong converse property if the
source satisfies the ε-strong converse property with ε = 0.

Theorem 4.1: A general source X satisfies the ε-strong
converse property if and only if Rε(X) = Uε(X). In par-
ticular, a source satisfies the zero-strong converse property
if and only if H(X) = H∗(X).

The proof of Theorem 4.1 is immediate from Theo-
rems 3.1 and 3.3. Note that Uε(X) ≤ Rε(X) from their defi-
nitions and recall that any {(ϕn,ψn)}∞n=1 satisfying (13) meets
(20) if R < Uε(X). Hence, if Uε(X) = Rε(X), X satisfies the
ε-strong converse property. Conversely, suppose that X sat-
isfies the ε-strong converse property. If Uε(X) < Rε(X),
then for any R satisfying Uε(X) < R < Rε(X) there exists
a {(ϕn,ψn)}∞n=1 satisfying (13) and (21). This conflicts the
assumption that X satisfies the ε-strong converse property.

This simple argument on the ε-strong converse prop-
erty explains one of the reasons why we adopt a noncon-
ventional definition in Definition 3.2. The author discussed
coding of a general source with the zero strong converse
property in [7].

We can define another strong converse property.

Definition 4.2: A general source X is said to satisfy the
optimistic strong converse property if for any coding rate
R < U0(X) = H∗(X) any {(ϕn,ψn)}∞n=1 meeting (13) satisfies

lim inf
n→∞

εn = 1. (24)

Theorem 4.2: A general source X satisfies the optimistic
strong converse property if and only if H∗(X) = H(X).

Theorem 4.2 is obvious from Corollary 3.2. If X is
canonical, Theorem 2.1 tells us that the optimistic strong
converse property implies H∗(X) = H∗(X) = H(X). This
means that for any R > H∗(X) there is no {(ϕn,ψn)}∞n=1 satis-
fying (13) and εni → 1 as i→ ∞ for a subsequence {ni}∞i=1.

The definition of the optimistic strong converse prop-
erty (24) can be weakened to lim supn→∞ εn = 1. Obviously,
H∗(X) = H∗(X) is the necessary and sufficient condition for
the weakened optimistic strong converse property.

Example 4.1: Consider the source X(1) in Example 2.4.
This source satisfies the zero-strong converse property if
and only if H(PX3 ) = H(PX4 ). Note that we asymptoti-
cally have a mass at R = H(PX3 ) in this case. This source
satisfies the optimistic strong converse property if and only
if H(PX1 ) = H(PX3 ). Obviously, if R > H(PX3 ), we can
construct {(ϕn,ψn)}∞n=1 with arbitrarily small decoding error



2078
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

probability for even n. Similarly, the source satisfies the
weakened optimistic strong converse property if and only if
H(PX2 ) = H(PX3 ).

5. Relationship to the Smooth Rényi Entropy of Order
Zero

Renner and Wolf defined the smooth Rényi entropy and
pointed out a relationship between the smooth Rényi en-
tropy and the ε-source coding problem [10], [11]. In partic-
ular, the smooth Rényi entropy of order zero for a random
variable Xn ∈ Xn can be written as

Kδ(Xn) = min
An⊂Xn :

Pr{Xn∈An }≥1−δ

log |An|,

where δ ∈ (0, 1) is an arbitrary constant. Quite recently,
Uyematsu [14] discussed coding of a general source in terms
of the smooth Rényi entropy of order zero to and showed
that

lim
δ↓0

lim sup
n→∞

1
n

Kδ(Xn) = H(X), (25)

lim
δ↑1

lim inf
n→∞

1
n

Kδ(Xn) = H(X). (26)

The following theorem shows that not only H(X) and
H(X) but also H∗(X) and H∗(X) are characterized by using
the smooth Rényi entropy of order zero.

