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A simple method for distinguishing global Case-1 and Case-2 waters using 

SeaWiFS measurements 

 

Abstract 

     Since the combinations of water constituents are different between Case-1 and Case-2 waters, 

bio-optical models, retrieval algorithms for water constituent concentrations and other applications 

in water-color remote sensing are also very dissimilar between these waters. Use of the algorithms 

specifically developed for Case-1 waters returns inaccurate results in Case-2 waters, and vice versa. 

To select an appropriate algorithm for a given water pixel, it is important to first determine whether 

it is a Case-1 or Case-2 water and to clarify its temporal variations. This paper presents a simple 

method based on the inherent optical properties (IOPs) of water bodies for discriminating global 

Case-1 and Case-2 waters based on satellite data. Compared with the previous methods, the newly 

proposed method only requires two remote-sensing reflectances at 412 nm and 443 nm for relative 

comparisons, and thus it not only can easily be implemented using satellite data but also is robust 

even for satellite data with imperfect atmospheric correction, unpredictable noise pixels in the 

images, and so on. The new method was then applied to seasonal SeaWiFS 9-km data to map the 

global distribution of Case-1 and Case-2 waters for each season in 2003. The results showed that 

more than 80% of global waters belong to the Case-1 category throughout the year, and the Case-2 

waters are mainly concentrated in the Northern Hemisphere along the coasts. Both the area and 

distribution of Case-1 and Case-2 waters changed seasonally. By using a sub-dataset from NOMAD, 

it was found that when the ratio of [aph(443)+aw(443)]/a(443) was larger (smaller) than 50%, about 

70% (75%) of the samples were identified as Case-1 (Case-2) waters by the new method. Moreover, 

the semi-analytical algorithm GSM01 was more accurate for distinguishing Case-1 than Case-2 

waters, which implies that use of the proposed method to select the appropriate remote-sensing 
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algorithm would be important. 

 

Key words: inherent optical properties, remote-sensing reflectance at 412 and 443 nm, Case-1 and 

Case-2 waters, GSM01 

 

1. Introduction 

     Water classification is useful to simplify the modeling of optical properties of water bodies, as 

well as to evaluate the performance of water color algorithms (e.g., when, where and how the 

algorithms may fail) (IOCCG, 2000). Generally, the global waters are classified as two types: Case-1 

and Case-2 waters. The original definition of Case-1 and Case-2 waters was from Morel and Prieur 

(1977). Following this initial definition, several well-defined criteria were proposed for 

distinguishing Case-1 and Case-2 waters (Gordon and Morel, 1983; Morel, 1988; IOCCG, 2000; 

Mobley et al., 2004). In the definition commonly used today, Case-1 waters are those waters whose 

inherent optical properties (IOPs) are dominated by phytoplankton (e.g., most open ocean waters), 

whereas Case-2 waters are all other waters (e.g., some coastal and inland waters contain colored 

dissolved organic matter (CDOM) and inorganic mineral particles in addition to phytoplankton).  

Since the combinations of water constituents are different between the Case-1 and Case-2 

waters, bio-optical models, retrieval algorithms for water constituent concentrations, and other 

applications in water-color remote sensing are also very dissimilar between these waters (e.g., 

Gordon and Wang, 1994; O’Reilly et al., 1998; Morel and Maritorena, 2001; Ammenberg et al., 

2002; Wang and Shi, 2007; Gitelson et al., 2009; Yang et al., 2010). Generally, use of the algorithms 

specifically developed for Case-1 waters returns inaccurate results in Case-2 waters (Hu et al., 2000; 

Dzwonkowski and Yan, 2005; Zimba and Gitelson, 2006; Wang and Shi, 2007; Van Der Woerd and 

Pasterkamp, 2008; Gitelson et al., 2009; Gilerson et al., 2010). On the other hand, the algorithms 
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specifically developed for Case-2 waters are also difficult to apply to Case-1 waters, mainly because 

of the different band selection or model parameterization between the two types of waters. For 

instance, the three-band model, which was specifically proposed to estimate the chlorophyll-a 

concentration in Case-2 waters, requires bands to be at red and near-infrared wavelengths to 

minimize the effects of non-algal particles and CDOM on phytoplankton (Gitelson et al., 2008). 

However, the water-leaving radiances at the near-infrared wavelengths often do not have enough 

signals for detection of water constituents in most Case-1 waters, and thus will result in impossible 

estimates in this type of water. This is one reason why the Case-1-specific OC4 algorithm (oceanic 

chlorophyll-a algorithm for SeaWiFS) employed remote-sensing reflectances at the blue-green bands 

(O’Reilly et al., 1998). Although there are some other Case-2 algorithms that used the same band 

combination as the Case-1 algorithms in the ocean, the reparameterization is required because the 

addition of other optically active substances (OASs) will invalidate the assumed relationship 

between the blue-green reflectance ratio and chlorophyll a concentration in Case-1 waters (e.g., 

McKee et al., 2007). Therefore, to select an appropriate algorithm for a given water pixel, 

knowledge of whether it is a Case-1 or Case-2 water is required, along with knowledge of its 

temporal variations (Lee and Hu, 2006). 

Since the original definition of Case-1 and Case-2 waters is a qualitative one, a more 

quantitative definition is needed to distinguish these waters by using remote-sensing data. Some 

previous studies have proposed a bipartite classification scheme based on the relative contributions 

of phytoplankton, yellow substances and suspended material (Prieur and Sathyendranath, 1981; 

Morel and Antoine, 1997; Dowell, 1998; IOCCG, 2000). All these studies classified the waters based 

on the absorption coefficients at 440 nm. The application of these methods to satellite data is limited 

due to the challenges in obtaining the absorption coefficients from remote-sensing reflectance (Lee 

et al., 2002). There are two other methods that can be used for selecting ocean color algorithms for 
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Case-1/Case-2 waters (the fuzzy logic classification scheme in Moore et al., 2001; and the novelty 

detection technique in D’Alimonte et al., 2003); these methods were developed based on the 

structure of the training datasets and certain mathematical theories, rather than the definition of 

Case-1 and Case-2 waters. Moreover, a tool for identifying turbid Case-2 waters from the Coastal 

Zone Color Scanner (CZCS) imagery was developed by Bricaud and Morel (1987), and further 

improved by Morel and Belanger (2006; hereafter denoted as MB) by considering an improved field 

database (both in number and quality) and the bidirectional character of the light field emerging from 

a water body. This tool can only detect sediment-dominated waters, while the identification of 

yellow substance-dominated Case-2 waters was not considered (Morel and Belanger, 2006).  

