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Abstract We present a rating method that, given information on the pairwise com-
parisons of n items, minimizes the number of inconsistencies in the ranking of those
items. Our Minimum Violations Ranking (MVR) Method uses a binary linear integer
program (BILP) to do this. We prove conditions when the relaxed LP will give an opti-
mal solution to the original BILP. In addition, the LP solution gives information about
ties and sensitivities in the ranking. Lastly, our MVR method makes use of bounding
and constraint relaxation techniques to produce a fast algorithm for the linear ordering
problem, solving an instance with about one thousand items in less than 10 minutes.

Keywords minimum violations rating · linear ordering · integer programming · linear
programming · optimization · ties · sensitivity

1 Introduction

In this paper, we present a rating method that, given information on the pairwise
comparisons of n items, minimizes the number of inconsistencies in the ranking of those
items. Though Minimum Violations Ranking (MVR) methods have many applications
including economic input-output matrices and sequencing of items from archaeological
digs [12], we use examples from sports to explain our new MVR method. The matrix
D below, which we call a point differential matrix, contains pairwise comparison data
and is commonly and easily produced for many sports.1
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1 A point differential matrix could also be created so that it includes both positive and
negative values for the positive and negative point differentials.
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D =





1 2 3 4 5

1 0 0 0 0 0
2 9 0 4 0 2
3 5 0 0 0 0
4 15 3 8 0 5
5 6 0 3 0 0




.

The (2, 3)-entry means that team 2 beat team 3 by 4 points in their matchup. We will
analyze this point differential matrix in order to produce a ranking of these five teams.
At this point we introduce a definition.

Definition 1 A matrix D is in hillside form if

dij ≤ dik , ∀ i and ∀ j ≤ k (ascending order across rows)

dij ≥ dkj , ∀ j and ∀ i ≤ k. (descending order down columns)

The name is suggestive as a cityplot of a matrix in hillside form looks like a sloping
hillside. The matrix A below is in hillside form, while B is not.

A =





0 3 5 8 15
0 0 2 4 9
0 0 0 3 6
0 0 0 0 5
0 0 0 0 0




and B =





0 3 5 8 15
0 0 2 4 9
7 0 0 3 4
0 0 0 0 5
0 0 0 0 0




.

For n×n matrices in hillside form, the ranking r of the items is clear: r = ( 1 2 · · · n ).
For non-hillside matrices, we can count the number of violations of the hillside con-
ditions. In the above example, B has 7 violations. Often a matrix that appears to be
non-hillside can be symmetrically reordered so that it is in hillside or near hillside form.
In fact, the non-hillside matrix D is the perfect hillside matrix A when D is reordered
according to the vector ( 5 2 4 1 3 ). Finding such a hidden hillside structure is
exactly the aim of our MVR method.

Our MVR method finds a reordering of the items that when applied to the item-
item matrix of differential data forms a matrix that is as close to hillside form as
possible. Figure 1 summarizes the concept pictorially. On the left is a cityplot of an

Fig. 1 Cityplot of 11× 11 data matrix with original ordering and MVR reordering

11×11 matrix in its original ordering of items, while the right is a cityplot of the same
data displayed with the new optimal ordering. In Section 3, we explain how we produce
such an optimal ordering.
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Hillside form gives a great deal of information about the difference in the strengths
of teams. For example, matrix A says that not only is team 1 ranked above teams 2, 3,
4, and 5, but we expect team 1 to beat team 2 by some margin of victory, then team
3 by an even greater margin, and so on. Sometimes a data matrix has been reordered
to be as close to hillside form as possible, yet violations remain. These violations are
of two types: upsets and weak wins. Nonzero entries in the lower triangular part of the
reordered matrix correspond to upsets, i.e., when a lower ranked team beat a higher
ranked team. Weak wins mainfest as violations of the hillside conditions that occur in
the upper triangular part of the matrix. This is when a high ranked team beats a low
ranked team but by a smaller margin of victory than expected. It is possible to weight
these two types of violations non-uniformly if the modeler has a greater aversion to one
over another. In fact, our MVR method does this inherently. The example matrix B
above demonstrates this well. Notice that the presence of the 7 in the lower triangular
part of the matrix accounted for 6 of the 7 violations.

2 Related Work

Several MVR methods have been proposed [1], [2], [3], [5], [6], and [9]. However, be-
cause these MVR methods only consider the upset type of violation, our MVR method
is more comprehensive. In fact, since our method considers both upset and weak win
violations, it produces a stricter ranking of the items. Very few methods consider tied
events as part of the input data and even fewer allow for the possibility of ties in
the output ranking [3]. On the other hand, our MVR method allows for both input
and output ties. The output ties are a consequence of the beautiful theory of linear
programming. (See Section 3.1.3 for more on ties and their relationship to multiple
optimal solutions.) In summary, our MVR method contributes three new features: (1)
it produces an optimal ranking that minimizes the number of both upset violations and
weak win violations, (2) it produces an optimal ranking that may include ties, (3) it
identifies alternate optimal rankings, if they exist, (4) it provides sensitivity measures
for the optimal ranking, and (5) it is fast, producing an MVR or linear ordering for
one thousand items in about 10 minutes.

3 Solving the MVR problem using distance to hillside form

Our MVR problem, i.e., finding a reordering of the items that brings the data matrix
Dn×n as close to hillside form as possible can be stated mathematically as follows. Find
the permutation matrix Qn×n so that the symmetrically reordered matrix QT DQ has
minimal hillside violations. The optimization problem below

min
Q

# hillside violations of QT DQ

s.t. QT e = e

eT Q = eT

qij ∈ {0, 1}

has linear constraints, binary variables, and a quadratic objective function, all of which
put it into a challenging class of optimization problems. Fortunately, the alternate
formulation of the next section makes the problem much more tractable.
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3.1 BILP

In this section we formulate our MVR problem as a binary integer linear program
(BILP), which is a much more tractable formulation than the quadratic integer program
(QIP) above. In order to reach the BILP formulation, we need to define some constants
and some decision variables. First, we define the constants cij .

