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(IEERETT )z, = b —1), X >0,
(B AT 4 PETN) 2, = b*(a*lOOO/(1+(a*1000~—1)*e“’\')——1),a,b>0

7ZIE L XAMETIE (MR oRmMmE—REROME) Tha,

3.1.4 HKEEBEFIL

yp BIEEORRINET S, Z0EE, ZOBRIEERTIRODL > pETF
WERIEZEMET L LS,

Yo = Hpon + wy (BHEl=7 1) (5)
an = Foop1+Gv, (AT LETIL) (6)



7L, ap SEBENTE 2N M AT, REEEERLTHD, £, w, 328
AR, AT LS AAXT, BTOXDRERSHIZEI DO ET D,

2 73
wn | 0 oy 0 -
] (LS 2l)em)
0
T OMETRWEREE a, VAT AL A Ry, BREITHIF, G, HyZUTDLBY
T#H Do

(7)

OW;‘_‘MCD
[ I . B e

Gy = (tm oy v+ nes, b)ti Up = (f‘m #mo)t: (8)
F 00 G, 0 0
F=10 F 0|,G={0 G2 0|, H,={1 100000 zf, (9
0 0 1 0 0 0
(-1 =1 -1 -1 -1 —-1]
1 0 0 0 0 0
0 1 0 0 0 0
F=F= ,
0 0 0 1 0 0
0 0 0 0 1 0]
1
0
0 ,
G] I[].],Ggr 0 (11)
0
L 0 -

3.1.56 tERERE

SI3EHDI2DETFNAZDWTET /ABERIRFEEEAIC KD, ZhEpEL
TAHRILIICETNEZRERTEIETEFENIRROLOEBIRTAZI LN TE S,

AIC = —2(BRNEAE) + 2035 A — ¥ ) (12)



4 REZEBETIVIZEDEEREETIVLOH

DEDOFERIZBITBETIRERTER E OIEREMICE L THHT 5, HRALT
WBPOST—#IZAKOLOTHY, REEMEFALERAVA I LX), BAE
g0 (5) ~ 5) IR E N D E TR ROEMIEME LS L L TEF A OPICAA
feZ EaRlAhiz, BIRPOST—# TREEFTENE < BETHHR, SHOBIZIT
PuRRENLWEREIFOEETHE®ROZVWOITERZLEL T EBE VD
T, FOL S eBHBHEIZRBEE L, BPh oA S RoR ) b IEED
HA SN RES TN ET A PV FEMETD L EERARROSRRE
BBERBDT—ED P LV FELDELTENFNOBEGEDAT 4 7 CEE
L7,

4.1 BIF—2OBERIEDETIVAAIC
thER AE T AT T O AEETH B,

L ETNL (=R T A R Yn = tn + Wy
2. BT N2 (FREBETHERLS) Yn = tn + dp +wy
3. FFT N3 (Ml BHERL ) Un = tn + Zn + Wy
4. BT N4 (&S ) Yn = by dn + Ty + Wy

FNENDET ATV TS B T O 3B\ THh 5,

M&BEs e oz, = X (13)
D oz = eF~1) X >0 (14)
fifsB%e 2, = b(1000a/(1+ (1000a~1)* ™) =1), q,b> 0 (15)

4.1.1 [5&HA

A 4 XBRPLLBRASNEEETI L FEAT 47 (0) IZEE L,
FdRA L, BdhA 3. BdA 4 (constant trend) {IZOWTEIN—R T A o+ H
TEIR S IR e OEFT A0 AICHREL/HEL, BATHNRE Shi,

ETHREOHBEHIC OO TIHMEHA 2, BRAS, BRALIE2NWTIES TR
THHBUVAT (v 7 TTNE, oA 3OV TUIMBERETF BRI, /&
ATV TR BS 0 SERTEME SRS S T, 4 B O4mE B I SR IE D 7



TESERHTTHNAN, M12RTWHEEHA 3, BHA4AIZOVWTIHE &R
EEORMRBIIOWTIE 2D/ —TiCbifond Z EREZ b, MiEELELE
HEEBIIHTETAILENRD S LB S (Kondo and Kitagawa, 2000 Z8),

4.1.2 E&B

Al | EmA2 [BMAS |BEHA4
ETFAL {( ty) 8131.6 | 8246.9 7398.3 3422.7
FFN2 ( ty+dy ) 8108.3 | 8254.1 7385.7 | 3357.5
EFFN3a( ty+Tn) 7959.6 7762.8 7308.3 | 3406.9
TFNA3b( tpt+a,) NA 7 763.6 NA NA
EFTA3e( tht+zy) NA 7724.1 NA NA
ETFNda( ty+d, +3, )1 79286 | 77908 | 66569 3366.3
EFEFAAD( ty+dy +2, )| 7918.2 NA 6815.1 3287.3
EFMNAdce( to+dy +2,) | 7933.6 NA 6647.3 | 3258.6
2
a R IBE T L (13) =
PREM=EE- Sl (14) =

CEVAT Ly IET I (15) =

BB 1, B4@gPHoBAINTEEHETA L FEAT 4T (0B XUT
2) {ZEE LT,

JEEHBIZHE W TIEREMB 1 2B T TOBERMMAR~2 T A a5+ B EERE
SHEEEEcOEFAOAICHARL/NELS, BATENRE S, B&aB 11X
Yol REOBIGVIEFIIEL, BETHORDTFREIN2h o7,

BETRHREOFEBBMEIZOWTIHEMRB 2, BRB AW THSERTCHARY
AF 4y PETANR, Bl, B3I OWTHBRETANRITHh, FHBIZ2WT
(AT A& BASR O FERRAE IS 2 DFER L A2 o T,

S C

BRC3BLUBRC AITEPLLRASNEFR T LU FEAT 7 (1
2B LT0) KEELE, ‘

JEEHCIZ B W TIZ 2T OB TRX—A T A S+ B TBIR S IR EE L O
EFNOAICHES, BEEEABH S,

4,1.3



5L mwmBl | WmB2 | WMAB3 | WRB 4
ETFLL ( t,) 949.5 8819.5 8381.0 0598.7
TFA2 ( ty-+dy ) 978.9 8624.0 8353.2 9391.8
ETFA3a( ty+ ) 934.1 NA NA NA
TFA3D( ty+zp ) 939.7 NA NA NA
TFV3c( tht+2n) 934.5 NA NA NA
EFTN4da{ ty+dy, +x,) NA 7762.6 | 7077.3 | 06987.8
FETNAD( ty+dy+z,) NA 7897.3 7127.8 7071.5
EFNAc( th+dy 2 ) NA 7652.9 | 7095.1 | 6912.6

