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Smaller and faster are the key concepts in the progress of current nanoscience and 

technology. Thus, a method of exploring the transient carrier dynamics in 

organized nanostructures with pinpoint accuracy is eagerly desired. Real space 

imaging of nanoscale transient carrier dynamics with a wide range of lifetimes has 

been realized by pulse-laser-combined scanning tunneling microscopy (STM) with 

a noble delay time modulation method developed by a pulse-picking technique. A 

nonequilibrium carrier distribution is generated with ultrashort laser pulses and 

its relaxation processes are observed by STM on the basis of a pump-probe 

technique. The dynamics of the excited carriers modulated by the gap states 

associated with Co nanoparticle/GaAs has been directly analyzed and imaged in 

real space for the first time. 
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     Understanding and control of the quantum dynamics, such as carrier transition 

and transport in nanoscale structures, are the key factors for continuing the advancement 

of nanoscale science and technology. However, with the miniaturization of functional 

devices consisting of composite materials, carrier dynamics, which has been analyzed 

by techniques providing spatially and/or temporally averaged information, does not 

provide a sufficient description for the analysis and designing of macroscopic functions. 

For example, atomic-scale defects have significantly changed the entire approach: 

defects, which were once considered as a problem to be avoided, are actively designed 

and controlled to realize desired functions [1]. The fluctuation in the distribution of 

dopant materials in the nanostructural components governs the characteristic properties 

of macroscopic functions of the total system. Therefore, the evaluation of the transient 

carrier dynamics in nanoscale potential landscapes of composite materials over a wide 

range of time scales is of great importance. 

Currently, the development of ultrashort-pulse laser technology enables us to 

observe ultrafast dynamics in the femtosecond range. A prominent method is optical 

pump probe reflectivity (OPPR) measurement [2, 3]. Its spatial resolution, however, is 

generally limited by wavelength, and information is inevitably averaged over the 

nanoscale components, despite that they are organized with the greatest care to produce 

desired functions. In contrast, the real space observation of atomic-scale structures by 

scanning tunneling microscopy (STM) has lifted the veil from various longstanding 

problems and is extending the frontiers of science and technology [4-9]. However, since 

the temporal resolution of STM is limited to less than 100 kHz because of the circuit 

bandwidth, the target carrier dynamics has been beyond its field of vision. It has been 

one of the most challenging goals to combine STM with ultrashort-pulse laser 
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technology since the invention of STM.  

Hamers et al. determined the recombination lifetime of photoexcited carriers in Si, 

in their pioneering work, by analyzing the observed surface photovoltage (SPV) by 

simulation [10], and a method that involves the combined use of an optical pulse pair 

and STM was proposed as photoconductive-gate STM (PG-STM) [11-18]. However, 

the spatial and temporal resolutions of the former method were limited to the 1 µm 

scale and laser-pulse repetition rate, respectively, and the PG-STM probes dI/dV or the 

quantity mediating the signal rather than the transient effect itself [18]. With the 

shaken-pulse-pair-excited STM (SPPX-STM) [19, 20], which was designed to detect a 

weak tunneling current of the transient signal under optical excitation, the time-resolved 

tunneling current in the subpicosecond range was successfully probed; however, its 

temporal range was very narrow and it was still difficult to reliably measure a very 

weak time-resolved STM signal in a short period of time, preventing the microscopy 

technique from revealing transient carrier dynamics in nanostructures consisting of 

composite materials with a wide variety of lifetimes. The long measurement time 

interferes the imaging of dynamics.  

Here, we demonstrate a new methodology, which simultaneously realizes STM 

spatial resolution and the temporal resolution of the optical pump-probe technique, 

enabling the visualization of transient carrier dynamics in nanometer-scale structures 

with a wide variety of lifetimes. As an example, the first direct analysis of the hole 

capture rate via a gap state in a Co nanoparticle/GaAs structure is shown. The pinpoint 

probing and real space imaging of the carrier dynamics modulated by nanometer-scale 

structures have been realized. 