Definition 2 of C matrix: Let C = [cij ] ∀ i, j = 1, 2, . . . , n be defined as

cij := #{ k | dik < djk } + #{ k | dki > dkj }, (1)

where # denotes the cardinality of the corresponding set. Thus, #{ k | dik < djk } is
the number of teams receiving a lower point differential against team i than team j.
Similarly, #{ k | dki > dkj } is the number of teams receiving a greater point differential
against team i than team j.2

Theorem 1 The cost matrix C defined above can be used to compute the number of
violations to hillside form.

Proof To count the number of hillside violations associated with a particular ranking,
we use that ranking to symmetrically reorder D, then count the number of violations,
denoted #viol(D) according to the rule

#viol(D) = #{ k | dik < djk, ∀i < j} + #{ k | dki > dkj , ∀i < j}.

Assume the ranking is 1, 2, . . . , n. Then in the binary integer program, the solution
matrix X associated with that ranking is an upper triangular matrix of 1s. (Both the
integer program and the matrix X are described on the next page.) As a result, the
objective function

nX

i=1

nX

j=1

cijxij = (c11 + c12 + · · · + c1n) + (c23 + · · · + c2n) + · · · + (cn−1,n),

which is all the elements in the strict upper triangular part of C. Applying the definition
for element cij and summing this for each element in the strict upper triangular part
of C, we find that

nX

i=1

nX

j=1

cijxij = #{ k | dik < djk, ∀i < j} + #{ k | dki > dkj , ∀i < j} = #viol(D).

Without loss of generality we can assume that the ranking is {1, 2, . . . , n} because
otherwise, we simply reorder D, C, and X in which case the ranking associated with
the reordered matrices is {1, 2, . . . , n}.

2 The matrix C above counts hillside violations in a binary fashion, however, something
more sophisticated can be done. For instance, we can consider weighted violations by sum-
ming the difference each time a hillside violation occurs. In this case, C is defined as
cij :=

P
k:dik<djk

(djk − dik) +
P

k:dki>dkj
(dki − dkj).
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Consider a data matrix D of point differentials, where dij is the number of points
winning team i beat losing team j by in their matchup, 0 otherwise. The trick to
relating this to MVR is to think of each row and column of D as a team’s ranking of
its opponents. For instance, for our 5-team example with

D =





Duke Miami UNC UVA VT

Duke 0 0 0 0 0
Miami 45 0 18 8 20
UNC 3 0 0 2 0
UVA 31 0 0 0 0
VT 45 0 27 38 0




,

the second row of D tells us that Miami would rank its opponents’ defensive ability from
strongest to weakest as UVA, UNC, VT, Duke. On the other hand, the first column
of D, for example, tells us that Duke would rank its opponents’ offensive ability as
Miami/VT, UVA, UNC. Consequently, these rankings, both offensive and defensive,
for the n teams can be aggregated to create an overall ranking for the season. In fact,
our MVR method can be described as a rank aggregation method with a very special
definition of the conformity matrix C. (See Section 8.)

Armed with a matrix C of constants that helps count the number of violations to
hillside form, our goal is to create a ranking of the n items that minimizes this number.
In order to accomplish this goal, we define decision variables xij that determine if item
i should be ranked above item j. In particular,

xij =

Ω
1, if item i is ranked above item j
0, otherwise.

To understand the use of the matrix X, consider a small example with n = 4 items
labeled 1 through 4 and ranked in that order. Then the matrix X associated with this
ranking is

X =





1 2 3 4

1 0 1 1 1
2 0 0 1 1
3 0 0 0 1
4 0 0 0 0



,

which indicates that item 1 is ranked above items 2, 3, and 4, while item 2 is ranked
above items 3 and 4, and finally, item 3 is ranked above only item 4. In this example,
the nice stairstep structure of X clearly reveals the ranking. At first glance, for other
examples, it may not be as clear. Consider the matrices X and Y below.

X =





1 2 3 4

1 0 0 1 0
2 1 0 1 0
3 0 0 0 0
4 1 1 1 0



 and Y =





4 2 1 3

4 0 1 1 1
2 0 0 1 1
1 0 0 0 1
3 0 0 0 0



.

Y is simply X reordered according to the rank ordering of [4, 2, 1, 3]. Fortunately, there
is no need to actually reorder the matrix X resulting from the optimization because
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it is very easy to identify the ranking from the unordered X. Simply take the column
sums of X and sort them in ascending order to obtain the ranking.3

With X well understood, we now return to the optimization problem. We want to
minimize the number of violations to hillside form, which, in terms of our constants
cij and variables xij becomes

min
nX

i=1

nX

j=1

cij xij with xij ∈ {0, 1}.

However, we must add some constraints that force the matrix X to have the proper-
ties that we observed and exploited in the small 4 × 4 example above. This can be
accomplished by adding constraints of two types:

xij + xji = 1 for all distinct pairs (i, j) (Type 1—antisymmetry)

xij + xjk + xki ≤ 2 for all distinct triples (i, j, k) (Type 2—transitivity)

The first constraint is an anti-symmetry constraint, which says that exactly one of xij

and xji can be turned “on” (i.e., set equal to 1). This captures the fact that there are
only two choices describing the relationship of i and j: either i is ranked above j or j
is ranked above i. The second constraint is a very clever and compact way to enforce
transitivity. That is, if xij = 1 (i is ranked above j) and xjk = 1 (j is ranked above k),
then xik = 1 (i is ranked above k). Transitivity is enforced by the combination of the
Type 1 and Type 2 constraints. Because the decision variables are binary, the Type 2
constraint forbids cycles of length 3 from item i back to item i. The Type 1 constraint
forbids cycles of length 2. In fact, these two constraints combine to forbid cycles of any
length. A dominance graph helps explain this.

