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Abstract. We investigate the short-distance behavior of three-nucleon forces
(3NF) defined through the Nambu–Bethe–Salpeter (NBS) wave functions using
the operator product expansion and calculating anomalous dimensions of nine-
quark operators in perturbative quantum chromodynamics (QCD). As in the case
of NN forces considered previously, we show that 3NF have repulsions at short
distance at one-loop, which becomes exact in the short-distance limit thanks to
the asymptotic freedom of QCD. Moreover, these behaviors are universal in the
sense that they do not depend on the energy of the NBS wave function for three
nucleons.
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1. Introduction

Realistic nuclear potentials between two nucleons (2N), determined precisely from 2N
scattering data together with the deuteron binding energy, have often been used to study nuclear
many-body problems. These two-nucleon forces (2NF), however, generally underestimate the
experimental binding energies of light nuclei [1, 2] and this fact indicates the necessity of
taking into account three-nucleon forces (3NF). In addition, an indication of 3NF is observed
in high-precision deuteron–proton elastic scattering data at intermediate energies [3–5]. Various
signatures of 3NF in experimental/theoretical studies are reviewed in [6] (the role of 3NF in the
context of low-momentum nuclear forces, see Bogner et al [6]).

The 3NF may also play an important role for various phenomena in nuclear physics and
astrophysics, which include (i) the backward scattering cross sections in nucleus–nucleus elastic
scattering [7], (ii) the anomaly in the oxygen isotopes near the neutron drip-line [8] and (iii) the
nuclear equation of state at high density relevant to the physics of neutron stars [9]. Universal
short-distance repulsion for three baryons (nucleons and hyperons) is also suggested to explain
the observed maximum mass of neutron stars [10].

Despite its phenomenological importance, a microscopic understanding of 3NF is
still limited, due to difficulties in studying 3NF experimentally. Pioneered by Fujita and
Miyazawa [11], the long-range part of 3NF has been modeled by two-pion exchange [12], which
is known to be attractive at long distance. In addition, a repulsive component of 3NF at short
distance is introduced in a purely phenomenological way [13].

To go beyond phenomenology, it is most desirable to determine 3NF directly from
the fundamental degrees of freedom, the quarks and the gluons, on the basis of quantum
chromodynamics (QCD). Recently, the first investigation of this kind was attempted using lattice
QCD simulations, where 3NF have been extracted from the Nambu–Bethe–Salpeter (NBS)
wave function for a specific alignment of three nucleons [14–16]. The method used there had
been previously employed to extract nucleon–nucleon potentials (i.e. 2NF) [17–20] as follows.
The NBS wave function for two nucleons is defined by

ϕE(Er)= 〈0|N ( Ex + Er , 0)N ( Ex, 0)|2N,W 〉, (1)

New Journal of Physics 14 (2012) 043046 (http://www.njp.org/)

http://www.njp.org/


3

where |2N,W 〉 is a QCD eigenstate with energy W = 2
√

m2
N + k2 with mN being the nucleon

mass, E = k2/mN represents the non-relativistic kinetic energy and N is a nucleon interpolating
operator made of three quarks such as N (x)= εabcqa(x)qb(x)qc(x). The non-local but energy-
independent potential (more precisely the half off-shell T -matrix) is extracted from this NBS
wave function as

(E − H0)ϕE(Er)=

∫
U (Er , Er ′)ϕE( Er ′)d3r ′, (2)

where H0 = −∇
2/m N . The non-local potential can be expanded in terms of the velocity

(derivative) with local function as

U (Er , Er ′)= V (Er , E∇)δ3(Er − Er ′), (3)

which becomes

V (Er , E∇)= V0(r)+ Vσ (r) Eσ 1 · Eσ 2 + VT (r)S12 + VLS(r) EL · ES + O(∇2) (4)

at the lowest few orders, where r = |Er |, Eσ i represents the Pauli matrices acting on the spin index
of the i th nucleon, ES = ( Eσ 1 + Eσ 2)/2 is the total spin, EL = Er × Ep is the angular momentum and

S12 = 3
(Er · Eσ 1)(Er · Eσ 2)

r 2
− Eσ 1 · Eσ 2 (5)

is the tensor operator. This method has been shown to work well. The central potentials
at leading order in the expansion have qualitatively reproduced the common features of
phenomenological 2N potentials: the force is attractive at medium to long distance, while it
has a characteristic repulsive core at short distance. See also [21, 22] for a summary of the
results and recent developments.