Figure 1 shows a schematic of the microscopy technique that we developed and its 
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basic mechanism for probing. The surface of a sample beneath the STM tip is 

illuminated with a sequence of paired laser pulses with a certain delay time td, and the 

tunneling current I is measured as a function of td (Fig. 1a). In principle, we can obtain 

the temporal resolution of OPPR together with the spatial resolution of STM (see 

Mechanism in supplementary information).  

To realize the desired microscopy, we developed the method of discrete and large 

modulation of delay time by using a pulse-picking technique (Fig. 1b, see Method), 

which, for the first time, has allowed the visualization of transient carrier dynamics in 

the nanometer-scale structures over a wide range of time scales. With the digital 

modulation of dt  between 1
dt  and 2

dt , the in-phase component obtained by the 

lock-in detection of the tunneling current gives 

€ 

ΔI(td
1,td

2) ≡ I(td
1) − I(td

2). As 2
dt  is 

set to a value larger than the relaxation time of the probed dynamics, 

€ 

ΔI(td
1,td

2) can be 

approximated as 

€ 

ΔI(td
1) ≡ I(td

1) − I(∞) , where I(∞) is the tunneling current for a delay 

time that is sufficiently long for the excited state to be relaxed. Since a large delay time 

to satisfy this condition, 2
dt = ∞, can be realized with the new microscopic technique, 

€ 

ΔI(td
1) is accurately obtained through the lock-in detection of I by sweeping 1

dt . In 

addition, since the modulation can be performed at a high frequency (1 kHz in our case), 

the measurement is less affected by the low-frequency fluctuations in laser intensity and 

tunneling current. Accordingly, this method reduces the measurement time (1/10000 for 

our system) and hence enables the spatial mapping of time-resolved signals that has 

been desired for a long time. 

Figure 2 shows the sample spectra obtained by this microscopic technique. For the 
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first time, the measurement of carrier dynamics over a wide range of time scales using 

one microscope has been achieved. The low-temperature-grown GaAs (LT-GaAs) 

region formed on a GaAs substrate exhibits an ultrafast decay component τb with a time 

constant of 2.4 ps, while the GaAs substrate region exhibits a time constant of 4.8 ns. 

These values are consistent with the recombination lifetimes determined from OPPR 

measurements, namely, 1.5 ps and 3.3 ns for the LT-GaAs and GaAs samples, 

respectively. Such agreement has been confirmed for various semiconductors with a 

wide range of lifetimes (Fig. S1 in Supplementary Information). The time resolution of 

this microscopy is limited only by the optical pulse width, which is 140 fs in the present 

case (“time resolution” in Supplementary Information). With this microscopy technique, 

probing of transient carrier dynamics in nanostructures consisting of composite 

materials with a wide range of lifetimes has been realized (Fig. S3). 

When the delay time is changed over a wider time scale range, )( dtIΔ  shows a 

slower component with a time constant of about 100 ns for both GaAs and LT-GaAs 

regions, as a typical spectrum obtained for GaAs is shown in Fig. 3a. In STM on a 

semiconductor, a nanoscale metal-insulator-semiconductor (MIS) junction is formed by 

the STM tip, tunneling gap, and sample. Thus, when a reverse bias voltage is applied to 

the junction, tip-induced band bending (TIBB) occurs in the surface region owing to the 

leakage of the electric field into the sample [9,18,21]. With optical illumination, the 

redistribution of photocarriers reduces the electric field and changes the surface 

potential, which is called SPV, and increases the effective bias voltage applied to the 

tunnel junction. Consequently, the illumination increases the raw tunneling current I* 

(Fig. 1c). The excited state subsequently relaxes to the original state through two 

processes. One is the decay of the photocarriers on the bulk side (bulk-side decay) via 
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recombination, drift and diffusion. The other is the decay of the carriers trapped at the 

surface (surface-side decay) via recombination and thermionic emission. Because of the 

lack of counterpart carriers near the surface, the surface-side decay constant is larger 

than the bulk-side decay constant.  