      An alternative method for quantitatively classifying global waters as Case-1 or Case-2 was 

proposed by Lee and Hu (2006; hereafter denoted as LH). They defined two criteria based on a 

Case-1 bio-optical model developed by Morel and Maritorena (2001). Two limits (though arbitrary) 

were also used by LH to account for imperfections and approximations of models and measurements. 

However, several existing studies have pointed out that the criteria used by LH are too restrictive to 

account for the complexity of actual conditions in oceanic environments (e.g., Morel et al., 2007; 

Shutler et al., 2007; Morel and Gentili, 2009). For example, although the north central and equatorial 

Pacific Ocean (10˚S -40˚N) indubitably satisfy the biogeochemical definition of Case-1 waters, these 

oligotrophic waters do not meet the Case-1 criterion of LH (i.e., Eq. 3a in Lee and Hu, 2006) 

because the LH upper limit does not allow for CDOM deficits at low concentrations of chlorophyll-a 

(Morel and Gentili, 2009). 

Consequently, the main objective of the present study was to propose a novel method, based 

on the characteristics of the IOPs of water constituents (i.e., phytoplankton, tripton, and CDOM), to 

distinguish global Case-1 and Case-2 waters from satellite data. Four seasonal SeaWiFS satellite 

datasets from 2003 and three sub-datasets of the NASA bio-Optical Algorithm Dataset (NOMAD) 
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were used to evaluate the performance of the proposed method. 

 

2. Data collection 

2.1 SeaWiFS 9-km datasets 

SeaWiFS 9-km data (SeaWiFS Reprocessing 5) were used to map the global distribution of 

Case-1 and Case-2 waters. The seasonally composited remote-sensing reflectances at 412, 443, 490, 

and 555 nm for the study period were downloaded from the Goddard Space Flight Center 

(http://oceandata.sci.gsfc.nasa.gov/SeaWiFS/Mapped/). To enable comparison with the previous 

method, the data were acquired for the same period (between 23 March 2003 and 23 March 2004) as 

described in Lee and Hu (2006).  

 

2.2 NOMAD datasets 

The NASA bio-Optical Marine Algorithm Dataset (NOMAD) was also employed to evaluate 

the performance of the proposed method. NOMAD is a global high quality in situ bio-optical dataset 

for developing ocean color algorithms and validating satellite data products. It includes over 3400 

stations and is publicly available (Werdell and Bailey, 2005). The data provided include spectral 

water-leaving radiances, surface irradiances, diffuse downwelling attenuation coefficients, and 

chlorophyll-a concentrations (ranging from 0.012 to 72.12 mg m-3), as well as inherent optical 

properties (e.g., absorption coefficients for phytoplankton, tripton, and CDOM). Metadata (the date, 

time, and location of data collection) and ancillary data (e.g., sea surface temperatures and water 

depths) were also included in each record. 

In this study, three sub-datasets were generated from NOMAD for different purposes of 

analysis. The first sub-dataset was used for validation of the relationships between remote-sensing 

reflectances and absorption coefficients as well as comparison between the newly proposed method 
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and the LH method. Thus it requires the remote-sensing reflectance (as the ratio of the water-leaving 

radiance to the downwelling surface irradiance) at the SeaWiFS bands of 412, 443, 490 and 555 nm, 

as well as absorption coefficients at 412 and 443 nm for the three water constituents. Note that the 

NOMAD dataset provides the in situ remote-sensing reflectance and total absorption coefficient at a 

wavelength of 411 nm, while the central wavelength of the SeaWiFS band 1 is 412 nm. The 

wavelength difference between NOMAD and SeaWiFS is ignored in this study. The second 

sub-dataset was used for a sensitivity analysis for the proposed method and the LH method. It only 

requires remote-sensing reflectance at the SeaWiFS bands of 412, 443, 490, and 555 nm. The third 

one was used to evaluate the accuracy of a semi-analytical algorithm (i.e., the 

Garver-Siegel-Maritorena model, GSM01) in estimating chlorophyll a for Case-1 and Case-2 waters, 

respectively. It requires that chlorophyll-a concentrations be measured by the HPLC (high 

performance liquid chromatography) method, as well as the remote-sensing reflectance at the 

SeaWiFS bands of 412, 443, 490, 510 and 555 nm. The other NOMAD data with fluorometric 

chlorophyll measurements were not used in this analysis because of the higher noises in the 

fluorometric measurements (Campbell and Feng, 2005). Therefore, after the elimination of stations, 

those missing any of the above requirements, which were the 518, 2208, and 870 stations, remained 

in the subsequent analysis for the first, second and third sub-dataset, respectively (Fig. 1).  

 

-------------- Please insert Fig. 1 here -------------- 

 

3. Development of a new method for distinguishing Case-1 and Case-2 waters 

3.1 IOPs of a natural water body 

The IOPs specify the optical properties of a water body in a form suited for use in radiative 

transfer theory (Mobley, 1994). They are generally determined by four OASs. The OASs are defined 
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in this study as: (1) pure water molecules; (2) living phytoplankton; (3) tripton, i.e., the non-algal 

particulate matter, including detritus generated by living  phytoplankton and other inorganic 

materials; and (4) colored dissolved organic matter (CDOM), or yellow substances, including those 

resulting from biological activities and from environmental input. This definition is akin to that of 

Bricaud et al. (1998), except that the latter was specifically for oceanic Case-1 waters, and therefore 

the tripton and CDOM were both associated with phytoplankton. 