# 3

EFDEOIFREMEIZ OV TEHERC 4 2R LETOEROVWTSERTHhAT

VAT 4y 7 BT ANRIEI, EHCIZoWTIIEE AR OERTB TS =R TH

HEWIER LT,

FHRC1 | F&MC2 |HRC3 | H\EC 4
FTFNT ( tn) 7986.4 | 8250.2 | 7208.0 | 1480.0
EFEFNL2 ( ty+dy) 6761.4 | 76959 | 6916.6 | 1377.2
TFNda( ty+dy+ 2, ) 6473.3 | 6978.99 | 6289.0 | 1329.7
FFNAD ( ty+dy +Tn ) 6501.5 | 7112.7 | 6327.0 | 1330.9
EFFNA ¢ ty+dy+ Tn ) 6472.9 | 6966.2 | 6285.8 | 1333.8
4

4.2

flRISETILAMICETEEED

BIEHE LD TEZDESFRO VAT (v 7 ETFTAMNERIENIBEED 7 E &
BbHEL<. WBPLEBIDOREET N T, BENDTN1EIOEERTT T A MNEBRIRS
iz,

B1~H3DHMEERD L. ETEMEVEZOTry FOSFRIO R FHME
EANERWEBERa VAT 4y 7 BT ARRIRII., ERERERICHSIZR-T
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Abstract

Analysis of scanner data is an important field in discov-
ery sclence, which may provide retail managers vital infor-
mation to optimse prices of goods. Retail managers know
from their past experiences that price promotion is very ef-
fective to cause high incremental sales of a promoted brand
during the promotion period. The authors develop a new
method for decomposing store level scanner sales into two
price promotion effects, brand switching and category ex-
pansion, together with long-term component of baseline
(trend) sales and cyclical day-of-week effect, A real store
level daily scanner seles were analyzed to show how the
decomposition works. An interesting fact was found that
the price reduction effect could expand shert-term cate-
gory sales, but long-termn trends show a little declining
tendency. This supports the claim that price promotion is
effective only for short term incremental sales.

Keywords: Daily scanner sales, Sales response model,
Baseline sales, Day-of-the-week effect, State space model,
Kalman filtering, Multi-variate time-varying regression anal-
ysis,

1. Introduction

Blattberg and Neslin [6, p.187] uszed brand sales and cate-
gory sales instead of brand sales alone in market response
moedels to estimate parameters more efficiently.

Our approach io the decomposition of price promotion ef-
fect into brand substitution and category expansion is also
to use brand sales and category sales and to regress simul-
taneously them on explanatory variables in a Bayesian vec-
tor state space model with smoothness priors. The used
explanatory variables are the functions of prices which are
defined to increase the own sales of a brand., We utilize
zero-sum information of brand switching effect which dis-
appears in category sales and remains in brand sales. The
concept of price-cut effect decomposition is illustrated in
Figure 2, In addition, our approach uses s unified model
of time series analysis and regression analysis and guaran-

tees the results of category sales model are consistent with
those of brand sales model. The results are always com-
perable among brand sales and the category sales total,
which avoids a dilemma to decide which should we believe
brand model or category model under a possible contradic-
tion existing between them if separate model fittings were
conducted as questioned by [10].

This paper consists of two parts. First, we introduce a
method for decomposing an explanstory variable effect of
price promotion inte the one due to brand switching and
that due to category expansion, together with the decom-
position on baseline sales and cyclical day-of-week-effect.
Secondly, an ansalysis on daily store level scanner sales are
given.

2. Smoothness Priors Approach to
Scanner Sales Data

In an input-output relationship analysis on econometric
time series, Shiller(21] introduced the notion of "smooth-
ness priors” | having “smoothness” constraints on distributed
lags in a difference equation: A single trade-off parameter
determines the trade-off between infidelity of the model
to the data and infidelity of the model to the smoath-
ness constraints. A similar concept appeared in [23], ad-
dressing & problem of the estimation of a smooth trend.
The smoothness priors (trade-off parameters) were ceter-
mined subjectively until Akaike[2, 3] formulated an objec-
tive method in a quasi-Bayesian approach, Akaike pro-
posed the method of choosing the priors or hyperparame-
ters in a Bayesian framework by maximizing the likelihood
of a Bayes model. It incorporates an updating procedure of
trade-off parameters by using current observation to yield
a marginal likelihood computation among several candi-
dates of distributions of trade-off parameters, The calcu-
lation of the marginal likelihood requires intensive compu-
tation, of which burden Gersch and Kitagawa[9] eased by
employing a state space representation of the model, using
the recursive algorithm of Kalman filtering [12, 13]. The
Kalman filter technique has been applied successfully also
to social fields data analysis ([5], [7], [25}).



Kondo and Kitagaws([16] adopted Bayesian state space
model with Kalman filter on scanner data analysis in or-
der to decompose brand sales into baseline sales (trend),
cyclical day-of-week effect, and explanatory variable ef-
fects in a uni-variate model with constant regression pa-
rameters. Kondo and Kitagawa[17] contains multi-variate
model with time-varying parameters. This paper is an
extended version of the latter work to carry out further
decomposition of & price promotion effect into two compo-
nents, brand switching and category expansion, which is
a very useful tool for a retailer to monitor whether price-
cubs of a brand inerease total category sales or not by using
their own store level scanner data.

Basic Model and Price Promotion Effect Definition
The szles of brands are represented by k-veriate time series
yn = (Wh .o w8)T, n=1,...,N and are assumed to be
able to decompose as follows:

yn=tn ”f‘dn"‘mn"i"wn‘ (1)

where tn, dn, Zn, and wy, represent long-term baseline
{trend) component, cyclical day-of-week effect component,
short-term component of price prometion, and observation
noise, respectively. The short-term component &, is fur-
ther decomposed inte brand substitution and category ex-
pansion, which are represented by g, and z., respectively.

Zpn = gn + Zn,

The observation noise w,, is assumed to be Gaussian white
noise: wn ~ N( 0 ,X,), where covariances of observation
noises between brands, facilitating more precise estimates
of regression coeflicients if an important explanatory vari-
able is omitted, This is essentially the same treatment as
seemingly unrelated-equation model in [19, ch.11].