The bulk-side decay is probed through the mechanism of absorption bleaching, 

which is a typical mechanism observed in the OPPR measurement. When the carriers 

excited by the first optical pulse remain in the excited state, the absorption of the second 

optical pulse is suppressed. In such a case, the second current pulse induced in I* 

decreases and depends on td, reflecting the decay of the excited carriers after the 

first-pulse excitation (Figs. 1c-(ii) and 1c-(iii)). On the other hand, the surface-side 

decay is probed through the mechanism related to the SPV. If the surface carriers 

remain when the second optical pulse arrives, the electric field in the surface region 

remains low. Therefore, the excited photocarriers are less efficiently trapped at the 

surface, leading to a decrease in the SPV caused by the second optical pulse and in the 

height of the second current pulse in I*. Accordingly, )( dtIΔ  is a measure of the 

surface-side carrier density at the delay time td as well as the bulk-side carrier density.  

The decay constants for both components are derived from the fitting of ΔI(td) by 

a double exponential function; the small time constant τb is attributed to the bulk-side 

decay (Fig. 2 and Fig. S1), and the large time constant τS, to the surface-side decay (Fig. 

3a). Since the recombination at the surface is enhanced for a large set-point tunneling 

current It, τs decreases as It increases. In contrast, the bulk-side carrier decay is not 

affected by the magnitude of It. Therefore, τb is independent of It. These expectations 

were confirmed, as shown in Fig. 3b; τs decreases with It, while τb remains almost 

constant. The linear relationship between signal amplitude and set-point tunneling 
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current (Fig. 3c) indicates that the time-resolved signal does not originate, for example, 

from photoelectrons and displacement current but from tunneling current (see 

“Mechanism” in the supplementary information).  

Ultrafast carrier dynamics, which has been obtained only by optical methods using 

ultrashort-laser techniques, can be imaged in real space by STM. With this microscopic 

technique, both the recombination process of excited carriers and carrier dynamics, such 

as the diffusion and drift of carriers governed by local potential landscapes, can be 

probed through τb, which will be discussed elsewhere. Furthermore, since surface-side 

decay is affected, for example, by surface states and the probe is tunnel current with 

atomic-scale sensitivity, τS provides information about the modulation of carrier 

dynamics by a local atomic-level defect. 

   In the two decay components appearing in ΔI(td), the faster one is considered to 

reflect the decay of the bulk-side carriers, which are probed on the basis of absorption 

bleaching. This is well supported by fact that τb is consistent with the decay time 

obtained by the OPPR measurement for various samples (Fig. S1). On the other hand, 

the slower decay component (τs) has a complex dependence on sample bias voltage and 

tunneling current, which is consistent with the characteristic of surface-side carrier 

decay. Next, we show the results obtained for a Co/GaAs system, which provides more 

specific support for our mechanism, and this is the first demonstration that a meaningful 

physical quantity can be directly derived from the analysis of τs on the nanoscale. 

   If a deep level (or gap state) exists in a band gap, minority carriers are captured at 

the deep level with a high probability and then rapidly recombine with majority carriers. 

The modulation of carrier dynamics due to gap states significantly affects the properties 

of a device, and therefore a new method that enables the direct analysis of 
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gap-state-related processes at the nanoscale is strongly desired. As an example, we 

demonstrate the direct analysis of the hole capture rate via a Co-derived gap state. 

  Figure 4a shows an STM image of Co nanoparticles on an n-type GaAs surface,. Co 

particles grow in the Volmer-Weber mode [22] on GaAs, and their size is controllable. 

The nanoparticle is typically 2 nm in size (~400 atoms), which is sufficiently large to 

form a gap-state level [23 24]. The existence of the gap-state level was confirmed by the 

experimental results we obtained; the I-V curves measured under laser illumination 

show that no photocurrent flows at the GaAs site while a fairly high photocurrent flows 

at a Co site at a low bias voltage (Vs ~ 0.1 V). 