Absorption and backscattering coefficients are two fundamental IOPs for the four OASs. Fig. 2 

shows an example of the two fundamental IOPs for phytoplankton, tripton, CDOM and pure water 

when the chlorophyll a concentration is equal to 1 mg m-3. This example was extracted from a 

synthetic dataset in IOCCG Report Number 5 (2006, containing the data for 500 IOPs, available at 

http://www.ioccg.org/groups/OCAG_data.html). The dataset was generated based on extensive field 

measurements (e.g., Bricaud et al., 1995; Bricaud et al., 1998; Carder et al., 1999), and random 

values were added to represent the variabilities from place to place. 

As shown in Fig. 2A, an absorption peak by phytoplankton is found around 440 nm within the 

blue spectrum. The absorption spectrum of pure water shows a slightly increasing trend in the same 

wavelength range. In contrast, the absorption spectra of tripton and CDOM show noticeably 

decreasing trends from 400 nm to 500 nm, and the absorption coefficients of both tripton and 

CDOM can be described as exponential functions. In addition, the backscattering spectra of 

phytoplankton, tripton and pure water show a monotonic decrease and very small magnitude within 

the blue spectrum compared with their absorption spectra (Fig. 2B).  

Generally, the total absorption (a(λ)) and backscattering (bb(λ)) coefficients of a water body are 

respectively expressed as:  

)()()()()( CDOMtrphw λ+λ+λ+λ=λ aaaaa                                          (1) 

)()()()( trb,phb,wb,b λ+λ+λ=λ bbbb                                                (2) 
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where aw(λ), aph(λ), atr(λ) and aCDOM(λ) are the absorption coefficients for pure water, phytoplankton, 

tripton and CDOM, respectively; and bb,w(λ), bb,ph(λ) and bb,tr(λ) are backscattering coefficients for 

pure water, phytoplankton and tripton, respectively. 

 

-------------- Please insert Fig. 2 here -------------- 

 

 3.2 Relative contribution of phytoplankton 

Classification of water types in IOCCG (2000) is based on the relative contributions to an 

optical property from three OASs: phytoplankton, yellow substances (i.e., CDOM) and suspended 

material. For instance, by using the absorption coefficients at 443 nm, the relative contribution from 

phytoplankton can be expressed as the ratio aph(443)/[aph(443)+atr(443)+aCDOM(443)]. All Case-1 

waters would have high contribution values for phytoplankton. Note that pure water cannot be 

classified as Case-1 or Case-2 water according to the classification scheme of IOCCG (2000) 

because the contribution from pure water was not considered.  

    Consequently, the relative contribution from phytoplankton is re-defined in this study as: 

)443()]443()443([

)]443()443()443()443([)]443()443([

phw

CDOMtrphwphw

aaa
aaaaaa

+=

++++                     (3) 

where the absorption of pure water at 443 nm, aw(443), is constant. In this way, the pixels of pure or 

nearly pure water (i.e., in the case of contributions from phytoplankton, tripton and CDOM all can 

be ignored) will also have high phytoplankton contributions, and consequently will be classified as 

Case-1 waters. 

 

3.3 Relationships among [aph(443)+aw(443)]/a(443), a(412)/a(443), and Rrs(412)/Rrs(443) 

In this study, the two wavelengths of 412 and 443 nm were selected for further analysis based 

on Fig.2. The ratio between the absorption coefficients at these two bands can be calculated as 
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follows:  

    

)]443()443()443()443([
)]412()412()412()412([

)443()412(

CDOMtrphw

CDOMtrphw

aaaa
aaaa

aa

+++

+++
=

                                     (4) 

From Fig. 2A, the following relationships can be obtained for these two bands:  

)443()412( ww aa <                                                       (5) 

)443()412( phph aa <                                                       (6) 

)443()412( trtr aa >                                                         (7) 

)443()412( CDOMCDOM aa >                                                     (8) 

According to Equations (4)-(8), it can be considered that the value of a(412)/a(443) will 

decrease when the amount of phytoplankton increases. In other words, there should be a negative 

correlation between the ratio a(412)/a(443) and the relative contribution of phytoplankton, as 

defined in Eq. (3).  

To confirm the above deduction, regression analysis was performed between 

[aph(443)+aw(443)]/a(443) and a(412)/a(443) based on the first sub-dataset from NOMAD (Fig. 3A). 

A significant negative correlation relationship was obtained (R2=0.43 and P < 0.001), i.e., 

4771.1)443()]443()443([5784.0)443()412( wph ++−= aaaaa                    (9) 

It can be seen that when [aph(443)+aw(443)]/a(443) is larger than 50%, the ratio of a(412)/a(443) 

should be approximately smaller than 1.2.  

The absorption coefficient can be related with remote-sensing reflectance by taking the 

backscattering coefficient into consideration. From Fig. 2B and Eq. (2), the following relationship of 

backscattering coefficients can always be obtained: 

)443()412( bb bb >                                                       (10) 

According to Gordon et al. (1988), the remote-sensing reflectance is proportional to backscattering 

coefficients, but inversely proportional to absorption coefficients. Therefore, the ratio of the 
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remote-sensing reflectance at 412 and 443 nm (Rrs(412)/Rrs(443)) should be inversely proportional to 

the ratio of absorption coefficients at these two bands (i.e., a(412)/a(443)). Fig. 3B shows the scatter 

plots of Rrs(412)/Rrs(443) versus a(412)/a(443) using the first sub-dataset from NOMAD. A 

significant negative correlation relationship was also obtained between these two ratios (R2=0.41, 

P<0.001), i.e.,  

    0206.2)443()412(8406.0)443()412( rsrs +−= aaRR                             (11) 

 

-------------- Please insert Fig. 3 here -------------- 

 

3.4 Remote-sensing criterion for distinguishing Case-1 and Case-2 waters 

In this study, for the convenience of mapping global waters, the waters with a phytoplankton 

contribution larger than 50% (i.e., [aph(443)+aw(443)]/a(443) ≥50%) are considered as Case-1 waters, 

and those with a smaller phytoplankton contribution are considered as Case-2 waters. This cut-off 

value of 50% is used following the definition that “the IOPs of Case-1 waters are dominated by 

phytoplankton.” Correspondingly, the Case-1 waters should satisfy the following relationship based 

on Eq. 9: 

         a(412)/a(443) ≤1.2                                                (12) 

From Eq.(11), it is clear that a(412)/ a(443) ≤1.2 corresponds with Rrs(412)/ Rrs(443)≥1.0. 