The present authors have investigated short-distance behaviors of the 2NF defined in the
framework mentioned above using the operator product expansion (OPE) and perturbation
theory thanks to asymptotic freedom (AF) of QCD [23–25] . (See also a similar attempt for
the solvable models in two dimensions [26].) The behavior of the NBS wave function ϕE(Er) at
short distance (r → 0) is encoded in the OPE of the 2N operators:

N ( Ex/2, 0) N (−Ex/2, 0)≈

∑
k

Dk( Ex)Ok(E0, 0), (6)

where {Ok} is a set of local color singlet six-quark operators with 2N quantum numbers.
Asymptotically, the Ex-dependence and energy dependence of the wave function are factorized
into

ϕE( Ex)≈

∑
k

Dk( Ex)〈0|Ok(E0, 0)|2N,W 〉. (7)

Standard renormalization group (RG) analysis gives [24] the leading short-distance behavior of
the OPE coefficient function as

Dk( Ex)≈

(
ln

r0

r

)νk

ck, (8)

where νk is related to the one-loop coefficient of the anomalous dimension of the operator Ok ,
ck is the tree-level contribution of Dk(E0) and finally r0 is some typical non-perturbative QCD
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scale. Assuming that its matrix element does not vanish, the operator with largest RG power νk

dominates the wave function (7) at short distances. We denote the largest power by ν1 and the
second largest one by ν2.

If ν1 is nonzero, this leads to the leading asymptotics of the s-wave potential of the form

V (r)≈ −
ν1

r 2
(
ln r0

r

) , (9)

which is attractive for ν1 > 0 and repulsive for ν1 < 0.
If ν1 = 0, the situation is more complicated. The relative sign of the ratio R between the

leading and the subleading contributions becomes important and we find that

V (r)≈ −R
ν2

r 2
(
ln r0

r

)1−ν2
. (10)

If R is positive, the potential is repulsive, while it is attractive for negative R. A system of 2N
corresponds to this degenerate case. Unfortunately, in this case R depends on the energy E .
In [24] it is argued that in the relevant energy range the relative coefficient R is positive, so that
the short-distance limit of the nucleon potential is repulsive.

In this paper, we extend the above OPE analysis to the 3NF, in order to investigate the
short-distance behavior of the 3NF in the same scheme as used in lattice QCD [14–16]. The
corresponding equal time NBS wave function for three nucleons is given by

ψ3N (Er , Eρ)= 〈0|N ( Ex1, 0)N ( Ex2, 0)N ( Ex3, 0)|E3N 〉, (11)

where E3N and |E3N 〉 denote the energy and the 3N state. We introduce the Jacobi coordinates
ER = ( Ex1 + Ex2 + Ex3)/3, Er = ( Ex1 − Ex2)/2, Eρ = ( Ex3 − ( Ex1 + Ex2)/2)/

√
3. From this wave function,

the three nucleon potential is defined by−
1

2µr
∇

2
r −

1

2µρ
∇

2
ρ +

∑
i< j

V2N (Er i j)+ V3N F(Er , Eρ)

ψ3N (Er , Eρ)= E3Nψ3N (Er , Eρ), (12)

where V2N (Er i j) with Er i j = Ex i − Ex j denotes 2NF between (i, j)-pair, V3N F(Er , Eρ) the 3NF and
µr = µρ = m N/2 the reduced masses.

In section 2, we start with RG considerations and OPE, which are relevant for 3NF. The
anomalous dimensions of nine-quark operators are computed in section 3. Finally, we discuss
the short-distance behavior of 3NF in section 4. For the convenience of the reader we give a
brief summary of our results here. The OPE analysis shows that the 3N central potential at short
distance behaves as

V3N F(Er , Eρ)'
1

m N

−4β tree
A

s2(− log(3s))
, (13)

as s =
√
(Er)2 + ( Eρ)2 → 0, where β tree

A is given by

β tree
A = −14/(33 − 2N f ), (14)

with N f being the number of dynamical quarks, and 3 is the perturbative 3-parameter in the
MS scheme [24].