In order to clarify price promotion effects, we adopted the
following sales promotion definitions by [6, p.112~113]), in
which five mechanisms in sales promotion are reported as
follows: 1)Brand switching: the consumer is induced to
purchase a different brand from that which would have
been purchased had the promotion not been available;
2}HRepest purchasing: the consumer’s probahbility of buying
the brand again in the future is influenced by purchasing
the brand en promotion; 3)Purchase accelerstion: the con-
sumer’s purchase timing or purchase quantity is changed
by the promotion; 4)}Category Expansion: the consumer's
total consumption of the product category is increased by
the promotion. 5)Store switching: a consumer may re-
spond to a retailer promotion by switching stores, that is,
shopping at a different store than the store he or she would
have had the retailer promotion not been offered.

Under these definitions, substitution or displacement com-
ponent can be decompased into "brand substitution”, “pur-
chase acceleration”, and “store substitution”. These are
the effects which do not yield pure increments on con-
sumption, but increments which are borrowed from com-
petitive brands or from future time or from competitive
stores. Past researches such as [18] suggested the exis-
tence of “store substitution” effect. Although the “store
substitution component” is not included in our model and
negative store substitution by competitive stores was left
out, positive “store substitution” effect by the own store’s

price promotion is contained as a part of category expan-
sion effect, In the analysis, we used a perishable product
category of milk that is difficult to stockpile at households
and no purchase acceleration is mssumed to exist. The
category is not considered to be the one that strong pur-
chase acceleration would occur with the standard given by
[20]: promoted steeply, but infrequently, not bulky (as a
measure of easier stockpiling), less expensive, and highly
competitive. The time series framework of the model per-
mits the incorporation of additional ARMA component
([15, p.219]) for purchase acceleration.

For each brand 4, the sales can be written as

vho=th A A gh b+l i=1,..,k (2

By summing the sales of each brand, the category total
sales can be expressed as

k
vn= Y vhmthbdkgh4ah fwn, (3)
=1

k
gmn=) gh=0. (4)
i=1

Thus, for the category total, the term for brand substitu-
tion is vanished with the condition (4). Therefore, as long
a8 the condition (4) is satisfied, we can separate brand sub-
stitution effect from category expansion eflect. This can
be the main reason that an aggregation in terms of brand
removes a large amount of variances which existed in each
brand data under the competitive structure of *brand sub-
stitution”, Figure 1 shows the actual scanner sales data
analyzed in this research. The first to the fourth graphs
in the figure show movements of major four brands in the
period of 2 years, The last graph shows the sum of the four
brands. It shows & brand substitution mechanism in which
an aggregation of four brands removed large variances that
exist in the original daily brand data and exhibited obvious
seasonaliby,

Long-term Baseline (Trend) Component: Base-
line {trend) sales for a brand (or category) are defined as
the sales without any sales promotions and baseline com-
porent in our model is characterized as habitusl repeat
purchasing that is not affected by sales promotion. We
assume that Jong-term effects of repeat purchasing or that
of category expansion by sales promotion does not exist or
negligible. We deal with a matured old product category
in the market place. A new product category whose mar-
ket size is expanding very fast is in the field of a diffusion
model (see [25})and is not dealt in this paper,

Baseline (or trend) component, tn = (t},...,t5)7 is as-
sumed to correspond to habitual repeat purchasing and
is modeled as the component that the values in adjacent
two periods are almost the same. The baseline (or trend)
component was determined as the first order by the re-
gult in [17] and is represented by the following first order
stochastic difference equation:

(5)

th — tn—1 = Vin,
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Figure 1:
Four Brands and the Sum of Daily Scanner Milk Data
Variance for Four Brands and the Sum
(7584; 7930; 3138; 8059; 17213)

where the system noise v, = (v:m...,vfﬂ)T obeys the
following Geussian white noise (see [14]): v} ~ N(0 ,0%).

Cyclical Day-of-Week Component: Cyclical
day-of-week component repeats similar patterns on the
same day within a week and is modeled as having a con-
straint that the sum of ssles in a cycle of seven days be-
comes almost zero ([16]). As in the case of seasonal ad-
justment, let us assume a day-of-week component, d,, =
(d%,...,d%)7, is represented by

-]
E dn—j = Vdn,
j=o

where the system noise van = (vin,...,v%,)7T obeys Gaus-
sian white noise and corresponds to the change in day-of-
week pattern: v, ~ N{0 ,aj;). Note that for small van,
dn behaves as a periodic function ([14]).

(6)

Explanatory Variable Component and Price
Function: There are several means for sales promotions
such as price promotion, display, advertisements, coupons,
and so on, Price promotion is considered to be the largest
factor to induce consumers a desire for incremental pur-
chases. We consider the situation that a retailer wanis to
decompose the effect of price promtion into brand switch-
ing and category expansion, while not changing other sales
promotional variables. There may be an omission of an
important variable, but covariance matrix of observation
noise would reflect unexplained competitive relation ap-
propriately, If there are data for other sales promotions,
which are not stochastic regressors, but fixed numbers,
they may be included in the model.

Price Function: Blattberg and Neslin [6] view sales
promotion, including price promotion, as shert-term pulses
‘“Intervening” with the normal progression of the sales. We
share the view by considering price promotions are effec-

tive to cause short-term pulse-like incremental sales. The
condition that pulse-like incremental sales of & brand are
praoduced by the own price reduction can be defined and re-
ferred to as a “price (response) function™ hereafter. Price
function is determined from univariate models for the sales
of each brand, For details, refer to [16].

Let u, = (uh,...,u%)T be a k-variate vector function of
price such as “price cut” as follows:
up = f(pn) €0, i=1,...,k, (7)

where pn = (ph,. ..,pﬁ)T is a k-variate vector of actual
prices of brands within a product category. The form of
price function can be any monotone decreasing function,
The larger the absolute value of price function, the greater
the potential of incremental sales becomes. In this paper,
we used the price functions analyzed in [17].

Two Components of Price Promotion Effect:
Regarding sales promotion effects, Blattberg and Neslin
[6, p.186] commented as follows:

The category model provides information on
purchase acceleration and category expansion,
whereas the sales or market share model can
provide information on brand switching and
purchase acceleration.