  Figures 4b and 4c show the ΔI(td) curves measured at positions corresponding to bare 

GaAs and Co, respectively. The peak ratio of the bulk-side decay component to the 

surface-side decay component varies with the excitation intensity; the bulk-side decay 

diminishes as the excitation intensity increases. Here, we adjusted the excitation 

intensity to observe only surface-side decay. As expected, the decay constant at Co, 80 

ns, is shorter than that at the bare GaAs surface, 220 ns.  

 A depletion layer is formed beneath the tip because of TIBB (Fig. 1d) in addition to 

the band bending induced by the gap states in the present case. The existence of TIBB 

was confirmed by the fact that although a large tunneling current flows when the sample 

is illuminated, a negligibly small current was observed in the dark even at a bias voltage 

higher than the band gap energy. The holes (minority carriers) photogenerated in the 

depletion layer drift to the surface and are rapidly captured at the gap states. However, 

the electrons (majority carriers) are depleted near the surface, and therefore no 

counterpart carriers exist that recombine with the holes captured at the gap states. The 

carrier decay time is nevertheless measured to be much shorter at Co because the 
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electrons are provided from the STM tip to the Co state via tunneling.  

 This is confirmed by the dependence of carrier decay time at Co on tunneling 

current (Fig. 4e). The decay time markedly decreases as tunneling current increases. In 

addition, the decay time is almost constant (Tcap = 6.9 ns) above a threshold current Ic 

(140 pA). From the analysis below, the hole capture probability Ph was derived as Ph = 

1/Tcap = 1.5 x 108 [s-1].  

  The hole capture rate Jh is written as Jh = PhNh, where Ph is the probability per 

second that a hole in the depletion layer is captured at a gap state and Nh is the number 

of holes trapped at the surface after photoexcitation. The injection rate of electrons to a 

gap state Je is proportional to the tunneling current It: Je = It/e. Assuming that the rate of 

carrier recombination at the gap state is high [25], the recombination rate is equal to the 

lower rate, Jh or Je. Thus, the recombination rate is Je-limited when It is low, while it is 

Jh-limited and independent of It when It is high. In the Jh-limited regime, Jh varies with 

Nh, and the time evolution of Nh is written as, 

hhh
h NPJ

dt
dN

−=−= , )exp(0 tPNN hhh −= .  

Here, the hole decay rate is equal to Ph.  

  For Ic<It (Jh-limited regime), the gap state is filled with tunneling electrons, and 

even if Nh is large immediately after the photoexcitation, Jh<Je and the recombination 

rate is Ph, independent of It. Accordingly, the hole capture rate Ph can be directly derived 

from the decay time in this regime.  

  For It < Ic, on the other hand, Nh is large and Jh>Je immediately after the 

photoexcitation, and Nh initially linearly decays with time (A in Fig. 4f). Afterward, 

when Nh becomes small and Jh < Je, Nh starts to decay exponentially (B in Fig. 4f). Thus, 
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the time evolution of Nh is represented as a black line in Fig. 4f. Since the S/N ratio was 

not sufficient to distinguish the difference between linear and exponential decay, the fit 

to the data was carried out with a single exponential function. Therefore, the apparent 

decay time derived from the fitting should be smaller than Ph
-1, which was indeed 

observed as shown in Fig. 4e.  

  When It = Ic, Je is equal to Jh at the excitation time, this relation gives the number 

of holes Nh0 photogenerated in the depletion layer and trapped beneath the tip. From Fig. 

4e, Ic = 120 pA (Je = 7.5 x 108 s-1) and Nh0 is derived to be 5.0. This value is comparable 

to the number of charges N0 estimated to exist between a sphere of radius R and an 

infinite plane placed at a distance of 1 nm from the sample; N0 is 15.5 for R = 10 nm 

and 40.7 for R = 20 nm.  

  The mechanism described above is also confirmed by its dependence on the 

sample bias voltage Vs. For a high Vs, the tip Fermi level is higher than the conduction 

band minimum of the sample. Since the tunneling probability for an electron is higher 

when its energy is closer to the vacuum level, electrons directly tunnel to the 

conduction band (Fig. 4d). In this case, the accelerated recombination via the gap state 

is less probable. This expectation was experimentally confirmed. For Vs = 2.5 V (Fig. 