Unlike the 2NF where the situation was not completely determined by PT alone, it is shown
that the 3N potential always has a repulsive core. Furthermore, it is universal in the sense that
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it does not depend on the details of the 3N state used to define the NBS wave function such as
the energy of the state. This theoretical determination of the asymptotic behavior of the NBS
3NF at short distance not only provides a good boundary condition for the 3NF computed at all
lengths from lattice QCD [14–16] in the near future, but also gives a deeper understanding of
the short-distance repulsion of the 3NF.

2. Renormalization group (RG) analysis and operator product expansion for
three-nucleon forces (3NF)

2.1. Operator product expansion (OPE) and RG equations

Let us recall the OPE for ρ, r → 04:

O1(Er − Eρ/
√

3)O2(−Er − Eρ/
√

3)O3(2 Eρ/
√

3)' DB(Er , Eρ) OB(0). (15)

We will need it in the special case when the operators O1, O2, O3 on the left-hand side are
nucleon operators and the set of operators OB on the right-hand side are local nine-quark
operators of engineering dimension 27/2 and higher. All operators in (15) are renormalized
ones. As is well known, the nucleon operators are renormalized diagonally and we recall the
perturbative expansion of the corresponding RG gamma function:

γN (g)= γ
(1)
N g2 + O(g4), γ

(1)
N = 24d, d =

1

32Ncπ2
=

1

96π 2
. (16)

Our subsequent analysis, which is completely analogous to our discussion in [24], is based
on the RG equations satisfied by the coefficient functions:

DDB(g, µ, Er , Eρ)+ DA(g, µ, Er , Eρ) γ̃AB(g)= 0, (17)

where the RG operator, expressing the independence of physics from the renormalization scale
parameter µ, is

D = µ
∂

∂µ
+β(g)

∂

∂g
(18)

with the beta function

β(g)= −β0g3 + O(g5), β0 =
1

16π 2

{
11

3
Nc −

2

3
N f

}
. (19)

In (17) γ̃AB is the effective gamma function matrix

γ̃AB(g)= γAB(g)−
[
3γN (g)

]
δAB, (20)

where

γAB(g)= γ
(1)
AB g2 + O(g4) (21)

is the mixing matrix of nine-quark operators.

4 Summation of repeated indices is assumed throughout this paper unless indicated otherwise.
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2.2. Perturbative solution to the RG equation and factorization of OPE

We want to solve the vector partial differential equation (17), and for this purpose it is useful to
introduce ÛAB(g), the solution to the matrix ordinary differential equation

β(g)
d

dg
ÛAB(g)= γ̃AC(g) ÛC B(g) (22)

and its matrix inverse UAB(g). We will assume that the coefficient has the perturbative expansion

DA(g, µ, Er , Eρ)=

∑
α1+α2=d̃A

rα1ρα2 Dα1α2
A (g;µs, ω,�r , �ρ)

=

∑
α1+α2=d̃A

rα1ρα2
[
Dα1α2

A;0 + g2 Dα1α2
A;1 (µs, ω,�r , �ρ)+ O(g4)

]
, (23)

where s2
= r 2 + ρ2 and tanω = ρ/r with r = |Er |, ρ = | Eρ|, and �r , �ρ are solid angles of the

vectors Er and Eρ, respectively. Here d̃A = dA − (d1 + d2 + d3) is the dimension of the coefficient
function. Note that in the massless theory, operators of different dimensions do not mix. In the
full theory quark mass terms are also present, but they correspond to higher powers in r and ρ
and can therefore be neglected.

We will also assume that the basis of operators has been chosen such that the one-loop
mixing matrix is diagonal:

γ̃AB(g)= 2β0 βA g2 δAB + O(g4). (24)

In such a basis the solution of (22) in perturbation theory takes the form

ÛAB(g)= {δAB + RAB(g)} g−2βB , (25)

where RAB(g)= O(g2), with possible multiplicative log g2 factors, depending on the details of
the spectrum of one-loop eigenvalues βA.