In other words, we may be able to state that brand sales
ere elements of the aggregated category data and form =
mechanism that disappears after aggregating the data in
the direction of brand and also 2 mechanism that remains
even after the aggregation. The former mechanism can
be considered as a brand substitution mechanism and the
latter, a category expansion mechanism, if we can ignore
that of purchase acceleration.

Brand Substitution Component Model: Brand
substitution component model describes a component which
has large variances for each brand, but vanishes if they are
summed by brand. Therefore, it is characterized as “zero-
sum effect” in the direction of brand.

Let us assume a brand substitution component,
gn = {ghs-+-,g%)7, is represented by

B, = {b:'f}: 7’53 (8)

where u, = (ul,...,uf)T is the price function defined in
Eq,(7) and B, represents time-varying coefhiclents of up.

gn = Bpun, 1,...,k,

The competitive structure of brand substitution can he
expressed as a constraint of the Fq,(8) and is represented
by
.. . k P
ba S0, B 20(fori#j), Y ui=0
i=1

The condition, E?:x gh =0 in Bq.(4) is satisfied if
E‘{;lb,"j = 0, for each price function, ui, j = 1,...,k.
As iHustrated in Figure 2, it is natural to decompose price
promotion effect into brand switching effect and category
expansion for each price function, These constraints have

(9)



a role to define a 100% basis of the sales for brand sub-
stitution, confining price promotion effect into the one for
brand substitution,

The coefficients, b are assumed to be flexible time-varying
parameters in order to absorb mildly changing phenomena
due to competition among brands and/or seasonality, The
type of variation is classified as stochastic sequential pa-
rameter variation by [24].

Since coefficients are assumed to have mild changes they
can be expressed as a locally constant component with the
following lst order stochastic difference equation:

B — b7 =wpin Li=1.0k (10)
where a system noise v,ij ., obeying the normal distribu-
tion, v3iin ~ N(0,0%) with the variance

k k

or = oy (ohf E ol

i=1

Here o2 is 3 product of o} (a common parameter) and a
weight determined by o3, the baseline system noise vari-
ance for a brand ¢, and R is a half of the range of price
function to restrict the range of the system noise variance
o3 In Eq.(11), o}; is determined in such a way that the
share of baseline system noise variance for a brand { equals
to the share of explanatory variable system noise variance,
Within a brand {, the explanatory variable system noise
variance is the same.

price-cut of brand A

Bi(private brand})

B2({national brand)

A

category expansion

A
brand switch

V

B

+
P1®._._____:__*®

o}
P2

_|_

B3{low fat type of B2)

Figure 2: Concept of Figure 3: Relation-

Price-cut Effect De- ship between Price

composition Reduction (P) and
Sales (8)

Category Expansion Component Model: Cat-
egory expansion component is the remaining incremen-
tal sales effects after removing the ones for brand sub-
stitution, which contributes to a net increase in category

pales, Let us assume a category expansion component,
Zn = (Zhye oo ,z,’i)T, Zm 20, 1=1,,..,k, is represented
by

Zn =An‘bln, An ={)\::}1 'c‘:,:)':l,---,k; (12)

where u,, is the same price function as the one for brand
substitution and A, represents time-varying coefficients of
tin, with 3% =0, for i # j. Category expansion is & non-
competitive effect, but a primary sales effect (for details,
refer to (22]). In other words, own sales must increase and
competitors’ sales de not change by price-cut of a brand.
Therefore, only diagonal elements of coefficients must be
non-zero, because if off-diagonal elements that represent
effects from competitors’ prices were non-zero, the sales of
some brands can be affected.

The conditions of category expansion can be expressed
with coefficients X, as:
A <0,

ix=1,k (13)

The coefficient, A},, s assumed to be a fiexible time-varying
parameter as in brand substitution component, being ex-
pressed as a locally constant component with the following
1st order stochastic difference equation:

ok, (14)

with a system noise, vyin, obeying the following normal
distribution, vyin ~ N(D, af.-), with the same variance o7;
in Eq.(11).

An— Aol = Uxin i=1,,

State Space Representation

The time series model explained so far is given by

Yn = btn+dn + gn + 20 + Wn. (15)

This model can be expressed in the form of a linear state
space model:

¥n = Hpon+4 w, (observation model) (186)

an, = Faa_i+ Gu, {system model) (17)
Wn 0 e O

Lo ]-n](5): (% 8)) oo

where oy, wy, and v, are state vector, ohservation noise
and system noise, respectively.

The system model of the state space model in Eq.(17) can
be specified as follows: F = Diag{¥r,Fp, Fs, Fo},

G = Diag{G»,Gp,G5,Gr}, Ho = (Hr Hp Hp, Han).
Each component of tw, dn, by Ay ¥en, Udn, Yony van, Fr, Fp,
Fgp, Fy,Gr,Gp,Gg,Gs,Hr,Hp, Hen, Han are defined in
the Appendix.

Identification of the Model and Information Crite-
rion

Kalman filter algorithm provides 8 method for the exact
maximum lkelihood estimation of the model and & predic-
tion on the dependent variable is effectively made.

The likelithood of the model can be expressed as the factor-
ized conditional distributions with parameter 8 as follows:

L(B) =f(yls"'lyN|0)= Hf(ynlyn—1»8)1 (19)



where ¥,y = {w,...,yn—1}. The individual terms are
given hy

FlunlYo1) = (@m) 2 Wppnaf ™2

X exp TVnTrlx—leﬂ‘““‘ } {20)

”§5n|n—1
where enjnm1 = ¥n — Ynjn—1 i3 one-step-ahead prediction
error of time series and ynjn—y and Vi), are the con-

ditional mean and the variance covariance matrix of the
chservation yn, respectively, and are defined by

HnQ'n|n—h
HaW,jnos Hr + Du.

(21)
(22)

Yrln—1
Vn|n—1

Here opp..; and W, ,_; sre the conditional mesn and
the variance covariance matrix of the state vector given
the observations ¥,._; and can be obtained by the Kalman
filter (refer to [4]).