The matrix X from our 4× 4 example,

X =





1 2 3 4

1 0 1 1 1
2 0 0 1 1
3 0 0 0 1
4 0 0 0 0



,

can be alternatively described with the dominance graph of Figure 2. Every ranking
vector produces a graph of this sort, which shows the dominance of an item over all
items below it. The dominance graph for every ranking vector will contain no upward
arcs as an upward arc corresponds to a cycle, i.e., a violation of Type 2 transitivity
constraints. To see how the Type 1 and 2 constraints combine to forbid any cycles,
consider the cycle from 1 → 3 → 4 → 1, which corresponds to the Type 2 constraint
x13 + x34 + x41 ≤ 2. Because item 1 is ranked above item 3, x13 is turned on (i.e.,
x13 = 1). Similarly, x34 = 1. Then according to the Type 2 constraint, x41 must
equal 0. Combining this with the Type 1 constraint, then x14 must equal 1, and thus,
transitivity is enforced. In summary, all three types of constraints (Type 1 and Type
2 plus the binary constraint on xij) combine to produce an X matrix solution that
is a simple reordering away from the stairstep form. Finally, because X is always a
reordering of the stairstep matrix, it has unique row and column sums, and thus,

3 Or the row sums sorted in descending order could be used.
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Fig. 2 Dominance graph

produces a unique ranking of the n items. The complete binary integer linear program
(BILP) is

min
nX

i=1

nX

j=1

cij xij

xij + xji = 1 for all distinct pairs (i, j) (Type 1–antisymmetry)

xij + xjk + xki ≤ 2 for all distinct triples (i, j, k) (Type 2–transitivity)

xij ∈ {0, 1} (Type 3–binary)

Our MVR BILP contains n(n− 1) binary decision variables, n(n− 1) Type 1 equality
constraints, and n(n − 1)(n − 2) Type 2 inequality constraints. The O(n3) Type 2
constraints dramatically limit the size of ranking problems that can be solved with
this optimal MVR method. Fortunately, there are some strategies (see Section 3.1.2)
for sidestepping this issue of scale.

3.1.1 SoCon example

This 12-team example comes from the 2008-2009 Southern Conference (SoCon)
basketball season. The MVR definition for the C matrix produces

C =





1 2 3 4 5 6 7 8 9 10 11 12

1 0 15 15 14 17 7 4 4 9 2 10 11
2 8 0 10 12 18 6 3 3 11 3 7 8
3 5 11 0 9 14 6 2 4 9 2 5 9
4 5 9 9 0 15 5 0 2 6 3 6 5
5 2 2 5 3 0 2 1 2 0 1 1 2
6 10 14 16 17 18 0 7 7 12 4 13 15
7 15 18 18 20 20 13 0 8 16 10 15 15
8 15 20 18 18 20 13 10 0 15 11 14 18
9 10 9 11 14 19 7 4 7 0 2 10 9
10 17 17 18 18 20 16 7 9 15 0 13 14
11 10 14 14 10 18 8 4 4 12 7 0 12
12 10 12 11 12 17 7 4 4 10 6 8 0





.
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Solving the BILP produces an optimal objective value of 351. The solution matrix X
and optimal ranking obtained by sorting the column sums of X in ascending order are
below.

X =





1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 1 1 1 0 1 1 0
2 1 0 0 0 0 1 1 1 0 1 1 1
3 1 1 0 0 0 1 1 1 1 1 1 1
4 1 1 1 0 0 1 1 1 1 1 1 1
5 1 1 1 1 0 1 1 1 1 1 1 1
6 0 0 0 0 0 0 1 1 0 1 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 1 1 0 0 0 1 1 1 0 1 1 1
10 0 0 0 0 0 0 1 1 0 0 0 0
11 0 0 0 0 0 1 1 1 0 1 0 0
12 1 0 0 0 0 1 1 1 0 1 1 0





and





Davidson 5
CofC 4
Citadel 3
Samford 9
UT Chatt 2
Wofford 12
App State 1
W. Carolina 11
Elon 6
UNC-G 10
Furman 7
GA Southern 8





.

3.1.2 Solving Large MVR BILPs

Because the O(n3) Type 2 constraints drastically limit the size of the ranking
problems that we can handle, we use a relaxation trick, called constraint relaxation,
to increase the size of tractable problems. Of the n(n− 1)(n− 2) Type 2 constraints,
xij + xjk + xki ≤ 2, only a very small proportion of these are necessary. The great
majority of these will be trivially satisfied—the problem is that we don’t know which
are necessary and which are unnecessary. In order to find out, we start by assuming all
are unnecessary, then slowly add back in the necessary ones as they are identified. The
Type 1 and relaxed continuous version of the Type 3 constraints cause no problems,
so we leave these unchanged. Below are the steps involved in the constraint relaxation
technique.

Constraint Relaxation Algorithm for Large MVR BILPs

1. Relax all Type 2 constraints so that the initial set of necessary Type 2 constraints
is empty.

2. Solve the BILP with the current set of necessary Type 2 constraints. Form the
optimal ranking associated with this solution. This ranking is actually an approxi-
mation to the true ranking we desire for the original problem with the full Type 2
constraint set.

3. Determine which Type 2 constraints are violated by the solution from Step 2—
these are necessary Type 2 constraints. Add these Type 2 constraints to the set of
necessary Type 2 constraints and go to Step 2. Repeat until no Type 2 constraints
are violated. The BILP solution at this point is an optimal ranking for the original
problem with the full constraint set.

In Step 3, the determination of which Type 2 constraints are violated by the current
BILP solution is easy and does not require that each constraint be checked one by one.
Recall from Figure 2 that violations to the Type 2 transitivity constraints are upward
arcs in the dominance graph. In yet another view, these violations manifest as ones on



9

the lower triangular part of the rank reordered matrix X. For each identified upward
arc (j, i), next find all k such that xik = xkj = 1 and generate the corresponding Type
2 constraint xji + xik + xkj ≤ 2. The matrix X can be used to quickly find these

elements k: form the Hadamard (element-wise) product of the ith row and jth column
of X. All nonzero elements in this product satisfy xik = xkj = 1. Because of the upper
triangular structure of the reordered matrix X, it takes much less than O(n) work to
compute the Hadamard product and form the transitivity constraints associated with
each upward arc.