Having solved (22) we can write down the most general solution of (17):

Dα1α2
B (g;µs, ω,�r , �ρ)= Fα1α2

A (3s, ω,�r , �ρ)UAB(g). (26)

Here the vector Fα1α2
A is RG-invariant. Introducing the running coupling ḡ by the usual definition

ln
3

µ
=

∫ g

ḡ

dx

β(x)
, (27)

Fα1α2
B can be rewritten as

Fα1α2
B (3s, ω,�r , �ρ)= Dα1α2

A (ḡ; 1, ω,�r , �ρ) ÛAB(ḡ). (28)

Since, because of AF, for s → 0 also ḡ → 0 as

ḡ2
≈ −

1

2β0 ln(3s)
, (29)

Fα1α2
B can be calculated perturbatively using (23) and (25).
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Putting everything together, we find that the right-hand side of the OPE (15) can be
rewritten as

O1(Er − Eρ/
√

3)O2(−Er − Eρ/
√

3)O3(2 Eρ/
√

3)'

∑
α1+α2=d̃B

rα1 ρα2 Fα1α2
B (3s, ω,�r , �ρ) ÕB(0),

(30)

where

ÕB = UBC(g) OC . (31)

There is a factorization of the operator product into perturbative and non-perturbative quantities:
Fα1α2

B (3s, ω,�r , �ρ) is perturbative and calculable (for s → 0) thanks to AF, whereas the
matrix elements of ÕB are non-perturbative (but s-independent). Note that dC = dB in (31).

2.3. Three-nucleon forces from the OPE

Using the results in the previous subsection, the NBS wave function for 3N can be written at
short distance as

ψ3N (Er , Eρ)'

∑
A,B

∑
α1+α2=d̃A

rα1ρα2 Dα1α2
A (ḡ, 1, ω,�r , �ρ)ÛAB(ḡ)〈0|ÕB(0)|E3N 〉.

Since an rα1ρα2 term produces angular momenta l1 6 α1 and l2 6 α2, we can write

Dα1α2
A (ḡ, 1, ω,�r , �ρ)'

∑
m1m2

Dα1m1α2m2
A (ḡ, 1, ω)Yα1m1(�r)Yα2m2(�ρ), (32)

up to less singular terms at short distances. Then the sum of 2N and 3NF potentials V2N+3N F is
extracted as

V2N+3N F(Er , Eρ)≡

∑
i< j

V2N (Er i j)+ V3N F(Er , Eρ)

= E3N +
1

m N

(∇2
r + ∇

2
ρ)ψ3N (Er , Eρ)

ψ3N (Er , Eρ)
, (33)

where

∇
2
r =

1

r 2

∂

∂r
r 2 ∂

∂r
−

L̂2
r

r 2
≡ d2

r −
L̂2

r

r 2
, ∇

2
ρ =

1

ρ2

∂

∂ρ
ρ2 ∂

∂ρ
−

L̂2
ρ

ρ2
≡ d2

ρ −
L̂2
ρ

ρ2
.

Since

∇
2
r r lYlm(�r)= ∇

2
ρρ

lYlm(�ρ)= 0, (34)

we have

(∇2
r + ∇

2
ρ)ψ3N (Er , Eρ)'

∑
AB

∑
α1+α2=d̃A

rα1Yα1m1(�r)ρ
α2Yα2m2(�ρ)

× 〈0|ŌB(0)|E3N 〉(d2
r + d2

ρ)
[

Dα1m1α2m2
A (ḡ, 1, ω)ÛAB(ḡ)

]
. (35)

Since terms with d̃A = 0 dominate in 93N at short distance, contributions from d̃A 6= 0 terms to
2N+3NF potentials are suppressed by an rα1ρα2 factor, so that they do not contribute at short
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distance. Therefore we consider terms with d̃A = 0 (α1 = α2 = 0) hereafter and do not write αi

dependence in coefficients. We then have

(∇2
r + ∇

2
ρ)ψ3N (Er , Eρ)'

∑
AB

〈0|ŌB(0)|E3N 〉 × (d2
r + d2

ρ)
[

DA(ḡ, 1, ω)ÛAB(ḡ)
]
. (36)

In terms of s and ω we write

d2
r + d2

ρ =
1

s5

∂

∂s
s5 ∂

∂s
+

1

s2

[
∂2

∂ω2
+ 4

cos(2ω)

sin(2ω)

∂

∂ω

]
, (37)

so that the ω-dependent part gives a 1/s2 contribution unless ω = 0, π/2, π, 3π/2, where either
r = 0 or ρ = 0. We assume r 6= 0 and ρ 6= 0 in our calculation. Since an ω dependence appears
only at one-loop or higher orders in DA, we can neglect it unless an operator OA which
appears at `A loop has large anomalous dimension such that βA − `A is larger than other βB

corresponding to operators OB appearing at tree level. As we will see later, such operators are
absent; it is then enough to consider the tree-level contribution in DA, so that ω-dependent terms
in DA can be neglected. The largest eigenvalue among operators appearing at tree level is thus
denoted by βA, which corresponds to ν1 discussed in the introduction for 2N forces.