The distribution of y, based on the Information up ton—1
time period obeys the following Gaussian white noise, y, ~

N(ynln—l 1 Vn]n—-l)l

From Eqs.{18) and (20), the log-likelihood of the model
can be written as

log L{B)

N
1
--E{Nklog 27 4 Z log |Van—1l

)

N
+ Zeﬁln—-lvf:l—,i_j,sn{n—l
n=1

‘The best parametric model among alternatives estimated
by the maximum likelthood method was chosen by the in-
formation criterion AIC developed by Akaike [1), A model
with a smaller value of AIC is determined as a hetter
model,

Structural Model Having Major Brands and Cat-
egory Total

(23)

The benefit of the analytical framework of brand sales
model and category sales model for decomposing & price
promotion effect into brand switching and category ex-
pansion was explained earlier, In practice, when we sna-
lyze marketing sales data, we seldom do analysis on every
SKU(stock keeping unit). We select interested brands and
make the other brands total, and the category total, The
very information which researchers need is on interested
brands and the category total, instead of brands and the
other hrands total, so that we arrange to estimate and fore-
cast on brands and the other total by using information
on brands and the category total.

Consider the situation that we have k — 1 brands and the
other total, Define a matrix, I' as follows:
) P =T = 1,

_ L, O -1 I 0
P“(111)'P —(-111
{24)

By multiplying yn by T, lets produce §,, as follows:

Tn = T'yn = THan + Tuwp, (25)

where §n, is for k — 1 brands and the category total.

The distribution of §, based on the information up to n—1
time point obeys the following normal distribution,

G ~ N(gnln—llvnln—l)l ‘?nln—l = {U;ij} = {O';ji}1
i,j:l,...,kwhereagu >0, cr;,“- >0, i=1,...,k
From (25), the distribution of 4, based on the informa-

tion of {j, up to n — I period obeys the following normal
distribution:
Yn ~ N(r—lgnh}——h I‘—l‘}nlnf-lrhT)- (26)

Therefore, the log-likelihood of the model is given by

N
1 .
log L{y|#) = —E{Nklog 2 + Zlog Va1
N n=1
+ D (Tyn = Galnot) Vi, (T - th._L)}. (27)
n=)
3. Analysis of Scanner Data

The analyzed data contains brand sales and prices of 2
years daily aggregated data in the period of 1994/2/25-
1896/3/3 (N=735)}. In this study, brand is defined as
brand-size and sales quantity is defined as the litre of prod-
uct purchased. The top four brands {B1 to B4) and the
category total were analyzed. Kalman filter requires ini-
tial values of state mean and variance. The state vari-
ances for day-of-the-week component or for explansatory
variable component were set to some large arbitrary val-
ues, which produces flatter prior distributions. A discus-
slon on the determination of initial values is in Harvey
{[11, pp.120-125]}. All zero-sales were treated as missing
values, The maximum likelihood estimates of parameters
were obtained by a quasi-Newton numerical optimization
procedure,

The following three models given in Eqs. {28)-(30) were
applied to the data,

Model TD y,
Model TDX gy,
Model TDGZ  yn

by + dn + Wy (28)
tn +dn + @n +wy (29)
tn +dn + gn + 2n + wa (30}

1l

The values of the log-likelihood, AIC, and the number of
parameters on the analysis were summarized in Table 1
where T, D, X, G, and Z denote trend component, the
day-of-week efiect component, time-varying explanatory
variable component, time-varying brand substitution, and
time-varying category expansion, respectively, The results
in Table 1 showed the smallest AIC value was attained at
Model (T, D, G, Z}, price promotion effect decomposition
mode]l among the three,

Figure 3 shows the relationship between sales and price
functions among the top four brands. The price-cuts affect
the own sales positively for each brand. B3 is = low fat
type of B2, which has ne competitive relationship with
the other three brands of regular type. Bl is a private



Table 1:
Log-likelihood and AIC for three models
log- Mo, of
Model likelihosd ~ AIC Parametets
Meodel (T',D) -19512.0 39128.0 52
Mode! (T,D,X) -18258.9 36695.8 88
Model (T,D,6,Z) -18246.4 36668.8 { 38

brand and the sales is taken a large amount by the price-
cuts of two competitors, B2 and B4. The price-cuts of B4,
on the other hand, negatively affect two competitors B1
and B2. B2 takes the sales from B1 by its price-cut, but
being taken from Bd.

ran

i1om

EXTS
150
rme

100
290

ran

-850
w100

~150

Figure 4;
Top, Category Expansion: (left)B1; (right) B3
2nd, Brand Switch: (left)B1; (right) B3
3rd, Category Expansion: (left)B2; (right) B4
4th, Brand Switch: (left)B2; (right) B4

Graphs in Figure 4 exibit clear decomposition of price-cut effect
for each brand. The top right graph shows the category expan-
sion of the low fat type brand, B3, was much greater than its
positive brand substitution shown in the second right graph.
The top left graph shows that the category expansion of Bl
was much greater than the positive brand substitution in the
second left graph. In addition, the negative brand substitution
due to the price cuts of B2 and B4 was also large. The third left
graph shows the incremental sales of B2 were due to hoth the
increments of the category expansion and the positive brand
substitution taken from B1l, while there was smaller reduction
due to the price-cuts of B4, The category expansion increments
for B4 in the third right graph were almost the same as those
of the brand substitution.

Figure 5 shows graphs of category sales concerning (a) fitted
trend, (b} day-of-week component, (¢) price reduction (category
expension) effect component, {d) observations, {e) trend + day-
of-week + price reduction effect component, and (f) residuals.
We can see that the price reduction effect could expand short-
term category sales (see (c}), but long-term trends show a little

declining tendency(see (a)).

ta) {d)
800 860
600 600
400 w-‘/f‘_\‘“—‘————“"\-«h“__ 400 ’*
200 200 |
0 0
3 200 400 £00 ] 200 400 600
{b} {e)
100 800
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200 200
-400 0
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te) {£)
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200
0
-200 -200 : : 3
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Figure 5:
(a)fitted trend, (b}day-of-the-week component,
(c)price reduction effect component, (d)observations,
(e)trend + day-of-the-week +price reduction effect
component, and (f)residuals on category total data

4, Conclusion

We propose a new method based on state space model
to decompose price promotion effect of scanner sales into
brand substitution and category expansion, together with
sales decomposition into component of baseline (trend)
and day-of-week effect,

A real complex data of store level daily scanner sales were
analyzed to show how the decomposition works. The anal-
ysis showed the decomposition model of an explanatory
component gave the best result among the three alterna-
tives, accomplishing the purpose of 8 decomposition of an
explanatory component.