Accordingly, a novel remote-sensing criterion to distinguish Case-1 and Case-2 waters based on 

the two wavelengths of 412 and 443 nm (corresponding to SeaWiFS bands 1 and 2) is proposed here. 

It is: 

If Rrs(412) ≥ Rrs(443), then the pixel is a Case-1 water                             (13) 

Otherwise, it is a Case-2 water.                                              
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4. Results 

4.1 Global distribution of Case-1 and Case-2 waters by the proposed method 

The ratio of Rrs(412)/Rrs(443) was first calculated using SeaWiFS satellite data for four seasons 

(Fig.4). The value of Rrs(412)/Rrs(443) represents the dominance of phytoplankton and/or pure water 

IOPs within a water body. The global waters were grouped by changing the band-ratio value from 

0.8 (less dominant) to 1.2 (more dominant) at intervals of 0.1 to demonstrate the different levels of 

phytoplankton dominance. It can be clearly seen that the band-ratio values increased with the 

distance away from the land, indicating that the IOPs of phytoplankton and/or pure water became 

more dominant with the change from the coast to the open ocean. The waters with large and small 

ratios (i.e., Rrs(412)/Rrs(443)≥1.1 and Rrs(412)/Rrs(443) ≤0.9) were observed in open oceans and 

coastal areas, accounting for 60-74% and 7-11% of the total (Table 1), respectively. The waters with 

medium ratios (0.9<Rrs(412)/Rrs(443)<1.1) accounted for 19-30% (Table 1). 

The new proposed criterion was then applied to map the global distribution of Case-1 and 

Case-2 waters for the four seasons (Fig.5). The results show that the Case-1 waters account for more 

than 80% of the global surface water for each season. The area of Case-1 waters varied slightly 

within the seasons, with the maximum percentages appearing in the autumn and winter (both 87%), 

followed by the spring (83%) and summer (81%). Regionally, most of the North Central Pacific, 

Equatorial Pacific, South Pacific, North Central Atlantic, Equatorial Atlantic, South Atlantic, 

Equatorial Indian, and South Indian regions were found to belong to the Case-1 category.  

With respect to the Case-2 waters, most of them were distributed in the Northern Hemisphere 

along the coast, especially in the North Pacific and the North Atlantic. Some coastal and inland water 

areas, such as the Bering Sea, Gulf of Alaska, Gulf of St. Laurence, Gulf of Oman, Bohai Bay, Java 

Sea, Sea of Okhotsk, Black Sea, Caspian Sea, and Great Lakes, were assigned to the Case-2 category 

for all seasons. In contrast, some coastal water areas, such as the Mediterranean Sea, Japanese Sea, 
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and Red Sea, showed seasonal variation between the Case-1 and Case-2 categories.  

 

-------------- Please insert Fig. 4 here -------------- 

-------------- Please insert Fig. 5 here -------------- 

------------- Please insert Table 1 here -------------- 

 

4.2 Comparison between the proposed method and LH method 

4.2.1 Direct comparison with SeaWiFS data 

For comparison, the LH method was also applied to the same SeaWiFS 9-km data to map the 

global distribution of Case-1 and Case-2 waters for each season (Fig.6). Since the version of 

SeaWiFS data has been updated, higher percentages of Case-1 waters (about 9% higher than those in 

Lee and Hu, 2006) were obtained even though the criteria used were the same as in the LH method. 

Nevertheless, there was no substantial difference in the distribution pattern of Case-1 and Case-2 

waters between the two versions of SeaWiFS data. From Figs. 4 and 6, it is noted that the percentage 

of Case-1 waters distinguished by the LH method was often smaller (9-20%) than that distinguished 

by the method proposed in this study for each season. In addition, the smallest percentage of Case-1 

waters estimated by the LH method appeared in winter; in contrast, the summer season showed the 

smallest percentage of Case-1 waters when the method proposed in the present study was used (Fig. 

4). The middle and the largest percentages of Case-1 waters appeared in spring and autumn, 

respectively, which was the same between the two methods.  

     Fig. 7 shows a comparison of the global water classification between the LH method and the 

method proposed in this study. It can be seen that more than 77% (87%, 89%, 85%, and 77% for 

spring, summer, autumn, and winter, respectively) of global waters were classified into the same 

category by both methods. The differences in the global water classification between the two 
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methods mainly result from some water pixels that were classified as Case-2 waters by the LH 

method but were classified as Case-1 waters by the method proposed in this study (12%, 10%, 14%, 

and 21% for spring, summer, autumn, and winter, respectively). Regionally, these water pixels were 

distributed mainly in the mid-Pacific Ocean, Mediterranean Sea (spring and autumn), and Antarctic 

Ocean. For all seasons, only 1% of global waters were classified as Case-1 waters by the LH method 

but as Case-2 waters by the method proposed in this study (red color pixels in Fig. 7). 

 

-------------- Please insert Fig. 6 here -------------- 

-------------- Please insert Fig. 7 here -------------- 

 

4.2.2 Accuracy assessment with NOMAD data 

     Fig. 8 shows the scatter plots of RR12 (Rrs(412)/Rrs(443)) versus RR53 (Rrs(555)/Rrs(490)) using 

the first sub-dataset from NOMAD. All the samples (N=518) were color coded with a ratio of 

[aph(443)+aw(443)]/a(443). It was found that when the ratio was larger than 50%, about 70% of the 

samples were identified as Case-1 waters. In contrast, when the ratio was smaller than 50%, more 

than 75% of them were identified as Case-2 waters. The results thus indicated that the proposed 

criterion could act as a proxy of the IOPs of water bodies for the discrimination of Case-1 and 

Case-2 waters. 