Theorem 5.1: For a general source X = {Xn}∞n=1 we have:

lim
δ↓0

lim inf
n→∞

1
n

Kδ(Xn) = H∗(X), (27)

lim
δ↑1

lim sup
n→∞

1
n

Kδ(Xn) = H∗(X). (28)

For simplifying the notations we define

Kδ(X) = lim inf
n→∞

1
n

Kδ(Xn), Kδ(X) = lim sup
n→∞

1
n

Kδ(Xn)

for δ ∈ (0, 1) and

K0(X) = lim
δ↓0

Kδ(X), K1(X) = lim
δ↑1

Kδ(X).

We need the following lemma in the proof of Theorem 5.1.

Lemma 5.1: For any γ > 0 and δ ∈ (0, 1) it holds that

Pr{Xn ∈ Vn} ≥ 1 − δ − 2−nγ for all n ≥ 1, (29)

where

Vn =

{
xn ∈ Xn :

1
n

log
1

PXn (xn)
<

1
n

Kδ(Xn) + γ
}
. (30)

Proof : Fix n ≥ 1 and δ ∈ (0, 1) arbitrarily. From the
definition of Kδ(Xn), for each n ≥ 1 there exists a subset
An ⊂ Xn satisfying

Kδ(Xn) = log |An| and Pr{Xn ∈ An} ≥ 1 − δ. (31)

Then, it follows that

Pr{Xn ∈ An} = Pr{Xn ∈ An ∩Vn} + Pr{Xn ∈ An ∩Vc
n}

≤ Pr{Xn ∈ Vn} + Pr{Xn ∈ An ∩Vc
n}, (32)

where Vc
n denotes the complement of Vn. By using

PXn (xn) ≤ 1
|An |2nγ for all xn ∈ Vc

n, we have

Pr{Xn ∈ An ∩Vc
n} =

∑

xn∈An∩Vc
n

PXn (xn)

≤ |A ∩V
c
n|

|An|2nγ

≤ 2−nγ. (33)

The claim of the lemma follows from the combination of
(31), (32) and (33). !

Proof of Theorem 5.1: We first prove (a-1) H∗(X) ≤
K0(X) and (a-2) H∗(X) ≤ K1(X). Let us consider (a-1). In
view of the expression of H∗(X) in Definition 2.1 it suffices
to prove

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ K0(X) + 2γ

}
= 1 (34)

for any γ > 0. Fix γ > 0 and δ ∈ (0, 1) arbitrarily. Define
Un by

Un =

{
xn ∈ Xn :

1
n

log
1

PXn (xn)
≤ Kδ(X) + 2γ

}
. (35)

Since

1
n

Kδ(Xn) ≤ Kδ(X) + γ infinitely often

from the definition of Kδ(X), it holds that

Pr{Xn ∈ Vn} ≤ Pr{Xn ∈ Un} infinitely often. (36)

In addition, since Kδ(X) is monotone decreasing with re-
spect to δ, we have

Pr
{

1
n

log
1

PXn (Xn)
≤ K0(X) + 2γ

}
≥ Pr{Xn ∈ Un}

for all n ≥ 1. (37)

Then, the combination of (36), (37) and Lemma 5.1 yields

Pr
{

1
n

log
1

PXn (Xn)
≤ K0(X) + 2γ

}
≥ 1 − δ − 2−nγ

infinitely often. (38)

This guarantees

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ K0(X) + 2γ

}
≥ 1 − δ. (39)

Since δ ∈ (0, 1) in (39) is arbitrary, we have (34).
In order to establish (a-2), we will establish

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ Kδ(X) + 2γ

}
> 0 (40)
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for any δ ∈ (0, 1) and γ > 0. This, together with the ex-
pression of H∗(X) in Proposition 2.1, implies that H∗(X) ≤
Kδ(X) for any δ ∈ (0, 1). Inequality (a-2) can be obtained by
letting δ ↑ 1. Hereinafter, we establish (40). Define

U′n =
{

xn ∈ Xn :
1
n

log
1

PXn (xn)
≤ Kδ(X) + 2γ

}
. (41)

From the definition of Kδ(X), for any δ ∈ (0, 1) and γ > 0
there exists an integer n0 = n0(γ, δ) satisfying

1
n

Kδ(Xn) ≤ Kδ(X) + γ for all n ≥ n0.