Our smoothness priors state space spproach allows a re-
searcher to fit very flexible models with more parameters
than the number of data points. This is the most signif-
icant difference of our appreoach from conventional mod-
els with parameters estimated by OLS, where we would
quickly use up permissible number of parameters for sim-
ilar models. In this many parameter estimation environ-
ment, our semi-automatic procedure with the objective in-
formation criterion of AIC, gives an advantage, After we
set up possible alternative models with different structures,
we only have to search for the model with the minimum
AlC value,
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Appendix

Specifleation of System Model and Matrix H,
for Observation Model

The system model of the state space model in {17) was
given as follows!

En fn—i FT Yen GT
dy _ dn-1 Fp + tan Gp
be | | bu-1 FB wn Gp |’
An Anot Fa uan Ga

Fixing the number of variables as 3 (k = 3), each compeo-
nent of t,,dn, bn, An, system noise of v+, va, vp, v, 80nd ma-

trices of Fy, Fp, Fg, Fy, G, Gp,Gu,GA, Hr, Hp  Hpn, Hin

are defined as follows:

1st order trend component

tn = (tlrn e ,t3n)ﬂ“; Utn = ('Utln) e 1Ut3n)T| FT = Ih
Ge = Is, Hr = I. If decomposition into brand substi-
tution and category expansion is involved, tsn and viyn
are replaced with ¢,n and vy, ,, respectively.

Day-of-week component

dn = (dlng o )dln—!h e ,d.!rn . -;dSrA-—E)T)
r
Udn = (udlnl'"ivd‘l"—sl"‘lvd!ﬂl"'iud:ﬂ"s) 1
Gp = Diag{G4,Ga,Ga}, Ga=(10,...,0)7,
Hp = Diag{Ha, Ha, Ha}, Ha=(100000),

~1-1=1-1-1-1

Fp = Diag{Fu4, Fa, Fa}, Fa =

oo oo~
(=T~ =
(== I ]
o oo
oo oo
oo oo

0 010

If decomposition into brand substitution and category ex-
pansion is involved, dsn and v4,n are replaced with d,n
and vy, n.

Explanatory variable component

a)Brand substitution component
b“ - (61111!"‘!b}tal---nbill"nb:s)'r'

Uhn — (‘vaun, sy Up3p ey U3l ,Ubasn)T,
Hy=(u1n - usa),
Fp = @p = Diag{ls, I3, v}, Hp = Diag{Hs, Hy, Hs}.
If no decomposition of price promotion effect into brand
substitution and category expansion is involved, let Fy =
I3 and no category expansion component is necessary. If a
decomposition is performed, b3} is replaced with b** = 0,
B3 with 52 =0, B33 with b** = 0 and Fy = 0. The
coefficients, b37,¢ = 1,2, 3 are calculated as b = —pl 3,

b)category expansion

A= (N0 AR R A LT,

Un = (u,\u,,,...,v;\u,,,u,mn "'QUAZ-’I'HUA'IH!"‘)U).:L")Tl
Fya 0
Fy =G) = Fia N
FA1 FA’ FA"

1 0 00 0o
FA1=( 0 v Fha= 1 y s = 0 )
¢ o ¢ 0 ¢ 1

H,\n ('Uln Uzn uSn) ' HAn = D'iag{Ha\ny HAn:HAn}'(SZ)

Constraint Specification for Brand Substitution Com-

ponent

gl bll b12 bm "
T 92 =T b21 622 bﬂs Uz
95 bSl b82 b33 Uz
bll blz bls uy b“ b12 blS uy
b21 622 bzs g = b21 b22 b23 g .(33)
bol 6.2 b-s U3 0 0 0 Uz

Systern Model for Brand Substitution Component
on Simultaneous Bquation

11
bn»—l

b:,l Upitn
iz 11 I T P
b},s 1 5‘2_”}_ UYpia
= Is . + | .
3 0 A 0
be? O Jlmk ] o
bil 0/ \pst, 0
(34)

Constraint Specification for Category Expansion

Component
EA pL 1] Uy AL iy
Tiz| =T Uz 2% uz) .
23 )] /\33 s All A” )‘33 us
(35)

System Model for Category Expansion Component
on Simultaneous Equation

0
AQZ

Due to the category expansion condition, the non-diageonal
coefficients of A}] are zero, 30 that the following conditions
hold;

o1yl 02 22 03 438
Aw =y A=A AT =40

(36)

This leads to the following system model:

Al 100 A, NI
,\;;: p1o| o ;,:_, vyaan
’\ﬂ 001 An-—l Upsanp
Al T 106 et + wain | (87)
X2 010 0 A2 Upaan
A;.s 001 '\:15._1 Upss
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Abstract

A Bayesian inference is an important technique for data analysis in large scale as discovery science.
Kondo and Kitagawa [14] introduced a Bayesian method in order to decompose price promotion
effect of store level scanner sales into brand switching and category expansion, together with
long-term compbnent of baseline (frend) sales and cyclical day-of-week effect. This paper presents
another analytical example of an infrequently purchased category, Chinese Tea, by adding one more
promotional variable of display as explanatory variable. The analysis on this category shows that

display causes very sharp spikes of incremental sales having day-of-week effect.

Keywords: Daily scanner sales, Display, Sales response model, State space model, Baseline sales,

Day-of-week effect, Multi-variate regression analysis.

1. Introduction
Bayesian analyses on cross-sectional and longitudinal scanner data can be largely classified into
two groups, i.e., cross-sectional analysis and time series analysis. There are many applications in
terms of Bayesian analysis on scanner data in marketing, The first one is to focus on the
cross-sectional aspect of scanner data, such as choice data. When customers choose a brand
among competitive brands stocked on the shelf of a store, brand choice data such as scan panel data,
can be obtained, There is an increasing interest in analyzing this kind of choice data from a
Bayesian point of view with recent powerful computational algorithms such a Markov Chain

Monte Carlo methods. As a theoretical framework, Albert and Chib [2] developed exact Bayesian



metheds of modeling categorical response data, using the idea of data augmentation, combined
with Gibbs sampling. This data augmentation approach provides a general framework for analyzing
muttinomial response models with mixtures of normal distributions to model the latent data.
McCulloch and Rossi [5] also developed new Bayesian methods for conducting a finite sample,
likelihood-based analysis of multinomial probit model with Gibbs sampler. This sampling
algorithm is developed to draw from the exact posterior of the multinomial probit model with
correlated errors, avoiding direct evaluation of the likelihood and the problems related to

calculating choice probabilities.