     These samples were also separated into five groups by using the first condition in the LH 

method (the details of this method are given in Appendix A) and the new criterion proposed in this 

study. These groups were (1) RR12>1.1RR12
[CS1] (group I; the superscript [CS1] denotes Case-1); (2) 

RR12<0.9RR12
[CS1] and RR12>1 (group II); (3) 0.9RR12

[CS1]≤R12≤1.1RR12
[CS1] and RR12>1 (group III); 

(4) 0.9RR12
[CS1]≤RR12≤1.1RR12

[CS1] and RR12≤1 (group IV); and (5) RR12<0.9RR12
[CS1] and RR12≤1 

(group V), where RR12
[CS1] is the estimated RR12 from RR53. Group III was further divided into three 
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subgroups based on the values of RR53: (1) RR53<0.4 (group III-a); (2) 0.4≤RR 53≤0.8 (group III-b); 

and (3) RR53>0.8 (group III-c). Absorption coefficients at 440 nm of phytoplankton, tripton, and 

CDOM were also employed to indicate the relative contributions to an optical property from the 

three components. It should be noted that the relative contribution from phytoplankton was 

calculated according to the redefined one in this study (i.e., Eq.3). Descriptive statistics of the 

proportional contributions from each of these components are summarized in Table 2. 

 

------------------ Please insert Fig. 8 here ------------------ 

------------------ Please insert Table 2 here ------------------ 

 

For group I, all the samples were classified as Case-2 waters by the LH method, but as Case-1 

waters by the method proposed in this study (Fig. 8). The averaged proportional contributions of 

phytoplankton, CDOM, and tripton to the total absorption coefficient (except for pure water) were 

60%, 30%, and 10%, respectively (Table 2). A common characteristic of the group I is that all 

samples had lower CDOM and thus they did not meet the Case-1 criterion by the LH method (Lee 

and Hu, 2006; Morel and Gentili, 2009). 

Like those of group I, all samples of group II were also classified as Case-2 waters by the LH 

method, but as Case-1 waters by the band-ratio criterion (Fig. 8). Nevertheless, the averaged 

proportional contributions of phytoplankton, CDOM, and tripton were very different from those in 

group I (31% for phytoplankton, 63% for CDOM, and 6% for tripton; Table 2). A common 

characteristic of the group II is that they all had low concentrations of phytoplankton, but moderate 

levels of CDOM. Accordingly, these samples were distributed close to the boundaries of the LH and 

the band-ratio criteria (green and magenta lines in Fig. 8), and could be easily misclassified. 

About half of the total number of samples was assigned to group III. All samples of group III 
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were classified as Case-1 waters by the proposed method, but some of them were classified as 

Case-2 waters by the LH method because they did not meet the second criterion of the LH method 

(Equation A-3 in Appendix A). The averaged proportional contributions of phytoplankton, CDOM, 

and tripton were 45%, 47%, and 8%, respectively. At the subgroup level, the averaged proportional 

contribution of phytoplankton increased as the concentration of phytoplankton increased (i.e., as the 

values of RR53 increased). Especially for subgroup III-c, the averaged proportional contribution of 

phytoplankton became dominant (55%).  

For group IV, all samples were classified as Case-2 waters by the proposed method, but some 

were classified as Case-1 waters by the LH method. The averaged proportional contributions of 

phytoplankton, CDOM, and tripton were 41%, 46%, and 13%, respectively (Table 2). A common 

characteristic of the group IV samples is that they all showed both moderate phytoplankton and 

CDOM concentrations. Accordingly, these samples were also distributed close to the boundaries of 

LH and the proposed criteria (green and red lines in Fig. 8), and thus could be easily misclassified. 

All samples belonging to group V were classified as Case-2 waters both by the LH method and 

the method proposed in this study. The averaged proportional contributions of phytoplankton, 

CDOM, and tripton to the total absorption coefficient were 36%, 51%, and 13%, respectively (Table 

2). A common characteristic of the group V samples is that they all had higher CDOM levels. 

 

4.2.3 Sensitivity analysis with NOMAD data 

     To further evaluate the performance of the proposed method, a sensitivity analysis was carried 

out based on the second sub-dataset from NOMAD. Spectrally correlated noise was added to the 

remote-sensing reflectance at each band. This noise usually results from an imperfect atmospheric 

correction procedure, especially from errors in the aerosol correction (referred to as AC errors 

hereafter). Ruddick et al. (2000) provided typical values of AC errors for the wavelengths ranging 
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from 412-865 nm for four combinations of atmosphere (clear or turbid) and water (clear or turbid). 

The sensitivity analyses were implemented by adding different percentages (ranging from 0% to 

100% at intervals of 10%) of AC errors into the measured remote-sensing reflectance. Fig. 9 shows 

the results of applying the proposed and LH methods to the remote-sensing reflectance data with 

added AC errors (only the case of clear atmosphere and water is shown as an example). The 

percentages for the identified Case-2 waters were calculated for each interval of AC errors using two 

methods. The percentages of identified Case-2 waters by the LH method dramatically increased with 

the increase of AC errors. In contrast, the percentages of identified Case-2 waters by the proposed 

method showed a relatively stable pattern with the increase of AC errors. It could be concluded that 

the proposed method is much less sensitive to the effects of AC errors compared with the LH 

method. 