SinceVn ⊂ U′n for all n ≥ n0, it holds that

Pr{Xn ∈ U′n} ≥ Pr{Xn ∈ Vn}
≥ 1 − δ − 2−nγ for all n ≥ n0, (42)

where the second inequality follows from Lemma 5.1. By
taking the limit inferior of (42), we have

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ Kδ(X) + 2γ

}
≥ 1 − δ,

which immediately yields (40) because δ ∈ (0, 1).
Next, we prove (b-1) K0(X) ≤ H∗(X) and (b-2)

K1(X) ≤ H∗(X). Inequalities (b-1) and (b-2) are proved
in almost the same way. We begin with the proof of (b-1).
Define

Sn =

{
xn ∈ Xn :

1
n

log
1

PXn (Xn)
≤ H∗(X) + γ

}
. (43)

Since PXn (xn) ≥ 2−n(H∗(X)+γ) for all xn ∈ Sn, we can easily
verify that

|Sn| ≤ 2n(H∗(X)+γ) for all n ≥ 1. (44)

In addition, due to the expression of H∗(X) in Definition 2.1,
for any δ ∈ (0, 1) it holds that

Pr{Xn ∈ Sn} ≥ 1 − δ infinitely often. (45)

Then, in view of (44), (45) and the definition of Kδ(Xn), we
have

1
n

Kδ(Xn) ≤ H∗(X) + γ infinitely often,

which yields

Kδ(X) = lim inf
n→∞

1
n

Kδ(Xn) ≤ H∗(X) + γ.

We can establish K0(X) ≤ H∗(X) + γ by letting δ ↓ 0. Since
γ > 0 is arbitrary, K0(X) ≤ H∗(X) is established.

Finally, we prove (b-2). In view of the expression of
H∗(X) in Proposition 2.1, for any γ > 0 there exists a con-
stant ε0 > 0 such that

Pr
{

1
n

log
1

PXn (Xn)
≤ H∗(X) + γ

}
≥ ε0 for all n ≥ n0. (46)

Define Sn by (43), where H∗(X) is replaced with H∗(X).
Then, we have |Sn| ≤ 2n(H∗(X)+γ) for all n ≥ 1 and

1
n

K1−ε0 (Xn) ≤ H∗(X) + γ for all n ≥ n0

from the definition of K1−ε0 (Xn). By taking the limit supe-
rior of both sides, it holds that

K1−ε0 (X) = lim sup
n→∞

1
n

K1−ε0 (Xn) ≤ H∗(X) + γ. (47)

Since Kδ(X) is monotone decreasing with respect to δ, we
have K1(X) ≤ K1−ε0 (X). Therefore, (47) leads to

K1(X) ≤ H∗(X) + γ. (48)

which establishes (b-2) because γ > 0 is arbitrary. !

Remark: Relationship similar to (25)–(28) hold for the
smooth Rényi entropy of order infinity as well. See [8],
[15] for more details.

6. Bounds on the Width of the Entropy-Spectrum

This section is devoted to investigation of bounds on the
width of the entropy-spectrum, where the entropy-spectrum
means the distribution of 1

n log 1
PXn (Xn) [3]. Recall that H(X)

is assumed to be finite. Then, we can define

W(X) = inf
G

lim sup
n→∞

(bn − an),

where G denotes the set of sequences of intervals defined by

G =
{
{(an, bn)}∞n=1 : for any constant γ > 0

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ (an − γ, bn + γ)

}
= 1
}
.

Here, we require that any sequence of intervals {(an, bn)}∞n=1
must satisfy an ≤ bn for each n ≥ 1 (we regard the interval
(an, bn) as the empty set if an = bn). This W(X) was defined
in [6] in the context of a fixed-length homophonic coding.
Quite recently, Arimura and Iwata showed that W(X) coin-
cides with the infimum achievable redundancy of fixed-to-
fixed length coding [1].