In addition, we can take advantage of any approximate rankings that may exist.
For example, suppose a fast heuristic method (MVR or otherwise) is run and a ranking
produced. This ranking has a one-to-one correspondence to a matrix, let’s call it X̄,
in hillside form. Computing the objective value f(X̄) = C. ∗ X̄ for this approximate
solution matrix X̄ gives a useful upperbound on the objective. As the branch and bound
BILP procedure explores solutions and encounters a branch with nodes exceeding f(X̄),
nodes in that branch no longer need to be explored.

In summary, the constraint relaxation technique is an iterative procedure that
solves a series of BILPs whose constraint set gradually grows until all the necessary
transitivity constraints are identified. At each iteration the optimal BILP solution
is an approximation to the true optimal ranking of the original problem with the full
constraint set. The approximations improve until the optimal ranking is reached. Table
2 of Section 9 demonstates this well.

3.1.3 Multiple Optimal Solutions for the BILP

The branch and bound procedure terminates with an optimal solution X. As we
saw with our small examples, sorting the column sums in ascending order gives the
optimal ranking of the items. In this section, we consider two questions: (1) is the
optimal solution unique? and (2) if it is not, can we find alternate optimal solutions?

There is a simple test to determine if the optimal solution to the BILP is unique.
Consider each successive pair of items in the optimal ranked list and ask if the two
items i and j can be swapped without changing the objective value. Only swaps of rank
neighboring items need be considered as these are the only swaps that do not violate
the constraints, particularly the transitivity constraints. The objective value will not
change if cij = cji. If this is so, then an alternate optimal solution is one that has these
two items swapped. There may indeed be more than a two-way tie at this rank position.
For instance, a three-way tie occurs if cij = cji = cik = cki = cjk = ckj for rank
neighboring items i, j, and k. Continue down the optimal ranked list in this fashion
detecting any two-way or higher ties at each position. We apply this Tie Detection
algorithm to the 2009 SoCon example. From Section 3.1.1, the BILP produced the
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optimal ranking of





Davidson 5
CofC 4
Citadel 3
Samford 9
UT Chatt 2
Wofford 12
App State 1
W. Carolina 11
Elon 6
UNC-G 10
Furman 7
GA Southern 8





.

We begin the Tie Detection algorithm by comparing the two teams at the top of
the list. Because C(5, 4) 6= C(4, 5), these two cannot be swapped. Thus, we move onto
the next pair of teams in the ranked list, teams 4 and 3. Because C(4, 3) = C(3, 4),
these two can be swapped. This means that teams 3 and 4 can appear in either order
in the optimal ranked list, with 4 above 3 as the BILP algorithm found or with 3 above
4, which is an alternate optimal solution since the objective function is unchanged yet
feasibility is still maintained. At this point, we have discovered a two-way tie between
teams 3 and 4, but a three-way or higher tie may exist. So we check to see if the next
team in the list, team 9, satisfies C(3, 4) = C(4, 3) = C(4, 9) = C(9, 4) = C(3, 9) =
C(9, 3), which it does not. Thus, the tie at the second rank position is indeed only a
two-way tie between teams 3 and 4. We continue down the list, considering 9 and 2,
then 2 and 12, and so on, and we find one more two-way tie—this time between teams
1 and 11. As a result, this SoCon example has a total of four binary integer optimal
solutions, which are shown below.





5
4
3
9
2
12
1
11
6
10
7
8





,





5
3
4
9
2
12
1
11
6
10
7
8





,





5
4
3
9
2
12
11
1
6
10
7
8





, and





5
3
4
9
2
12
11
1
6
10
7
8





.

In summary, we know that we can (1) apply a branch and bound procedure to
find an optimal solution to the MVR BILP, (2) check the uniqueness of the obtained
optimal solution, and (3) if applicable, find several alternate optimal solutions with the
simple O(n) test described above. As a result, this optimization technique produces an
output ranking that may actually contain ties and is a very mathematically appealing
and provably optimal ranking method. However, the BILP is much slower than many
existing rating and ranking methods. In fact, because of the O(n3) constraints, in
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practice, a commercial BILP solver such as the DASH Optimization software or the
NEOS server is limited to a problem with n on the order of a few thousand. Thus,
ranking all NCAA Division 1 football or basketball teams is certainly within reach
while ranking billions of webpages in cyberspace is not. Yet ranking the top 50 results
produced by several popular search engines is not only possible, but fast—as it can be
done in real-time. Fortunately, the next section explains how we can further increase
the practical limit on n, making the MVR ranking of thousands of items possible.

3.2 LP

In this section, we relax the Type 3 constraints that force the variables xij to be
discrete, specifically, binary since xij ∈ {0, 1}, and allow them to be continuous so
that 0 ≤ xij ≤ 1. Actually, the upperbound of the bound constraint 0 ≤ xij ≤ 1 is
redundant as this restriction is covered by the Type 1 constraint xij + xji = 1. Thus,
the simplified relaxed LP for the MVR problem is

min
nX

i=1

nX

j=1

cij xij

xij + xji = 1 for all distinct pairs (i, j) (Type 1–antisymmetry)

xij + xjk + xki ≤ 2 for all distinct triples (i, j, k) (Type 2–transitivity)

xij ≥ 0 (Type 3–continuous)

When some BILPs are solved as LPs the optimal solution to the relaxed problem, the
LP, gives a solution with binary values, which is clearly also optimal for the BILP. This
is the best-case scenario. The next best scenario is when the optimal solution for the
LP contains just a small proportion of fractional values. Often, in this case, these few
fractional values can be rounded to the nearest integer giving a slightly suboptimal
solution that may adequately approximate the exact optimal integer solution. In this
section, we show that the LP gives very interesting results. Many times the LP solution
is optimal and, in fact, readily tells us all alternate optimal solutions as well.