We then obtain

(d2
r + d2

ρ)
[

DA(ḡ, 1, ω)ÛAB(ḡ)
]

' DA:0 (d
2
r + d2

ρ) ḡ−2βA ' DA:0
−4βA

s2(− log(3s))
(−2β0 log(3s))βA .

(38)

The NBS wave function is dominated by the term with largest βA. If we assume that βA is
nonzero, we finally obtain

V2N+3N F(Er , Eρ)'
1

m N

−4βA

s2(− log(3s))
. (39)

3. Anomalous dimensions for three nucleons (3N) at one-loop

3.1. OPE for 3N operators at tree level

The general form of a gauge invariant local three-quark operator is given by

B F
0 (x)≡ B f gh

αβγ (x)= εabcqa, f
α (x)qb,g

β (x)qc,h
γ (x), (40)

where α, β, γ are spinor, f, g, h are flavor and a, b, c are color indices of the (renormalized)
quark field q. The color index runs from 1 to Nc = 3, the spinor index from 1 to 4, and the flavor
index from 1 to Nf. Note that B f gh

αβγ is symmetric under any interchange of pairs of indices (e.g.

B f gh
αβγ = Bg f h

βαγ ) because the quark fields anticommute. For simplicity, we sometimes use notation
such as F = f gh and 0 = αβγ as indicated in (40).

The usual nucleon operator that is employed in lattice simulations is constructed from the
above operators as

B f
α (x)= (P+4)αα′ B f gh

α′βγ (Cγ5)βγ (iτ2)
gh, (41)

where P+4 = (1 + γ4)/2 is the projection to the large spinor component, C = γ2γ4 is the charge
conjugation matrix, and τ2 is the Pauli matrix in the flavor space (for Nf = 2) given by
(iτ2)

f g
= ε f g. Both Cγ5 and iτ2 are anti-symmetric under the interchange of two indices, so
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that the nucleon operator has spin-1/2 and isospin-1/2. Although an explicit form of the γ
matrices is unnecessary in principle, we find it convenient to use a (chiral) convention given by

γk =

(
0 iσk

−iσk 0

)
, γ4 =

(
0 1
1 0

)
, γ5 = γ1γ2γ3γ4 =

(
1 0
0 −1

)
.

As discussed in the previous section, the OPE at the tree level (generically) dominates at
short distance. The OPE of 3N operators given above at tree level becomes

B f
α (x + y − z/

√
3)Bg

β(x − y − z/
√

3)Bh
γ (x + 2z/

√
3)= B f

α (x)B
g
β(x)B

h
γ (x)+ · · · , (42)

where + · ·· denote higher-dimensional operators, which do not contribute at short distance. The
leading operators couple only to the states with L = 0 (the S-state).

If we construct local 3N operators at L = 0 from B f
α (x) for nucleons (which only involve

two different flavors), there is only one such operator, which has I = 1/2 and S = 1/2, due to
the Pauli statistics of nucleons. Explicitly, it is given by

(B(3)
tree)

f f g
αβα ≡ B f

α B f
β Bg

α , B f
α = B f f g

α+ α̂,[2,1]+[2̂,1̂]
, (43)

where f 6= g, f, g = u, d and α 6= β, α, β = 1, 2, 1̂ = 3, 2̂ = 4 for the explicit form of the γ
matrices. Above, no summation is taken for f and α.

3.2. General formula for the divergent part at one-loop

As shown in [24], using dimensional regularization in D = 4 − 2ε dimensions, the gauge
invariant part of the divergence from diagrams involving exchange of a gluon between any
pair of quark fields is given by[

qa, f
α (x)qb,g

β (x)
]1-loop,div

=
g2d

ε

[
T0 · qa(x)⊗ qb(x)

] f g

α,β
, (44)

where

(T0)
f f1,gg1
αα1,ββ1

= δ f f1δgg1
[
δαα1δββ1 − 2δβα1δαβ1

]
+ Ncδ

g f1δ f g1
[
δβα1δαβ1 − 2δαα1δββ1

]
, (45)

for either α1, β1 ∈ {1, 2} (right-handed) or α1, β1 ∈ {3, 4} (left-handed), and it vanishes for other
combinations.