Secondly, longitudinal aspect of scanner data can be focused in the analysis. This paper deals with
store level scanner data (i.e., consumer choice data by individual are aggregated within a store),
Our approach is to consider cross-sectional and longitudinal scanner data as time series in a
Bayesian framework. Household level scan panel data contain only a sample of purchases of the
store sales, while store level scanner data contain the entire store sales, We utilize a Bayesian vector
state pace model with smoothness priors by using brand sales on two kinds of explanatory variables

in this paper. The used explanatory variables are defined to increase the own sales of a brand.

This paper consists of two parts. First, we briefly explain a method for decomposing scanner sales
into baseline sales, cyclical day-of-week-effect, and explanatory variable effects. Secondly, an

analysis on daily store leve] scanner sales is given,

2. Sales Decomposition Model

Basic Model: The sales of brands are represented by Xk -variate time series

;
Yy= (yL,,,,,yﬁ) , n=1,...,N and are assumed to be able to decompose as follows:

yn"":fn"'dn"‘x,n"'Wna Xn=8ntin
83
where  {4,dp,xps, and wy, represent long-tlerm baseline (trend) component, cyclical
day-of-week effect component, short-term component, and observation noise, respectively. The

short-term component can be further decomposed into brand substitution and category expansion,
which are represented by g, and zj, respectively.

The  observation noise wy, is assumed to be Gaussian white noise:



Wn'“N(Osz)’ Ew={o-3wy= O';, }}, i,j=1,...,k, where X, is the covariances of

observation noises between brands, facilitating more precise estimates of regression coefficients if
an important explanatory variable is omitted.

Long-term Baseline (Trend) Component: Baseline (trend) sales for a brand {or category) are
defined as the sales without any sales promotions and baseline component in our model is
characterized as habitual repeat purchasing that is not affected by sales promotion. We assume
long-term effects of repeat purchasing or that of category expansion by sales promotion does not

exist or negligible. We deal with a matured old product category in the market place,

"
Baseline (or trend) component, fn=(t ) is assumed to correspond to habitual repeat

1 k
na---,tn

purchasing and is modeled as the component that the values in adjacent two periods are almost the
same. The baseline (or trend) component was determined as the first order by the result in [13] and

is represented by the following first order stochastic difference equation:

In=in-1=vin>
(5)

. T
where the system noise vn=(v}n,.--,v§ n) obeys the following Gaussian white noise

(see10]): ], ~ N[O,aj !.J.

Cyclical Day-of-Week Component: Cyclical day-of-week component repeats similar patterns on
the same day within a week and is modeled as having a constraint that the sum of sales in a cycle of

seven days becomes almost zero. As in the case of seasonal adjustment, let us assume a

,
day-of-week component, ¢, = (dln peres d’;'z) is represented by

6
Zdu—j = Vs
Jj=0
(6)

where the system noise y n( ;! ¥ )T obeys Gaussian white noise and d
y Yain Vans o Van Y n white noise and corresponds to

the change in day-of-week pattern: vld ~ N[O,o-2 ) Note that for small v Jn»dp behaves
n d!‘ R

as a periodic function ([10]).



Explanatory Variable Component Model: Explanatory variable component model describes a

component which has large variances for each brand, but vanishes if they are summed by brand.

T
Let us assume a brand substitution component, x, = (xln yeres xﬁg) is represented by

xp=Bpup, Bp= {b?i}s Lj=l..,k,
\

(M)
.
where ”n:(uln,--.,u’;q) is the price function defined in Eq.(11) and B, represents

time-varying coefficients of 3.

(8)

The coefficients, b% are assumed to be flexible time-varying parameters in order to absorb mildly

changing phenomena due te competition among brands and/or seasonality. The type of variation is

classified as stochastic sequential parameter variation .

Since coefficients are assumed to have mild changes they can be expressed as a locally constant

component with the following 1st order stochastic difference equation:
b‘}"z'—b%_] =vpin L, i=1...,k,

©)

with a system noise v, ;;, obeying the following normal distribution,

1
vbuan(O;U;i} O';)SRZO'

2
e

(10)

In Eq.(10), o'i, is determined in such a way that the share of baseline system noise variance for a

brand iequals to the share of explanatory variable system noise variance. Within a brand i, the

explanatory variable system noise variance is the same,

Explanatory Variable Component and Price Function: There are several means for sales
promotions such as price promotion, display, advertisements, coupons, and so on. As sales
promotion variables, temporary price-cuts and display are used in this analysis. There may be an

omission of an important variable, but the covariance matrix of observation noise would reflect



unexplained competitive relation appropriately.

T
Let un=(u%,u#,uf¢2) be a k -variate vector function of explanatory variables. The

. 2 ' . . . .
variables, y}, u‘,’,z' , and u‘f{ are price-cut variable, display variable, a transformation of a

display variable of u‘,",,' that expresses day-of-week variation in display effect, respectively.

Price-cut variable:

Let yu= (u]n yeon ,u’},) be a k -variate vector function of price such as “price cut"

as follows:
wp=1p))s0, =1k,
(1n
,
where p n =(pln"“’ p“;? ) is a k-variate vector of actual prices of brands within a product

category.

The form of price function can be any monotone decreasing function with the start point where the
sales level corresponds to that of the trend plus day-of-week effect. The larger the absolute value of
price function, the greater the potential of incremental sales becomes, In this paper, we used the

price functions of price-cuts level itself.

Display variable 1:
Display variables express display condition for each store by using dummy variables, The value is
zero if the display is ordinary or small-scale special display such as display at the central isle, and

one if large display on the flat shelf at the end of an isle.

u‘;',,“ =0 if ordinary or smail-scale special display

=1 if large-scale special display,
where i=1....,k,

Display variabile 2:



A close examination of sales data and display data revealed that there exists day-of-week effect of
display on sales. For example, a majority of data indicates that the incremental sales are the highest
on Sundays if large-scale special display exists. Further, if the same promotion continued, the effect

will be decreasing. Therefore, we introduced a transformation of original display data as follows:

uyt =0  if ordinary or small-scale special display (non-promotional)

=a/(a—1+ j) iflarge-scale special display (promotional)

where a>1 and i=1....,k and the value of j is determined as follows:

j=2 if the day is promotional Saturday just before the first Sunday
j=1 if the day is the first promotional Sunday
j=2 if the day is promotional Monday just after the first Sunday

j=8 if the day is the second promotional Sunday

Identification of the Model and Information Criterion: The time series model explained so far
can be expressed in the form of a linear state space model, which is consisted of system model and
observation model. The exact maximum likelihood estimation of the model and a prediction on the
dependent variable is effectively made by Kalman filter algorithm (for details, refer to [10]). The
best parametric model among alternatives determined by the maximum likelihood method was
chosen by the information criterion of AIC developed by Akaike {1]. A model with a smaller value

of AIC is determined as a better model.