Our 12-team SoCon example makes this point well. From Section 3.1.3, we discov-
ered that this example has four binary optimal solutions. One with the teams in the
rank order given by

( 5 4 3 9 2 12 1 11 6 10 7 8 )T ,

another ranking that is identical yet team 3 is above team 4, still another ranking that
is identical to the first yet teams 11 is above team 1, and a final ranking with both 3
above 4 and 11 above 1. Notice how these ties are manifested in the LP solution matrix
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X below.

X =





1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 1 1 1 0 1 0.4951 0
1 0 0 0 0 1 1 1 0 1 1 1
1 1 0 0.5896 0 1 1 1 1 1 1 1
1 1 0.4104 0 0 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 1 1 1
0 0 0 0 0 0 1 1 0 0 0 0

0.5049 0 0 0 0 1 1 1 0 1 0 0
1 0 0 0 0 1 1 1 0 1 1 0





.

The locations of the fractional values in X correspond precisely to the 2 two-way ties.
Because the LP solver terminated with an optimal objective value of 351, which is
identical to the objective value of the BILP, the LP’s fractional optimal solution lies
on the boundary created by the integer optimal solutions of the BILP. In this case,
an extreme point LP solver such as the simplex method will terminate at one of the
four integer optimal solutions, while an interior point LP solver is likely to terminate
at one of the infinitely many fractional optimal solutions, from which optimal integer
solutions can be built.

Due to the Type 1 constraints, fractional values must always occur in pairs. Each
fractional pair occupies mirrored positions about the diagonal of the X matrix. A set of
fractional pairs is classified as either isolated or non-isolated. If the set of fractional pairs
contains no overlapping indices, then it is said to be isolated. The 2 two-way tie SoCon
example above contained two fractional pairs ({3, 4} and {1, 11}), which produced an
isolated set and hence, 22 = 4 optimal solutions. The next example demonstrates the
effect of a non-isolated set of fractional pairs. The same set of 12 SoCon teams with
slightly different point data created the following C matrix.

C =





1 2 3 4 5 6 7 8 9 10 11 12

1 0 14 15 15 17 11 9 8 12 12 12 11
2 9 0 12 13 16 11 9 5 11 10 9 12
3 9 12 0 11 16 7 7 9 10 5 9 10
4 8 11 13 0 16 9 9 8 11 9 10 11
5 7 8 8 8 0 6 3 6 9 5 6 8
6 12 13 17 15 18 0 13 12 13 8 12 15
7 15 15 17 15 21 11 0 12 17 12 14 15
8 16 19 14 16 18 12 12 0 14 11 15 13
9 12 13 14 12 15 11 7 10 0 9 11 13
10 12 13 19 15 18 15 11 13 15 0 13 16
11 12 14 15 14 18 12 10 9 12 11 0 14
12 13 12 14 13 16 8 9 10 11 8 10 0





.
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The relaxed LP generates the solution matrix

X =





1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 1 1 1 1 1 1 1
2 1 0 0 0 0 1 1 1 1 1 1 1
3 1 1 0 1 0 1 1 1 1 1 1 1
4 1 1 0 0 0 1 1 1 1 1 1 1
5 1 1 1 1 0 1 1 1 1 1 1 1
6 0 0 0 0 0 0 0 0.4291 0 1 0 0
7 0 0 0 0 0 1 0 0.5727 0 1 0 0
8 0 0 0 0 0 0.5709 0.4273 0 0 1 0 0
9 0 0 0 0 0 1 1 1 0 1 1 0
10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 1 1 0 1 0 0
12 0 0 0 0 0 1 1 1 1 1 1 0





.

As in the previous example, there are two fractional pairs: {6, 8} and {7, 8}. However,
this time the set of pairs is non-isolated since item 8 is shared. This means that there
will be fewer than 22 = 4 integer optimal solutions as some violate the Type 2 feasibility
constraint. Table 1 shows that we cannot slide the values in every fractional pair to
their extreme values of 0 and 1. In particular, because x76 is fixed at 1, the second row

Table 1 Non-isolated set violates feasibility

x68 x86 x78 x87 feasible?
0 1 0 1 yes
1 0 0 1 no
0 1 1 0 yes
1 0 1 0 yes

of the table violates the Type 2 constraint x76 + x68 + x87 ≤ 2. Thus, there are only
three integer optimal solutions for this non-isolated SoCon example.

Though the above two SoCon examples end in fractional solutions from which opti-
mal binary solutions can be constructed, this is not guaranteed. In fact, we constructed
a 9-item example with a unique fractional optimal solution. Thus, when binary solu-
tions are constructed, the objective value is not as good as that produced by the unique
fractional solution. However, this example with a unique fractional solution was hard
to construct. In fact, to locate such an instance, we randomly generated a hundred
C matrices with entries uniformly distributed between −1 and 1 before we encoun-
tered the unique fractional 9-item example. Thus, though unique fractional solutions
are possible, it is more likely in practice that the relaxed LP formulation of our MVR
problem will result in non-unique fractional solutions from which multiple optimal bi-
nary solutions can be constructed. Empirical studies by Reinelt et al. [10], [11] add
further evidence that the LP results for ranking problems are exceptionally good and
often optimal and binary in practice.



14

4 Theorem for the Relationship between the BILP and LP

In which cases can we be certain that the optimal LP solution is also optimal for
the BILP? Remember, after all, that the BILP is truly the problem of interest for us.
Of course, if the LP solution is binary, then that solution is optimal for the BILP. But
even when the LP solution is fractional, there are instances in which it is optimal for
the BILP. Recall the two fractional optimal SoCon examples from Section 3.2. The
theorem of this section identifies conditions on the LP solution that guarantee that
this solution is also optimal for the BILP. In addition, the theorem below connects the
presence of multiple optimal solutions for the BILP, which indicate the presence of ties
in the ranking, to fractional values in the LP solution.

Theorem 2 Suppose X, the fractional optimal solution to the relaxed LP, satisfies the
following two conditions:

1. The g fractional pairs in X form an isolated set. Due to the Type 1 antisym-
metry constraint, each fractional pair can be expressed as xij = α, xji = 1 − α, for
0 < xij < 1.
2. For each fractional pair (i, j), the corresponding elements in the cost matrix

satisfy cij = cji.