The operator in equation (43) can be written as a linear combination of simple operators
[B B B]F1 F2 F3

010203
. According to this one-loop formula for divergences, such a simple operator mixes

only with operators [B B B]FA FB FC
0A0B0C

, which preserve the set of flavor and Dirac indices in the
chiral basis as

F1 ∪ F2 ∪ F3 = FA ∪ FB ∪ FC , 01 ∪02 ∪03 = 0A ∪0B ∪0C . (46)

Note, however, that such operators are not all linearly independent. In the case of a 2N operator,
we have the following constraint:

3[B B]F1,F2
01,02

+
3∑

i, j=1

[B B](F1,F2)[i, j]
(01,02)[i, j] = 0, (47)

which comes from the general identity

Ncε
a1···aNcεb1···bNc =

Nc∑
j,k=1

εa1···a j−1bka j+1···aNcεb1···bk−1a j bk+1···bNc . (48)
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Here [i, j] means a simultaneous exchange between the i th indices of F1, 01 and the j th indices
of F2, 02. This identity can be generalized to

Nc ε
a1···aNc εb1···bNc εc1···cNc =

Nc∑
i, j,k=1

εa1···ai−1b j ai+1···aNcεb1···b j−1ckb j+1···bNc εc1···ck−1ai ck+1···cNc , (49)

from which we have

3[B B B]F1,F2,F3
01,02,03

−

3∑
i, j,k=1

[B B B](F1,F2,F3)[i, j,k]
(01,02,03)[i, j,k] = 0, (50)

where the i th index of ABC , the j th index of DE F and the kth index of G H I are cyclically
interchanged in (ABC, DE F,G H I )[i, j, k]. For example,

(01, 02, 03)[1, 1, 2] = (β3β1γ1, α1β2γ2, α3α2γ3),

(01, 02, 03)[1, 2, 3] = (γ3β1γ1, α2α1γ2, α3β3β2).

Note that the cyclic interchange of indices occurs simultaneously for both 0i and Fi in the above
formula. Both 2N and 3N identities are incorporated into our calculation.

3.3. Results of anomalous dimensions for nine-quark operators at one-loop

In tables 1–4, we give all eigenvalues of the matrix γ (1)AB in units of 2d, which were calculated and
checked independently by Mathematica and Maple programs, for F1 ∪ F2 ∪ F3 = ( f f f f f gggg)
with f 6= g and all independent combinations of 01 ∪02 ∪03. The five digits n1, n3, n5, n7, n9

in the isospin column give the number of representations with isospins 1/2, 3/2, 5/2, 7/2, 9/2,
respectively. For example, 32100 means 3 operators with I = 1/2, 2 with I = 3/2, 1 with
I = 5/2 and 0 with I = 7/2, 9/2.

The results in the tables show some notable patterns. Firstly, the eigenvalues γ j/2d
are all even integers; this is nontrivial since there appears to be considerable mixing in our
initial operator bases. Secondly, there is a tendency for the operators with larger isospin to
have smaller (more negative) eigenvalues. Thirdly, there are relations between the entries in
the tables for different Dirac indices; for example, the isospin degeneracies for the indices
111113344 and 111122223 in table 1 are identical and, furthermore, all the corresponding
eigenvalues are related by a common shift of −32. These observations suggest that there is
an underlying algebraic structure that we have unfortunately not yet been able to reveal. Note
that a combination obtained from another one by

(i) the interchange (1, 2)↔ (3, 4) or

(ii) the simultaneous interchange of 1 ↔ 2 and 3 ↔ 4 or

(iii) the interchange 1 ↔ 2

has obviously the same spectrum of anomalous dimensions and is for this reason not listed
separately.

The star symbol ∗ next to the eigenvalues means that there is a corresponding operator that
overlaps with the tree operator in equation (43). Since the tree operator has I = 1/2, this can
happen only if the corresponding n1 is different from zero. The tree operator is invariant under
symmetry (i) above, whereas its two-spin components are exchanged under symmetry (ii). This
means that whenever the tree operator overlaps with a particular operator, it also overlaps with
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Table 1. Eigenvalues γ j of the anomalous dimension matrix γ and isospins of the
corresponding eigenvectors for the case 5f4g. The five digits n1, n3, n5, n7, n9
in the isospins column give the number of representations with isospins
1/2, 3/2, 5/2, 7/2, 9/2, respectively.