4g), the surface-side decay constant was 232 ns, comparable to that for the bare GaAs 

(Fig. 4b).  

  Next we show the spatial distribution of the surface-side decay of carriers (Fig. 5), 

which is the first demonstration of the real-space visualization of nanoscale carrier 

dynamics. The decay time is short directly above a Co dot and markedly increases when 

the tip is placed at a sub-nanometer distance away from it. This feature is consistent 

with the fact that the recombination is largely accelerated only when the tunneling 
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electrons are injected from the STM tip to the gap states formed by the Co dot.  

  Furthermore, the result shown in Fig. 5 confirms that the hole capture rate for each 

Co nanoparticle is distinguishable when the nanoparticles are at leaset 1nm apart. 

Accordingly, we measured Tcap for Co nanoparticles with different sizes (Fig. 5d). As 

the Co base area (S) increases, the capture probability is expected to increase and thus 

Tcap decreases, which corresponds well to the obtained result shown in Fig. 5d.  

    The new microscopy method has enabled the measurement of the carrier capture 

rate at a surface state and visualization of nanoscale carrier dynamics in real space. The 

solid line in Fig. 5d is the fit to the data with the simplified function Tcap~1/S [26]. The 

discrepancy in the fitting is considered to be due to a use of simplified model. Although 

further analysis is required, it is of great significance that our new microscopic 

technique provides data that can be used to discuss the dynamics in nanosystems. 

As the device size deceases, such nanoscale modifications of carrier dynamics 

strongly affects the macroscopic device properties, and hence, the urgent task is to 

understand and control the correlation between the structural fluctuation and carrier 

dynamics.  

By combining advanced ultrashort-pulse laser technology with STM, we have 

developed a new microscopy technique that visualizes the carrier dynamics in 

nanostructures with a wide range of lifetimes. We have visualized a carrier 

recombination process as an example, but other dynamical processes, such as carrier 

drift and diffusion, can also be imaged, making SPPX-STM applicable to the analysis of 

various composite materials in future devices. SPPX-STM is also applicable to systems 

in which the response of the in tunneling current has a nonlinear dependence on optical 

intensity. Detailed analysis of the mechanism is necessary for each dynamic property. 
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Tip effect on measurement must be included in the analysis. With the use of 

selected-wavelength and circularly polarized illumination, quantum transitions 

including excited and/or spin states may be included in probing processes. The direct 

observation of such dynamics is expected to enable further advances in nanoscale 

science and technology.   
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Method  

  As shown in Fig. 1b, pulse trains were generated by two synchronized Ti:sapphire lasers 

(Mira and Chameleon, Coherent Inc.) at a repetition rate of 90 MHz with a pulse width of 

140 fs. The delay time between the two pulse trains could be continuously varied from zero to 

the pulse interval (~11 ns) by the synchronizing circuit (Synchrolock, Coherent Inc.) with a time 

jitter of 600 fs. Each train was guided to a pulse picker, which consisted of an ultrafast Pockels 

cell (product, vendor) and polarizers and is controlled by a homemade timing generator. The 

pulse picker selectively transmitted one pulse out of typically every 90 pulses, resulting in a 

pulse train with a reduced repetition rate of fp (typically 1 MHz), while reducing the intensity of 

other pulses by a factor of 300. When the lifetime to be measured is longer than 0.5 µ s (= fp /2), 

fp is set to be lower than 1 MHz for optimizing measurement in accordance with the lifetime. By 

changing the relative timing of picking the pulses, an additional longer delay time was 

generated, which could be varied in multiples of the original pulse interval (~11 ns). Combining 

the short delay time generated by the synchronizing circuit and the longer delay time generated 

by the pulse pickers, the total delay time could be adjusted continuously from zero to as large 

value as required. Note that the reduced repetition rate can be selected to be as low as needed, 

which reduces the average laser intensity. Then, the two pulse trains were arranged onto the 

same light axis and guided into the STM (VT-STM, Omicron NanoTechnology GmbH). The light 

spot, with a diameter of less than 10 µm and an average intensity of up to several milliwatts, 

was focused on a sample surface below the STM tip using two lenses placed outside the 

ultra-high vacuum chamber (base pressure <1x10-8 Pa). The light spot was precisely positioned 

to maximize the SPV effect appearing in the tunnel current. All experiments discussed in this 

manuscript were carried out at room temperature. 