Then 2g binary solutions that are optimal for the BILP can be built from X by setting
the fractional parameter α of each fractional pair to its two possible extreme values of
0 and 1.

Proof The matrix X is the optimal solution of the relaxed LP, which occurs when the
integer constraint xij ∈ {0, 1} of the BILP is relaxed to xij ∈ [0, 1]. We will show
that the solution X can be written as a convex combination of binary matrices that
are feasible and optimal for both LP and the BILP. As a result, X is not an optimal
extreme point of the feasible region but rather an optimal boundary point. Note that
we use “boundary point” to mean a non-extreme boundary point.

CASE of g = 1: We begin with the simplest case, with just g = 1 fractional
pair. Without loss of generality, assume that the fractional values occur at xij and
xji. For g = 1, we will show that X can be written as a convex combination of two
binary matrices Y and Z. Let Y and Z be defined so that they share all the elements
in X except yij = 1 and yji = 0 and zij = 0 and zji = 1. In other words, Y and
Z can be thought of as the two only possible binary (“rounded”) versions of X that
still satisfy the Type 1 antisymmetry constraint. As a result, X = xij Y + xji Z =
xij Y + (1− xij) Z, which clearly shows that X is a convex combination of the binary
matrices Y and Z.

Next we show that Y and Z are both feasible and optimal for the BILP. First,
feasibility. Clearly, Y and Z satisfy the Type 3 binary constraint for the BILP. It is also
trivial to check that Y and Z satisfy the Type 1 antisymmetry constraint. It takes a bit
more work to show that the remaining constraint, the Type 2 transitivity constraint, is
satisfied. The LP solution X satisfies transitivity so that xij + xjk + xki ≤ 2. Because
Y only differs from X in the (i, j) and (j, i) elements, we only need to check that
yij + xjk + xki ≤ 2 and yji + xik + xkj ≤ 2. Since 0 < xij < 1 and xjk and xki are
binary, this implies that xjk + xki ≤ 1. Thus, yij + xjk + xki = 1 + xjk + xki ≤ 2,
establishing transitivity. Similarly, yji + xik + xkj = 0 + xik + xkj ≤ 2. The same
argument is used to show that Z is also feasible for the BILP.
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Lastly, we show that Y and Z are optimal for the BILP. We use the notation
f(X) = C. ∗ X to represent the Hadamard (element-wise) product of the coefficient
matrix C with a solution matrix X. Thus, f(X) is the objective function value of
solution matrix X. To prove that Y and Z are optimal for the BILP, we will show
that f(X) = f(Y) = f(Z). Both Y and Z are feasible to LP, hence f(X) ≤ f(Y) and
f(X) ≤ f(Z). By the linearity of the objective function and the construction of Y and
Z, we see that f(X) = xij f(Y) + (1− xij) f(Z). Note that xij > 0 and 1− xij > 0.
Suppose one or both of f(Y) and f(Z) are greater than f(X), then we have

f(X) = xij f(Y) + (1− xij) f(Z) > xij f(X) + (1− xij) f(X) = f(X).

This is a contradiction. Therefore, we know that f(X) = f(Y) = f(Z).
As a result, the fractional LP solution is actually a non-extreme boundary optimal

solution on the boundary between the two alternate optimal binary solutions Y and
Z. In this case, for g = 1 we have constructed 2g = 2 binary optimal solutions for the
BILP from the fractional LP solution.

CASE of g = 2: Assume, without loss of generality, that xij , xji, xkl and xlk

are the only fractional values in X. Let Y and Z be defined as above and create two
additional matrices S and T that are identical to X except skl = 1 and slk = 0 and
tkl = 0 and tlk = 1. Then X can be written as a convex combination of the binary
matrices Y, Z, S, and T.

X =
xij

2
Y +

1− xij

2
Z +

xkl

2
S +

1− xkl

2
T.

Next we show that these four matrices are feasible for the BILP. It is trivial to show
that they each satisfy the Type 1 antisymmetry and Type 3 binary constraints. In
order to show Type 2 transitivity is satisfied, we use precisely the same logic as the
g = 1 case. It is the isolated nature of the set of fractional pairs that enables us to
prove transitivity.

Lastly, we show that Y, Z, S, and T are optimal for the BILP by showing that
the objective value at each of the four binary solution matrices match the objective
value at X. From the g = 1 case, we have already shown that f(X) = f(Y) = f(Z).
It remains to show that f(X) = f(S) = f(T). Both S and T are feasible to LP, hence
f(X) ≤ f(S) and f(X) ≤ f(T). By the linearity of the objective function and the
construction of S and T, we see that f(X) = xkl f(S) + (1 − xkl) f(T). Note that
xkl > 0 and 1−xkl > 0. Suppose one or both of f(S) and f(T) are greater than f(X),
then we have

f(X) = xkl f(S) + (1− xkl) f(T) > xkl f(X) + (1− xkl) f(X) = f(X).

This is a contradiction. Therefore, we know that f(X) = f(S) = f(T).
For g = 2 we have constructed 2g = 4 binary optimal solutions for the BILP from

the fractional LP solution.

GENERAL CASE: This constructive logic can be applied for any number of
fractional pairs g. For each fractional pair, a pair of matrices are formed. Each matrix
is identical to X except in the two locations corresponding to that particular fractional
pair. The coefficients in the convex combination are simply the fractional value itself
divided by g, e.g., xij

g , 1−xij

g , xkl
g , 1−xkl

g , xik
g , 1−xik

g , . . .. Thus, matrices can always be
created so that the optimal LP solution X can be written as a convex combination.
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And each matrix in the convex combination can be shown to be both feasible and
optimal for the BILP.

As a consequence, X is not an extreme point of the feasible region. Instead, it is
a non-extreme boundary point. In fact, it is on the boundary formed by the convex
hull of the matrices in the convex combination. Since X is optimal, so are all other
points on this boundary including the points defined by the matrices in the convex
combination.