Dirac indices γ j/(2d) Isospins
111111222 −84 01000
111111333 −36 01000
111112222 −84 01000

−60∗ 10000
111113333 −28 11000
111111223 −60 11000
111111334 −36 01000

−12 10000
111111332 −44 11000
111112223 −76 01100

−60 11000
−52 11000
−40\ 10000

111113334 −44 01100
−28 11000
−20 11000
−8 10000

111113332 −36 23100
−24 10000

111112233 −52 12100
−44 11000
−34 21000

111113344 −44 01100
−28 11000
−20 11000
−16 11000
−8 10000

111133332 −36 12100
−28 11000
−18 21000

Dirac indices γ j/(2d) Isospins
111122223 −76 01100

−60 11000
−52 11000
−48∗ 11000
−40∗ 10000

111122233 −76 01110
−52 12100
−46 12100
−44 11000
−34 21000
−28\ 21000

111133344 −60 01110
−36 12100
−30 12100
−28 11000
−18 21000
−12 21000

111133322 −52 12210
−36 23100
−28 22000
−24 10000
−16 11000

111222333 −84 01111
−52 12210
−48 01100
−36 23100
−28 22000
−24 32100
−16 11000

111111234 −44 11000
−28 10000

these transformed ones. The meaning of the symbol \ is an overlap between the tree operator
and the transform of the operator under symmetry (iii). It is intriguing that the tree operator
generally overlaps with the largest eigenvalue for given Dirac indices; again a fact for which we
do not yet have a simple explanation.

As a simple example let us consider the Dirac index distribution 111112222 (the third entry
in table 1). The part of the tree operator relevant for this case is

T1 = (B f f g
112 − B f f g

121 ) (B
f f g

212 − B f f g
221 ) (B

g f g
112 − Bg f g

121 ). (51)

There are altogether 53 local nine-quark operators with this distribution of Dirac indices, but the
number of independent ones is reduced to 2 after imposing all the gauge identities (47) and (50).
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Table 2. As in Table 1. (Continued.)

Dirac indices γ j/(2d) Isospins
111112234 −60 11100

−52 12100
−44 11000
−42 11000
−36 01000
−34 21000
−28 10000
−18 10000

111113324 −48 11100
−36 24100
−30 11000
−24 10000
−18 10000
−12 21000

111122234 −76 01110
−60 11200
−54 11100
−52 12100
−46 12100
−44 11000
−42 11000
−36∗ 12000
−34 21000
−30 01000
−28∗ 31000
−18 10000
−12∗ 10000

Dirac indices γ j/(2d) Isospins
111133324 −52 11110

−44 01100
−40 11100
−36 12100
−34 12100
−28 22100
−22 21000
−20 11000
−18 21000
−16 01000
−10 11000
−8 10000

2 10000
111122334 −64 11110

−52 12210
−48 11100
−46 01100
−40 33200
−36 24100
−30 11000
−28 24100
−24 10000
−22 22000
−18 10000
−16 11000
−12 21000
−10\ 10000

8\ 10000

A possible choice is

O1 = B f f f
111 B f f g

221 Bggg
122 , O2 = B f f f

112 B f f g
221 Bggg

112 . (52)

Using the gauge identities we have

T1 =
5
6 O1 − 5O2, (53)

which is proportional to the operator (of I = 1/2) corresponding to anomalous dimension −60
in our units. The other combination

O1 + 3O2 (54)

has anomalous dimension −84 and I = 3/2 and has no overlap with T1. As explained above,
among the operators with the Dirac index distribution 333334444 there is one with anomalous
dimension −60 which also overlaps with the spin = 1 component of the tree operator and among
the ones corresponding to 222221111 one which overlaps with its spin = 2 component. The
space of operators corresponding to other Dirac index distributions is considerably larger than
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Table 3. As in Table 1. (Continued.)