We also define

W∗(X) = inf
G∗

lim sup
n→∞

(bn − an),

where

G∗ =
{
{(an, bn)}∞n=1 : for any constant γ > 0

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ (an − γ, bn + γ)

}
= 1
}
.

We can show that W∗(X) is the infimum achievable worst-
case redundancy of fixed-to-fixed length coding in the opti-
mistic sense [9].

The following proposition gives bounds on W(X) and
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W∗(X). Note that Proposition 6.1-(b) is mentioned in [6]
without proof and the proof given below is much simpler
than the derivation in [1]. Lower bounds on W(X) and
W∗(X) are first obtained in this paper.

Proposition 6.1: For a general source X we have:

(a) 0 ≤ W∗(X) ≤ W(X).
(b) W(X) ≤ H(X) − H(X).
(c) W∗(X) ≤ min{H(X) − H∗(X),H∗(X) − H(X)}.
(d) W∗(X) ≥ H∗(X) − H∗(X) if X is canonical.
(e) W(X) ≥ max{H(X) − H∗(X),H∗(X) − H(X)}.

Proof : Since (a) is obvious, we will establish (b)–(e)
below. Recall that for arbitrary two sequences {pn}∞n=1 and
{qn}∞n=1 of real numbers it holds that

lim inf
n→∞

(−pn) = − lim sup
n→∞

pn, (49)

lim sup
n→∞

(−pn) = − lim inf
n→∞

pn, (50)

lim inf
n→∞

pn + lim inf
n→∞

qn ≤ lim inf
n→∞

(pn + qn)

≤ lim inf
n→∞

pn + lim sup
n→∞

qn, (51)

lim inf
n→∞

pn + lim sup
n→∞

qn ≤ lim sup
n→∞

(pn + qn)

≤ lim sup
n→∞

pn + lim sup
n→∞

qn. (52)

First we prove (b). Recall that H(X) ≤ H(X) from their
definitions. We can prove {(H(X),H(X))}∞n=1 ∈ G in the
following way. Letting γ > 0 be an arbitrary constant, for
each n ≥ 1 it holds that

Pr
{

1
n

log
1

PXn (Xn)
∈ (H(X) − γ,H(X) + γ)

}

= 1 −
[
Pr
{

1
n

log
1

PXn (Xn)
≤ H(X) − γ

}

+ Pr
{

1
n

log
1

PXn (Xn)
≥ H(X) + γ

}]
. (53)

Therefore, (53) leads to

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ (H(X) − γ,H(X) + γ)

}

≥ 1 − lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ H(X) − γ

}

− lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H(X) + γ

}
, (54)

where the inequality follows from (49) and (52). Note
that the second and third terms on the right side of (54)
are equal to 0 due to the expressions of H(X) and H(X)
in Proposition 2.1. In addition, note that the left side of
(54) is less than or equal to one. Hence, we can conclude
that the left side of (54) coincides with one and therefore
{(H(X),H(X))}∞n=1 ∈ G. Since W(X) is defined as the infi-
mum with respect to elements of G, W(X) ≤ H(X) − H(X)
follows.

Next, we prove (c). It suffices to prove both W∗(X) ≤

H(X) − H∗(X) and W∗(X) ≤ H∗(X) − H(X). We only prove
W∗(X) ≤ H(X) − H∗(X) here because W∗(X) ≤ H∗(X) −
H(X) can be proved similarly. Recall that H∗(X) ≤ H(X)
from Proposition 2.2. Thus, we can consider the sequence of
intervals {(H∗(X),H(X))}∞n=1. Then, for any constant γ > 0
it follows that

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ (H∗(X) − γ,H(X) + γ)

}

≥ 1 − lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ H∗(X) − γ

}

− lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ H(X) + γ

}
, (55)

where the inequality follows from (50) and (51). Note that
the second and third terms on the right side of (55) are equal
to 0 due to the expressions of H∗(X) and H(X) in Proposi-
tion 2.1. In addition, note that the left side of (55) is less than
or equal to one. Hence, we can conclude that the left side of
(55) coincides with one and therefore {(H∗(X),H(X))}∞n=1 ∈
G∗. We now have W∗(X) ≤ H(X) − H∗(X) in view of the
definition of W∗(X).