Theorem 2 carries computational consequences as well. The original LP solver, the
famous simplex method, is not the method of choice for solving our MVR problem.
The simplex method is an extreme point method, meaning that it moves from one
extreme point to the next, in an ever-improving direction until it reaches an optimal
solution, which will, of course, also be an extreme point. In contrast, interior point
LP solvers move through the interior of the feasible region until they converge on
an optimal solution that may be an extreme point or a boundary point depending
on the path taken through the interior of the feasible region. For us, it is the non-
extreme boundary optimal points (which contain fractional values) that give us so much
more information than extreme optimal points (which are the integer-only solutions).
Thus, we always choose a non-extreme point, non-simplex LP solver when solving the
relaxed LP associated with our MVR problem. Finally, we note that the same constraint
relaxation technique of p. 8 that we advocated for solving large MVR BILPs can be
used to solve large MVR LPs.

5 Sensitivity Analysis

Another advantage of the LP over the BILP relates to the natural sensitivity mea-
sures produced when solving a linear program. In this case, we are interested in changes
in the objective coefficients cij . Slight changes in the input data (specifically the dif-
ferential matrix D that creates the objective coefficient matrix C) could change the
optimal solution, and hence, optimal ranking of the teams. The Xpress-MP optimiza-
tion software computes the following ranges on the objective coefficients for the 12-team
SoCon example.

Fig. 3 Sensitivity ranges on the objective coefficients cij

Most cij coefficients have very loose bounds. The exceptions are the pairs of 1 and
9, 2 and 9, and 9 and 12, which have tight bounds. For this dataset, these ranges
warn us that we are less certain of the rank ordering of teams in the middle of the
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pack. Changes of the objective coefficients outside of the given ranges, can change the
ranking. On the other hand, we have more confidence in our ranking of teams at the
top and bottom of the list.

6 Bounding Techniques to Improve Convergence

Bounding techniques are extremely useful in optimization. In particular, solution
techniques for integer programs rely heavily on bounding. In this section, we apply such
bounding to the Iterative LP method to accelerate convergence and produce optimality
guarantees. Recall that the Iterative LP method relaxes the transitivity constraint set.
In fact, at the first iteration, the LP is solved with no transitivity constraints. The
optimal solution matrix X at this iteration creates an objective function value that we
denote f since it is a lowerbound of the optimal objective value f∗. The solution at this
iteration almost always violates some transitivity constraints and thus is not a feasible
solution for the original LP. However, it can be used to form a very useful approximate
solution. This is done by computing the row sums of X. The ith row sum is a good
indicator of how many opponents the ith team will beat. As the iterative LP method
proceeds, we use the row sums of each iteration’s solution matrix X to compute an
approximate ranking. This approximation gets closer to the optimal ranking as the
iterations proceed. Because every ranking, including these approximate ones, has a
one-to-one correspondence with an X matrix, we can compute the objective function
value for each approximate ranking, which we denote f since it an upperbound of f∗.
Thus, we know that

f ≤ f∗ ≤ f.

Next we bound the relative error f−f∗

f∗ associated with the approximate ranking. Be-

cause f , f∗, and f all have the same sign, we can bound the relative error, which

involves the unknown f∗ with the known quantities f and f .

f − f∗

|f∗| ≤
f − f

|f∗| ≤
f − f

|f |
.

Further, when all elements of the objective coefficient matrix C are integral and f−f ≤
1, the approximate ranking is the optimal solution of the original ranking problem.
Even when we are no so lucky as to be able to guarantee optimality, we can give a
guarantee on the error associated with the near-optimal solution. We can guarantee
that the optimal objective value is between f and f and the relative error is not greater

than
f−f

|f | . This is another great advantage of the bounding version of our Iterative LP

method. Not only does it require fewer iterations but it also allows the user to stop the
iterative procedure as soon as an acceptable relative error is reached.

7 Linear Ordering Polytope

The convex hull of all of the binary integer points satisfying the constraints of our
MVR BILP has been well-studied and is called the linear ordering polytope [13]. It
is helpful to study the relationship of the LP’s polytope to the feasible region of the
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original BILP. Of course, the feasible region of the BILP is contained within the feasible
region of the LP. The best scenario is when the LP’s feasible region is as tight as possible
to the BILP’s feasible region. In other words, the LP’s feasible region is the convex
hull of the points in the BILP’s feasible region. For our MVR problem, the good news
is that all of the inequality constraints (Type 2 transitivity and Type 3 nonnegativity)
are facet-defining inequalities for the linear ordering polytope. This means that these
inequalities are as tight as possible. However, the set of constraints for the LP does not
cover all facet-defining inequalites for the linear ordering polytope. Sophisticated valid
inequalities such as the so-called fence and Möbius ladder inequalities create stronger
LP relaxations, but unfortunately they are too costly to generate [8], [10], and [12].

8 Connection to Rank Aggregation

Our MVR optimization formulation is a special case of a related ranking problem,
the rank aggregation problem. In rank aggregation, k rankings must be aggregated into
one unified ranking. The only difference between the BILP optimization formulations
of our MVR method and the rank aggregation method is in the definition of the C
matrix of objective coefficients. In rank aggregation, we define cij as a measure of
the conformity between items i and j. One conformity definition uses cij = (# lists
having i above j). In order to parallel the MVR formulation which was a minimization
problem, here for rank aggregation we also use a minimization formulation. Thus, we
minimize the negation of conformity. The advantage is that all of our findings on the
relationship of the BILP to the LP, the existence and discovery of alternate optimal
solutions, and the discovery of ties applies to the rank aggregation problem as well.
There is, however, one practical difference between the MVR problem and the rank
aggregation problem. Compared to the MVR problem, the rank aggregation problem
typically requires many fewer iterations of the Iterative BILP (or LP) Method. In fact,
our experiments show that when the lists to be aggregated are largely in agreement
from the start, then only a handful of iterations are required.

9 Computational Examples

9.1 Disconnected Items

Here we consider an unusual case: ranking items from two disparate groups, from
which we have no overlapping data. For example, the data matrix D below contains
point scores from teams in two separate conferences. Conference A consists of teams
1, 2, and 3, while the Conference B contains teams 4 through 8.