3. Analyzed Data

The analyzed data contain brand sales and prices of one and a half years of daily aggregated data of
bottled Chinese Tea category in the period of 2000/1/2--2001/5/31 (N=516). Chinese Tea category
is not a staple food or drink. Therefore, a consumer would purchase a product of this category in a
whim, Figure 1 shows the actual scanner sales data analyzed in this research. The first to the fourth
graphs in the figure show movements of top four brands in the period. The last graph shows the
sum of the four brands. It shows a rare brand substitution occurred for this product category.

Actually, the variance of the total four brands is 607.9, is almost equal to the sum of variances of



four brands, 642.1, and the ratio is about 0.95. Therefore, we could
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Figure 1:
Foiir Brawds and the Suro of Daily Scancar Chinese Data
Wariancea for Four Braods and the Surn
(349.61; 3107, 238.545; 21.97; GO7 . BOGSY)

conclude that rare competitive effect exists. For any drink category, seasonality supposedly exists.
From the bottom graph of Figure 1, we may recognize seasonality, but it is not so obvious due to
the small number of spikes from baseline sales. In this study, brand is defined as brand-size and
sales quantity is defined as the unit of product purchased. The top five brands (B1 to B5) were
analyzed. The sales of the fifth brand are zero or just one digit number of sales in many days, so
that we can see this category is infrequently purchased. A state space model has sequential
estimation procedures and requires initial values of state mean and variance. We determined the
initial values in such a way that the likelihood is maximized in a model with trend component and
day-of-the-week component. The maximum likelihood estimates of parameters were obtained by a
quasi-Newton numerical optimization procedure based on Broyden-Fletcher-Goldfarb-Shanno

algorithm,

4. Analysis of Scanner Data

The following two kinds of models without decomposition into brand switching and category

expansion were applied to the data because there is only 5 % variation that can be accounted for as



brand switching variation and the rest is a category expansion:

Model TD ,

ynztn+dn+Wn:
Model TDX,

Yp=itntdptxptwy
The values of the log-likelihood, AIC, and the number of parameters on the analysis were
summarized in Table | where T, D, and Y "' denote trends, day-of-week variation, time-varying
explanatory variable component of price-cut, respectively. Similatty, X Tand X denote
explanatory variable component of the first type of display and the second type of display,
respectively. Since there were many cases that many zero value observations were recognized for

B3 and B4, the trends of these two brands were fixed as constant.

Tuhle 1:
Losgr-Dleetibioesd maef ARC For snpdl el

Wlaredis| Treg AIC Mool
_ Ilkl?_lib.m:!d ) Fakwioelers
Madal (11 B 14 T T T T i
Badet ) SHTET AMME M)
Madu) P71, 5 SIHHERD LG L1
Rkl o0 X #¥5 TG A4 B {id
Sladel (113, X #55 B AN E VI NS S RN VL (1)
Blaedot (1.0, 3Py SPRITTAY 28T At
adel CI1LK T 10688 LLET.G 11K
AT O A . ekl ) e S P 2 TR o L]
hurdel U100, 955 SPMOEET A4RARA fi
Bladel 210X SHGLE 246 |
Madat 100, § 74T | B N X T T
Bl £ 00, & 54 AWTRE AT LT
Mladel 3T 1 & P JEWBLE COCMETEM G0
Faded 1 11,544 SPHTE 24T 14
Bl (700,40 P SIMsRE QLSRG T

Bimdel @700, A ekt IMOTRE JLBRE T 62

Table 1 showed the results on various models with the combination of trend component, cyclical
component, and explanatory variables. The AIC value for Model TW (24263.4) was much smaller
than that for Model T (32861.2), so that we confirmed that the existence of the day-of-week effect.

Each explanatory variable was added to the model of trend component and the day-of-week effect



component, The table shows that the inclusion of price-cuts variable of B3 has the biggest effects to
the sales among explanatory variables, reducing the value of A1C by 51.4. The variable that causes
the second largest decline in AIC value, was the transformed variables of display for B, reducing
the AIC value from 24212.0 to 24183.6 by 28.4 points. The inclusion of the transformed variables
of display for B2 reduced the log-likelihood, but does not change the value of AIC, We decided to
include it in the model. The results on this category showed that the transformed variables which
include day-of-week effect were much better than the original display dummy variable. The other

explanatory variables did not contribute to the reduction of the AIC value.

Figure 1 shows that only brand B1 and B3 has many dominant spikes in the sales, Figure 2 and
Figure 3 are the graph of observations against fitied values (Fitted trends + Day-of-week Effect +
Display Effect (transformed)) of Bl and B3, respectively. The tall spikes of incremental sales were
caused by display variable, whose response levels are different among days within a week. The
sales level, which recorded the highest incremental sales on Sunday, shows obvious and sharp
reduction on Saturday in Figure 2 and Figure 3. Further, we could recognize from these Figures that

the display effect with a gradual day-of-week decay appeared to produce a reasonable model.
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For infrequently purchased categories characterized by sharp incremental sales, it appeared to be
important to keep track with correct data of display because it would cause the largest variation in

daily sales data,

Conclusion

On the analysis of a bottled Chinese Tea Category, we could successfully decompose scanner sales
into component of baseline (trend), day-of-week effect, and two kinds of sales promotion effects.
With respect to infrequently purchased category of Chinese Tea, we could confirm that our
framework for analysis on daily scanner data is valid, i.e., to consider (a) trends, (b)day-of-week
variation, (c)explanatory variables such as price-cuts and display, and (d)brand switch and category
expansion as factors for sales variation. However, for a bottled Chinese Tea Category, the last factor
does not have a large impact because the sales movements of brands are mostly independent. On
the other hand, the effect of display on daily scanner sales is so large that it is very important to
gather correct information on display and to model the display effect appropriately. In this paper,
we devised a way to reflect gradual day-of-week decay on display effect. In this way, our
smoothness priors state space approach allows a researcher to fit a very flexible and useful

framework of models to represent daily scanner sales movements.
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