Now we prove (d). Suppose that X is canonical. Then,
H∗(X) ≤ H∗(X) holds from Theorem 2.1. Without loss
of generality we can assume that H∗(X) < H∗(X) (oth-
erwise, the bound in (d) is trivial). We prove W∗(X) ≥
H∗(X) − H∗(X) by contradiction. Assume that there ex-
ists an {(an, bn)}∞n=1 ∈ G∗ satisfying lim supn→∞ (bn − an) <
H∗(X) − H∗(X). Then, there exist a constant γ0 > 0 and an
integer n0 satisfying

bn − an ≤ H∗(X) − H∗(X) − 4γ0 for all n ≥ n0. (56)

We define the four intervals as follows:

E(1)
n = {t ∈ R : t ≤ an − γ0}, (57)

E(2)
n = {t ∈ R : t ≥ bn + γ0}, (58)

F(1) = {t ∈ R : t ≤ H∗(X) + γ0}, (59)

F(2) = {t ∈ R : t ≥ H∗(X) − γ0}, (60)

where R denotes the set of real numbers. It is important
to notice that at least one of F(1) ⊂ E(1)

n and F(2) ⊂ E(2)
n

holds for all n ≥ n0. That is, if an − γ0 ≥ H∗(X) + γ0, we
have F(1) ⊂ E(1)

n . Otherwise, we have F(2) ⊂ E(2)
n because

it follows from (56) and an ≤ H∗(X) + 2γ0 that bn ≤ an +

H∗(X)−H∗(X)−4γ0 ≤ H∗(X)−2γ0, i.e., bn+γ0 ≤ H∗(X)−γ0
for all n ≥ n0. Therefore, it holds that

Pr
{

1
n

log
1

PXn (Xn)
∈ E(1)

n ∪ E(2)
n

}

≥ min
i=1,2

Pr
{

1
n

log
1

PXn (Xn)
∈ F(i)

}
for all n ≥ n0, (61)

which guarantees

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ E(1)

n ∪ E(2)
n

}
> 0 (62)
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owing to the expressions of H∗(X) and H∗(X) in Proposi-
tion 2.1 and the definitions of F(1) and F(2). Now we can
prove

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ (an − γ0, bn + γ0)

}

= 1 − lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ E(1)

n ∪ E(2)
n

}
< 1,

where the equality follows from (50) and the inequality is
guaranteed by (62). This means that {(an, bn)}∞n=1 " G∗,
which is a contradiction.

For the proof of (e) it suffices to establish W(X) ≥
H(X) − H∗(X) and W(X) ≥ H∗(X) − H(X). We show only
W(X) ≥ H(X) − H∗(X) below because W(X) ≥ H∗(X) −
H(X) can be proved in the same way. Similarly to the proof
of (d), we prove W(X) ≥ H(X) − H∗(X) by contradiction.
Suppose that H(X) > H∗(X) and assume that there exist a
constant γ0 > 0 and an integer n0 satisfying

bn − an ≤ H(X) − H∗(X) − 4γ0 for all n ≥ n0. (63)

We define E(1)
n , E(2)

n and F(1) by (57), (58) and (59), respec-
tively and replace the definition of F(2) in (60) with

F(2) = {t ∈ R : t ≥ H(X) − γ0}.
Then, we can show that one of F(1) ⊂ E(1)

n and F(2) ⊂ E(2)
n

holds for all n ≥ n0. This fact leads to (61), which guaran-
tees

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ E(1)

n ∪ E(2)
n

}
> 0 (64)

owing to the expressions of H∗(X) and H(X) in Proposi-
tion 2.1. Then, we can prove

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ (an − γ0, bn + γ0)

}

= 1 − lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
∈ E(1)

n ∪ E(2)
n

}
< 1,

where the equality follows from (49) and the inequality is
guaranteed by (64). This means that {(an, bn)}∞n=1 " G and
contradicts the assumption of {(an, bn)}∞n=1 ∈ G. !