D =





1 2 3 4 5 6 7 8

1 0 1 2 0 0 0 0 0
2 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 1 2 3 4
5 0 0 0 0 0 1 2 3
6 0 0 0 0 0 0 1 2
7 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0





.
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The MVR method can be applied to each conference separately, which produces the
unique optimal ranking of teams in Conference A as rA = ( 1 2 3 ) and the unique
optimal ranking of teams in Conference B as rB = ( 4 5 6 7 8 ). However, we are
interested in the behavior of the MVR method when applied to the full problem of all
eight teams.

For the full 8-team case, the MVR method produces objective values for the BILP
and the relaxed LP that are identical. Thus, we can conclude that the relaxed LP
solution lives on the boundary between several optimal BILP solutions. The solution
matrix X below of the relaxed LP has several fractional values, which are denoted by
the * symbol. These fractional values indicate that there are several ties, from which
several optimal solutions can be constructed.

X =





1 2 3 4 5 6 7 8

1 0 1 1 0 ∗ 1 1 1
2 0 0 1 0 0 ∗ 1 1
3 0 0 0 0 0 0 ∗ 1
4 1 1 1 0 1 1 1 1
5 ∗ 1 1 0 0 1 1 1
6 0 ∗ 1 0 0 0 1 1
7 0 0 ∗ 0 0 0 0 1
8 0 0 0 0 0 0 0 0





.

This solution creates an optimal ranking of ( 4 1 5 6 2 7 3 8 ). The location
of the fractional values indicates the presence of three isolated two-way ties. Nodes 1
and 5 may be swapped. Nodes 2 and 6 can be swapped and nodes 3 and 7 can be
swapped. Thus, in total, there are 23 = 8 optimal binary solutions for this problem.
Perhaps most interesting in this example is that the optimal ordering of each conference
is maintained in all optimal solutions of the full problem. That is, 1 is always above 2
is always above 3, and these are interleaved with the optimal ordering from the other
conference.

Just for comparison sake, the popular ranking method of Massey [7] cannot be
executed on a disconnected system.4 Another popular ranking method, the Colley
method [4], is computable for disconnected systems, however, it does not produce an
output ranking with ties, which, it could be argued in this example, is less appropriate
than the MVR ranking which has ties.

9.2 Large n

In order to demonstrate the size of the LPs to which the MVR ranking techniques of
this paper can be applied, we ranked the 347 teams in NCAA college basketball for the
2008-2009 season. To solve this large MVR LP, we used the same iterative constraint
relaxation trick that we presented in Section 3.1.2 to solve large MVR BILPs. We
used the conditions of Theorem 2 and our computational and bounding results to
conclude that the Iterative LP method produced a non-unique fractional solution that,
when converted to a binary solution using the “rounding” rules of p. 14, is optimal
for the original BILP. Just .066% of the nonzero values in the optimal LP solution are

4 In this case, the coefficient matrix for the Massey system is not full rank, and thus, is not
invertible.
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fractional. In addition, the fractional values, and hence, the ties, occured in positions
of lower rank, particularly rank positions 252 through 272.

Table 2 shows the breakdown of how much time is spent at each iteration of the
Iterative LP method for the full 347-team example. For example, at iteration 1,
solving the LP required 4.11 seconds and produced an objective value of 1171616,
while finding the necessary Type 2 constraints required .24 seconds and generated 11230
additional constraints to be added to the LP formulation to be solved at Iteration 2.
In total, executing all 5 iterations and generating all 18,926 constraints required just
20.90 seconds on a laptop machine. Another observation from Table 2 concerns the
remarkable value of the constraint relaxation technique described on p. 8. Just .046%
of the total original Type 2 constraints are necessary. This is a huge savings and makes
even larger ranking problems within reach. One final observation from Table 2 is in
order. Notice that by iteration 3, the Iterative LP method has reached a solution
that is on the optimal face of the feasible region, yet is infeasible. At each subsequent
iteration, the solution is improved in terms of feasibility, not optimality. In other words,
the solutions remain on the optimal hyperplane yet move closer to the feasible region
at each iteration.

Table 2 Computational Results for Iterative LP method with bounding on 347-team example

iteration LP time Obj. value best rank ConGen time # con.added
1 4.11 1171616.00 1172359.00 0.24 11230
2 3.70 1172002.00 1172338.00 0.22 6887
3 4.17 1172023.00 1172069.00 0.11 560
4 4.12 1172023.00 1172039.00 0.11 249
5 4.13 1172023.00 1172023.00

total 20.23 .67 18926

Our experiments show that the bounding technique brings two very significant
advantages. First, using the bounding version of the algorithm significantly reduces
the overall run time. Second, the bounding version terminates with a solution that
is optimal or within some reported percentage of optimal. For example, for another
347-team dataset, the bounding algorithm terminated with a solution that was not
proven to be optimal, yet was guaranteed to be very near the optimal solution since
the relative error is no greater than .000422%. We were ultimately able to conclude
that this solution is indeed optimal since the Iterative BILP method returned the same
objective function value as the Iterative LP method.

10 Conclusion and Future Work

We have created a Minimum Violations Rating (MVR) method for ranking items.
Our method provides three new contributions to the MVR literature. First, it produces
an optimal ranking of the items that minimizes not only upset violations but also weak
win violations. Second, unlike most other MVR rankings, our MVR optimal ranking
may include ties. Third, our MVR method can identify alternate optimal rankings, if
they exist. One drawback of our MVR method concerns scalability. Because the model
formulation requires O(n3) constraints, there is a practical limit on n, the number of
items being ranked. We proposed a few solutions to this computational issue, including
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a constraint relaxation and a bounding technique. Both performed very well on the 347-
item examples from NCAA basketball that we tested. Finally, we proved conditions
on which the optimal solution of the relaxed LP is optimal for the original BILP. As
future work, we plan to explore sensitivity analysis beyond the basic results described
here.
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