Dirac indices γ j/(2d) Isospins
111133442 −60 11110

−52 11110
−44 01100
−42 01100
−40 11100
−36 12100
−34 12100
−30 11000
−28 22100
−24 12100
−22 21000
−20 11000
−18 21000
−16 12000
−10 11000
−8 10000
−6 21000

2 10000

Dirac indices γ j/(2d) Isospins
111222334 −84 01111

−64 11110
−60 11220
−52 12210
−48 12200
−46 01100
−42 01100
−40 33200
−36 35200
−30 11000
−28 24100
−24∗ 42100
−22 22000
−18∗ 21000
−16 11000
−12 21000
−10∗ 10000

0∗ 11000
8∗ 10000

in this example. For example, the case 111223344 (the last entry in table 4) has 1369 operators
before and 117 operators after imposing the gauge identities.

As can be seen from tables 1–4, the largest eigenvalue of γ (1)AB is 16d (occurring already
at the tree level). Therefore, the largest eigenvalue of γ̃ (1)AB becomes 2d × (8 − 36), which is
negative, so that β tree

A = −14/(33 − 2N f ). Therefore, in conclusion, the operators at the tree
level in OPE dominate at short distance in the 3N NBS wave function.

4. Short-distance repulsion of 3NF

As discussed before, the 3N potential at short distance is given by

V2N+3NF(Er , Eρ)'
1

m N

−4β tree
A

s2(− log(3s))
, (55)

where β tree
A is given in equation (14). Since this result dominates over the one appearing in the

2N potential, which is of the form (10), the above behavior of V2N+3N F(Er , Eρ) at short distance
must come solely from V3NF(Er , Eρ). Unlike similar computations for the 2NF, no additional
nonperturbative considerations are required in this case and the analysis shows that the NBS
3NF is always repulsive at short distance, a conclusion that is universal in the sense that it does
not depend on the details of the 3N states used to define the NBS wave function, such as its
energy.

We would like to point out that as listed in tables 1–4, the total number of nine-quark local
operators is several hundreds and the spectrum of anomalous dimensions is rather dense. We
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Table 4. As in Table 1. (Continued.)

Dirac indices γ j/(2d) Isospins
111333224 −76 11111

−60 01110
−52 12220
−46 22210
−44 01100
−40 11200
−36 12100
−34 24200
−30 12100
−28 34200
−22 32100
−20 11000
−18 21000
−16\ 22000
−12 21000
−10 12000
−8 10000
−4 11000

2 10000
8\ 10000

Dirac indices γ j/(2d) Isospins
111223344 −76 11111

−60 12220
−54 11110
−52 12220
−48 01110
−46 22210
−44 01100
−42 12200
−40 11200
−36 13200
−34 24200
−30 23100
−28 34200
−24∗ 23100
−22 32100
−20 11000
−18 33100
−16∗ 33000
−12 21000
−10 12000
−8 10000
−6 21000
−4 11000

0∗ 21000
2 10000
8∗ 10000

singled out the ones with largest anomalous dimensions which dominate at short distance, but it
is not evident at what distance scale this leading behavior sets in. Even if it turns out that these
individual operators really dominate at extremely short distances only, our main conclusion may
remain valid due to the fact that all the eigenvalues of the effective gamma matrix are negative
(corresponding to short-distance repulsion). We think a simple explanation of this fact should
exist (maybe related to the Pauli principle).

An interesting and important extension of the present analysis is to investigate the short-
distance behavior of the three-baryon force (3BF) by the same method. Its results can tell us
whether there is a universal short-distance repulsion also in the 3BF, which has been suggested
to explain the observed maximum mass of neutron stars [10].

As a final comment we again stress that equation (55) is a priori applicable only to the
specific definition of the 3NF using the NBS wave function, since notions of 2NF or 3NF
are scheme dependent (cf definitions of running couplings in quantum field theories). Indeed,
unless one fixes the scheme for the definition of the potential, it is meaningless to ask whether
the 3NF has a repulsive core or not. Our analysis is, however, meaningful and relevant since the
extraction of the 3NF in lattice QCD in the same scheme is now in progress [14–16]. Our results
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can be compared to the short-distance behavior of the 3NF and that of the associated primary
wave functions, once the lattice QCD data have been extrapolated to the continuum limit. As
remarked above, equation (55) does not depend on the details of the 3N state; in particular it
holds even at an energy of the 3N state larger that the inelastic threshold, although the physical
interpretation of the 3NF at such a high energy needs to be reconsidered5.
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