 

        ------------------ Please insert Fig. 9 here ------------------ 

 

4.3 Comparison between the proposed method and MB method 

     The MB method was proposed specifically for detecting turbid waters from ocean color 

sensors (Morel and Belanger, 2006). A relative difference (expressed as %) at green wavelength (555 

nm for SeaWiFS data) was defined to represent the turbidity of water bodies: 

                                                (14) 

where Ract is the actual reflectance obtained from satellite data; and Rlim is the upper limit of 

reflectance for Case-1 water as a function of chlorophyll-a concentration, which is determined 

through the bio-optical model MM01 (Morel and Maritorena, 2001). In this study, the upper limit of 

Rrs(555) for Case-1 waters proposed by Lee and Hu (2006), i.e., (1+ν)Rrs(555)[CS1] (Eq. A-5 in 

Appendix A), was applied to the seasonal composited SeaWiFS data.  
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     Accordingly, the relative differences ΔRrs(555)/Rlim(555) were calculated from the acquired 

SeaWiFS images. Relative percentages of Case-1 and Case-2 waters distinguished by the proposed 

method were then calculated for each range of relative difference ΔRrs(555)/Rlim(555) (%). The 

results for Spring 2003 are shown in Fig. 10. It can be seen that the Case-1 waters almost occur for a 

relative difference ΔRrs(555)/Rlim(555) between -50% and 100%, whereas the relative percentages of 

Case-2 waters increase on both sides (i.e., in smaller negative and larger positive ΔRrs(555)/Rlim(555) 

values). When the relative difference ΔRrs(555)/Rlim(555) is larger than 100%, more than 90% of 

pixels are assigned to the Case-2 category. This indicated that the turbid waters discriminated by 

Morel and Belanger (2006) are almost in agreement with the Case-2 waters identified by the 

proposed method. In the case of the negative ΔRrs(555)/Rlim(555) values less than -50%, it can be 

considered that these pixels correspond with Case-2Y waters (i.e., those waters are dominated by 

yellow substances; Morel and Belanger, 2006). Similar results were obtained for the other three 

seasons (data not shown).  

    Distribution maps of relative difference ΔRrs(555)/ Rlim(555) and Case-1/Case-2 waters around 

Europe are also shown for visual comparison (Fig. 11). It can be seen that similar 

ΔRrs(555)/Rlim(555) values occurred in the Baltic Sea (a region typical of Case-2Y waters; Morel and 

Belanger, 2006), North Sea, and Northern North Atlantic (Fig. 11A), and almost all of them were 

discriminated as Case-2 waters (Fig. 11B), indicating that these waters are probably dominated by 

yellow substances (Case-2Y waters). The highly turbid zones, such as the coasts of the North Sea, 

Irish Sea, and English Channel, and the Mediterranean river plumes (the red color in Fig.11A), were 

also discriminated as Case-2 waters (Fig. 11B), indicating that these waters are dominated by 

sediment (Case-2S waters). 

 

------------------ Please insert Fig. 10 here ------------------ 
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------------------ Please insert Fig. 11 here ------------------ 

 

4.4 A sample application 

     A semi-analytical ocean color algorithm, termed the Garver-Siegel-Maritorena model 

(GSM01; Maritorena et al., 2002) was employed to show the different performance of the GSM01 in 

Case-1 and Case-2 waters, respectively. The original GSM01 model is considered to be generally 

well suited for Case-1 waters because its parameters were optimized from a large global Case-1 in 

situ dataset (IOCCG, 2006).  

The third sub-dataset from NOMAD was used to evaluate the performance of the GSM01 

model (N=870). These data were first classified as Case-1 or Case-2 using the method proposed in 

this study. For each category, the GSM01 model was applied to retrieve the chlorophyll a 

concentration. Fig. 12 shows the comparison of estimated and measured chlorophyll a 

concentrations for the Case-1 and Case-2 categories, respectively. It is clear that the performance of 

the GSM01 was significantly degraded in Case-2 waters compared with that in Case-1 waters. The 

determination coefficient was reduced from 0.91 to 0.64, and the log RMSE was increased from 

0.272 to 0.392. This is because the optical characteristics in Case-2 waters were markedly different 

from those used to tune the GSM01 model. Therefore, a method that can easily and accurately 

identify Case-1 or Case-2 waters is needed to provide a warning of potential misestimation of the 

chlorophyll a concentration. The discrimination method proposed in this study can be considered to 

play this role.  

 

------------------ Please insert Fig. 12 here ------------------ 

 

5. Discussion 
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It has been suggested that remote-sensing algorithms for water bodies, such as chlorophyll 

retrieval algorithms, should be applied separately in Case-1 and Case-2 waters (IOCCG, 2000). Thus 

a priori information about the water types would be highly helpful for selecting the appropriate 

algorithms. However, water in a given locality may drift spatially and/or temporally between Case-1 

and Case-2 conditions depending on the environmental forces. Therefore, an additional algorithm for 

simultaneously distinguishing between Case-1 and Case-2 waters from satellite data is needed for a 

given water pixel. 

In this study, a simple remote sensing-based method was proposed to distinguish global Case-1 

and Case-2 waters. The basic idea of the proposed method is to relate the relative contribution from 

phytoplankton (defined as [aph(443)+aw(443)]/a(443)) with the ratio of remote-sensing reflectance at 

412 and 443 nm (i.e., Rrs(412)/Rrs(443)), which was previously used to represent the relative 

abundance of CDOM per chlorophyll over non-coastal waters (Carder et al., 1999; Morel and Gentili, 

2009). A binary classification of global Case-1 and Case-2 waters was performed by assuming that 

the Case-1 waters are generally with [aph(443)+aw(443)]/a(443) larger than 50%. This is somewhat 

consistent with the concept that the Case-1 waters are those waters whose IOPs are dominated by 

phytoplankton.  

Both sediment-dominated and yellow substance-dominated waters were classified as Case-2 

waters in this study. The former are denoted as Case-2S waters, and can be detected by the MB 

method (Morel and Belanger, 2006). The results in Fig. 10 showed that most of the Case-2S waters 

were also distinguished as Case-2 waters in this study. The latter were denoted as Case-2Y waters, 

which are not considered in the MB method, but could also be detected in this study. Both water 

types can cause the algorithm developed for Case-1 waters to fail in such zones (Fig. 12). It can be 

considered that the waters can be further distinguished as Case-2S and Case-2Y by combining the 

proposed and MB methods. 
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It should be noted that the classification results from the proposed method will be affected by 

any of the following: 

(1) Variabilities of absorption and backscattering properties of the components. Bricaud et al. (1998) 

stated that for chlorophyll a concentrations between 0.02 and 25 mg m-3, the 

phytoplankton-specific absorption coefficient could vary by more than 1 order of magnitude. 