  The delay time modulation was achieved by changing the pulse-pick timing periodically at a 
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frequency of ~1 kHz. Namely, in the anterior half of the period, the picking is carried out at 

almost the same timing for the pump and probe pulse trains, while, in the posterior half of the 

period, the picking is carried out at a different by 180 degree. As a result, the delay time is 

modulated in a rectangular form between a relatively small value td (1 ps ~ 1 µs) and a very 

large value (0.5 µs-several µs), by which the ultrafast phenomena completely reached the steady 

state. Synchronously with the delay time modulation, the tunnel current signal from the STM 

preamplifier with a bandwidth of ~10 kHz is phase-sensitively detected by a lock-in amplifier. 

By virtue of the rectangular modulation of the delay time, the output of the lock-in amplifier is 

proportional to the difference between the tunnel current at the two delay times. In particular, 

when the larger delay time is set to be sufficiently long for the transient phenomena to reach the 

steady state, the signal becomes proportional to )()( ∞−=Δ ItII d . This novel technique using 

pulse pickers to modulate the delay time in a rectangular form with a large amplitude and a high 

modulation frequency is essential for maximizing the S/N ratio to achieve nanometer spatial 

resolution simultaneously with sub-picosecond time resolution. 
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Figure captions 

 

Figure 1 Schematic illustrations of the microscopy system and its probe 

mechanism. a-b, Optical pulses from the two synchronized Ti-sapphire oscillators are 

selectively transmitted using pulse pickers and coaxially aligned to produce a sequence 

of paired pulses with a certain delay time, td. Pulse pairs with a central wavelength of 

800 nm and an average intensity of 1 mW were focused to less than 10 μm and tunnel 

current was measured. c, Relationship between raw tunneling current I* and delay time 

td. d, Measured tunneling current I as a function of delay time, where delay times of (i), 

(ii) and (iii) correspond to those of (i), (ii) and (iii) in c.  

 

Figure 2 Wide range of time scales measured using the developed microscopy. 

)( dtIΔ  vs td curves obtained for a LT-GaAs, b GaNAs, c undoped GaAs, and d 

hydrogen-terminated Si(111) (n-type, 0.5 Ωcm). The decay constants derived by fitting 

are a 2.4 ps, b 440 ps, c 4.8 ns, and d 0.87 μs. See “Fitting procedures” in 

Supplementary Information for more details.  

 

Figure 3 Bulk-side and surface-side carrier decays reflected in ΔI(td). a, Typical 

spectrum obtained for GaAs over a wider time scale range (Vs = 5.5 V, It = 40 pA). The 

components with small and large time constants τb and τb represent the bulk-side and 

surface-side decays, respectively. b and c, Dependence of the decay constants on 

set-point tunneling current It (Vs = 5 V). 

 

Figure 4 Carrier recombination via Co nanoparticle/GaAs gap states. a, STM 
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image of Co nanoparticles on a GaAs(110) surface. b and c, SPPX signals measured 

above bare GaAs and a Co particle. d, Schematic illustrations of surface-side 

recombination. e, Tunneling current dependence of carrier decay time at Co (Vs = 2 V). 

f, Two decay modes when It < Ic. g, SPPX-STM signal at a high bias voltage. 

 

Figure 5	
  Real-space imaging of decay time. STM image a and 2D mapping of 

time-resolved signal b obtained for Co nanodot/GaAs(110) system. c, Superimposed 

display of a and b. d, Cross section along line in b. Showing size dependence of hole 

capture rate. 
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