Example 6.1: Let us consider the general source X(1) in
Example 2.4. In view of the definitions of W(X) and W∗(X),
we have W(X(1)) = H(PX4 ) − H(PX1 ) = H(X(1)) − H(X(1))
and W∗(X(1)) = H(PX3 ) − H(PX2 ) = H∗(X(1)) − H∗(X(1)).
That is, the bounds in (b) and (d) are satisfied with equal-
ity. On the other hand, for the general source X(2) in Exam-
ple 2.4, if H(PX3 ) − H(PX1 ) ≤ H(PX4 ) − H(PX2 ) is assumed,
we have W(X(2)) = H(PX4 ) − H(PX2 ) = H(X(2)) − H∗(X(2))
and W∗(X(2)) = H(PX3 ) − H(PX1 ) = H∗(X(2)) − H(X(2)) for
this source, i.e., the bounds in (c) and (e) are satisfied with
equality.

7. Conclusion

In this paper we have introduced two nonconventional quan-
tities H∗(X) and H∗(X) and have investigated their roles in

coding of a general source. We have discussed the opera-
tional meanings, variations of the strong converse theorem,
relationships to the smooth Rényi entropy of order zero, and
bounds on the width of the entropy-spectrum. These results
show importance of H∗(X) and H∗(X) as new terminologies
in information-spectrum methods.
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[16] S. Vembú and S. Verdú, “Generating random bits from an arbitrary
source: Fundamental limits,” IEEE Trans. Inf. Theory, vol.41, no.5,
pp.1322–1332, 1995.



2082
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.11 NOVEMBER 2011

[17] S. Vembú, S. Verdú, and Y. Steinberg, “The source-channel trans-
mission theorem revisited,” IEEE Trans. Inf. Theory, vol.41, no.1,
pp.44–54, 1995.

[18] J. Wolfowitz, Coding Theorems of Information Theory, 3rd ed.,
Springer-Verlag, NY, 1978.

Appendix: Proof of Proposition 2.1

We prove here that H(X) in Definition 2.1 can be expressed
in the form of Proposition 2.1. We can use the same
method for verification of the equivalence of the two forms
of H∗(X),H∗(X) and H(X).

Define

A =
{
α ∈ R : lim inf

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≤ α
}
= 1
}
,

B =
{
β ∈ R : lim sup

n→∞
Pr
{

1
n

log
1

PXn (Xn)
≥ β
}
> 0
}
.

Set A = infα∈A α and B = supβ∈B β. Clearly, A and B corre-
spond to the two expressions of H(X) in Definition 2.1 and
Proposition 2.1, respectively.

We begin with the proof of B ≤ A. To this end, let
α ∈ A and β ∈ B be arbitrary elements. We prove β ≤ α by
contradiction in the following way. Suppose that α < β is
true. Then, we have

Pr
{

1
n

log
1

PXn (Xn)
≤ α
}
≤ Pr
{

1
n

log
1

PXn (Xn)
< β

}

for all n ≥ 1, which implies

1 = lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ α
}

≤ lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
< β

}
≤ 1,

where the equality follows from α ∈ A. Thus, it holds from
(49) that

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ β
}
= 0,

which contradicts β ∈ B. Therefore, β ≤ α must be satis-
fied. This establishes B ≤ A because α ∈ A and β ∈ B are
arbitrary.

Next, we prove A ≤ B. Note that A − γ " A for any
constant γ > 0 and therefore it holds that

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≤ A − γ

}
< 1.

This immediately means

lim inf
n→∞

Pr
{

1
n

log
1

PXn (Xn)
< A − γ

}
< 1,

which can be written as

lim sup
n→∞

Pr
{

1
n

log
1

PXn (Xn)
≥ A − γ

}
> 0

and shows A − γ ∈ B. Now we have A − γ ≤ B due to the
definition of B. Since γ > 0 is arbitrary, A ≤ B follows.
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