Lee et al. (2010) pointed out that the power parameter within the model of backscattering 

coefficient ranged from 0 (for turbid waters) to 2.0 (for open ocean waters). The correlation 

between [aph(443)+aw(443)]/a(443) and a(412)/a(443) will be affected by the variability of 

absorption; in contrast, the correlation between a(412)/a(443) and Rrs(412)/Rrs(443) will mainly 

be affected by the variability of backscattering. Despite the presence of these variabilities, the 

two significant regression results were obtained from the NOMAD dataset, although with 

relatively low values of R2 (Fig. 3). The NOMAD stations used were located in both open ocean 

and coastal areas (Fig. 1A), and thus represented the possible variabilities of the optical 

properties of waters. More robust relationships could be established by adding additional in situ 

measurements. It should also be noted that these relationships were used to determine the 

threshold for classification, rather than yielding predictions. 

(2) Variabilities of the CDOM-chlorophyll relationships. A factor Φ was introduced by Morel and 

Gentili (2009) to express the change in the ratio of CDOM-chlorophyll. “Φ=1” denotes the 

mean relationship for global oceans; “Φ>1” and “Φ<1” represent the excess and deficit of 

CDOM, respectively. The LH method was developed based on the mean relationship. The 

requirements of rigorous Case-1 relationships (though they relaxed them by allowing some 

deviation) made it difficult to address the deficit cases (e.g., the waters in the mid-Pacific were 

classified as Case-2 waters by the LH method due to the lower CDOM, although these waters 

indubitably satisfy the biogeochemical definition of Case-1 waters; Morel and Gentili, 2009). In 
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contrast, the proposed method in this study stably classified these areas as Case-1 waters for 

different seasons (Fig. 4). However, the proposed method will classify some productive waters 

with high phytoplankton-associated CDOM (i.e., excess cases) as Case-2 waters, even though 

the CDOM in these waters co-varied with phytoplankton concentrations and thus should belong 

to Case-1 waters from a biogeochemical viewpoint (Siegel et al., 2002; More and Gentili, 2009). 

For example, the abundance of Case-2 waters detected in the North Atlantic-North Pacific was 

probably the result of the Case-1 and Case-2 definitions used in this study (Figs. 4, 5, and 11). 

Nevertheless, from the viewpoint of selecting an appropriate algorithm, it is probably reasonable 

to consider these waters as Case-2 waters, because the SeaWiFS chlorophyll product showed 

low accuracy in these areas (Gregg and Casey, 2004). In addition, even in some Case-1 waters 

determined from a biogeochemical viewpoint, since the CDOM concentration is influenced by 

past phytoplankton concentrations and photobleaching, the CDOM concentration does not 

co-vary with the instantaneous chlorophyll concentration (Bricaud et al., 1981; Mobley et al., 

2004). Therefore, this kind of water could also be classified as a Case-2 water. 

(3) Atmospheric correction (AC) errors. Non-negligible water-leaving radiance in near-infrared 

bands and absorbing aerosols are the main sources of error for the atmospheric correction, 

especially over the coastal areas (Shi and Wang, 2007). It is difficult to derive high-quality 

atmospheric corrections for blue bands, since the inaccuracy increases with the decreasing 

wavelength (Ruddick et al., 2000). Both the proposed and LH methods apply the bands at 412 

and 443 nm, and thus the performances are affected by AC errors, as shown in the sensitivity 

analysis. However, since the proposed method is only based on the relative relationship between 

Rrs(412) and Rrs(443), its sensitivity to AC errors is noticeably lower than that of the LH method 

(see Fig. 9). Even so, it still needs to be stressed that an accurate atmospheric correction 

procedure is required for global waters, especially for coastal areas.  
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6. Conclusion 

This paper presented a simple method based on the inherent optical properties of water bodies 

for discriminating global Case-1 and Case-2 waters from satellite data. The new proposed method 

only requires two remote-sensing reflectances at 412 nm and 443 nm for relative comparisons, and 

thus not only makes it easy to implement satellite data but also allows relaxation of the quality of 

satellite data (e.g., allows for imperfect atmospheric correction, unpredictable noise pixels in the 

images, and so on). The results of the global distribution of Case-1 and Case-2 waters in 2003 show 

that more than 80% of global waters belong to the Case-1 category throughout the year, and the 

Case-2 waters are mainly concentrated in the Northern Hemisphere along the coasts. Both the area 

and distribution of Case-1 and Case-2 waters changed seasonally. In addition, validation results for 

the water color algorithm, GSM01, yielded higher accuracy for the distinguished Case-1 waters than 

the Case-2 waters for estimating chlorophyll a concentrations.  
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Appendix A. The method for classifying global Case-1 and Case-2 waters proposed 

by Lee and Hu (2006; denoted as LH method in this study)  

The LH method is based on the concept that the inherent optical properties (IOPs) of Case-1 

waters can be solely determined by chlorophyll-a concentration (Chl-a; Gordon and Morel, 1983; 

Loisel and Morel, 1998). Therefore, for optically deep Case-1 waters, there should be a unique 

relationship between Chl-a and remote-sensing reflectance (Rrs(λ)). Using the MM-01 reflectance 

model, Lee and Hu (2006) calculated Rrs(λ) with Chl-a ranging between 0.02 and 30.0 mg m-3.  

The following two spectral ratios were applied in the method: 
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where, RR53 is a measure of Chl-a and RR12 denotes the relative abundance of CDOM per Chl-a. In 

addition, Rrs(555) represents the backscattering of particles.  

Since the IOPs of Case-1 waters can be solely determined by Chl-a, both RR12 and Rrs(555) can 

be expressed as functions of RR53. Consequently, two monotonic lines were derived by using the 

calculated Rrs(λ):  
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where RR12
[CS1] and Rrs(555)[CS1] are the estimated RR12 and Rrs(555), respectively, by RR53; the 

superscript [CS1] denotes Case-1.  

A quantitative boundary was also defined to relax the above Case-1 relationships because the 

natural waters might be much more complex than the simulation cases. A water pixel is classified as 

Case-1 waters if the following two conditions can be satisfied simultaneously, and the others are 

Case-2. The fist condition is: 
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and the second one is: 
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where γ=0.1 and ν=0.5, implying a ±10% deviation of RR12 and a ±50% deviation of Rrs(555) 

around their exact Case-1 values.  
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List of Tables 
 

Table 1 Percentages of water pixels within different ranges of the Rrs(412)/Rrs(443) ratios for four 

seasons. 

Rrs(412)/Rrs(443) 0-0.8 0.8-0.9 0.9-1.0 1.0-1.1 1.1-1.2 1.2-

Spring 6.6% 4.1% 6.5% 17.2% 24.3% 41.5%

Summer 5.5% 4.6% 9.0% 20.8% 24.7% 35.3%

Autumn 3.7% 3.2% 5.9% 13.6% 30.7% 42.9%

Winter 4.1% 3.0% 6.3% 14.1% 31.8% 40.7%  

 

 

 

Table 2 Descriptive statistics of the fractional contributions (calculated by the absorption coefficients 

at 443 nm) due to phytoplankton (P_aph), tripton (P_atr) and CDOM (P_aCDOM) for the five 

groups (I~V) of the extracted NOMAD dataset. 

 

I II III (a) III (b) III (c) IV V

31 30 141 110 29 25 152

P_aph Max 88.0% 59.3% 71.8% 70.5% 78.7% 73.1% 60.5%
Min 13.6% 5.7% 6.2% 6.4% 25.4% 14.6% 7.7%
Median 64.4% 27.8% 43.9% 46.1% 56.7% 43.0% 36.0%
Average 59.9% 31.1% 42.9% 44.2% 55.2% 40.8% 36.2%

P_atr Max 33.5% 11.4% 30.1% 26.9% 18.3% 32.2% 60.2%
Min 2.8% 0.7% 1.8% 2.3% 3.6% 2.5% 1.8%
Median 7.9% 6.0% 6.7% 8.0% 8.1% 13.8% 10.7%
Average 9.7% 5.8% 7.3% 8.9% 9.0% 13.2% 13.3%

P_aCDOM Max 81.7% 93.6% 90.0% 80.4% 58.6% 82.7% 89.5%
Min 1.6% 34.3% 17.2% 18.9% 10.6% 19.2% 13.9%
Median 27.2% 66.1% 48.3% 45.4% 35.9% 43.1% 50.1%
Average 30.4% 63.1% 49.8% 46.9% 35.8% 46.0% 50.5%

Group

Number of samples
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List of Figures 

 

Figure 1. Data locations of the three sub-datasets generated from the NASA bio-Optical Marine 

Algorithm Dataset (NOMAD). Filled circles and open stars represent the locations classified as 

Case-1 and Case-2 waters, respectively, using the method proposed in this study. 

 

Figure 2. Examples of (A) absorption coefficients for phytoplankton, tripton, CDOM and pure water; 

and (B) backscattering coefficients for phytoplankton, tripton and pure water; the chlorophyll a 

concentration ([C]) was equal to 1 mg m-3. The data were selected from an IOP dataset used in 

IOCCG (2006), which contained 500 IOP data points. The two arrowheads denote the two bands 

(around 410 and 440 nm) used in the proposed method of this study. 

 

Figure 3. Scatter plots of (A) the proportion of phytoplankton absorption (aph(443)) and pure water 

absorption (aw(443)) within the total absorption at 443 nm (a(443)) vs. the ratio of absorption 

coefficients at wavelengths 412 and 443 nm (a(412)/a(443)); (B) the ratio of a(412) and a(443) vs. 

band ratio of remote-sensing reflectance at 412 and 443 nm (Rrs(412) /Rrs(443). 

 

Figure 4. Global distribution of waters within different ranges of the Rrs(412)/Rrs(443) ratios for 

spring, summer and autumn 2003, and winter 2004. The larger ratios imply that the IOP of 

phytoplankton and/or pure water are more dominant in the water bodies.  

 

Figure 5. Global distribution of Case-1 (blue color) and Case-2 (green color) waters for spring, 

summer and autumn 2003, and winter 2004, distinguished by the method proposed in this study. 

 

Figure 6. Global distribution of Case-1 (blue color) and Case-2 (green color) waters for spring, 

summer and autumn 2003, and winter 2004, distinguished by the LH method. 

 

Figure 7. Comparison of global water classification between the LH method and the proposed 

method for spring, summer and autumn 2003, and winter 2004. Cyan denotes that the pixels were 

classified as the same category by both methods; green denotes that the pixels were classified as 

Case-2 waters by the LH method but classified as Case-1 waters by the method proposed in this 

study; and red denotes that the pixels were classified as Case-1 waters by the LH method but 

classified as Case-2 waters by the method proposed in this study. 

 

Figure 8. Scatter plots of RR12 (Rrs(412)/Rrs(443)) versus RR53 (Rrs(555)/Rrs(490)) for the selected 
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MOMAD dataset (the first sub-data set, N=518). The samples were separated as five groups (see text 

for details). Groups I, II, III, IV and V are denoted with diamonds, triangles, circles, squares and 

crosses, respectively. The points in green, blue, cyan, and red colors represent the samples with the 

proportion of phytoplankton absorption (443 nm) between 10-30%, 30-50%, 50-70%, and 70-90%, 

respectively. 

 

Figure 9. (A) Reflectance error associated with atmospheric correction at different wavelengths. (B) 

The percentage of distinguished Case-2 waters against the noise level in Rrs for the proposed 

(squares) and LH (circles) methods (the second sub-data set was used, N=2208).  

 

Figure 10. Relative percentage of Case-1 and Case-2 waters within different levels of turbidity for 

the spring in 2003. The numbers in parenthesis (top of bars) represent the percentages of each 

turbidity level within the global waters.  

 

Figure 11. (A) Relative differences for the wavelength of 555 nm around Europe by applying Eq. 

(12) to seasonally composited SeaWiFS (Spring 2003). (B) Distribution map of Case-1 (blue) and 

Case-2 (green) waters for the same area.  

 

Figure 12. Comparison of the GSM01 performance between Case-1 and Case-2 waters. The third 

sub-dataset was used, and the invalid retrievals were eliminated (52 stations in total). 
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