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The PDFs for energy transfer rates, extracted by Kaneda and Ishihara from their 40963 DNS
for fully developed turbulence, are analyzed in a high accuracy by means of multifractal prob-
ability density function theory (MPDFT) in which a new scaling relation has been proposed.
MPDFT is a statistical mechanical ensemble theory for the intermittent phenomena providing
fat-tail probability density functions (PDFs). With the proposed scaling relation, MPDFT has
been improved to deal with intermittency through any series of PDFs with arbitrary magni-
fication δ (> 1). Since the value of δ can be determined freely by observers, the choice of δ
should not affect observables. The validity of the generalized MPDFT is verified successfully
through the precise analyses of several series of PDFs with different values of δ. In addition to
the verification, it is revealed that the system of fully developed turbulence has much wider
area representing scaling behaviors than the inertial range. With the help of MPDFT, it has
come to possible to separate the coherent turbulent motion from fluctuations, which may
benefit the wavelet analysis of turbulence.

Keywords: Multifractal PDF theory; Intermittency; Energy transfer rates; Tsallis-type
distribution function; Fat-tail PDF

1. Introduction

The keystone works [1–14] providing the multifractal aspects for fully developed
turbulence deal mostly with the scaling property of the system, e.g., comparison
among the scaling exponents of velocity structure function. Only a few [8, 12–
21] analyze the probability density functions (PDFs) obtained by experiments or
numerical experiments. Among the researches analyzing PDFs, multifractal prob-
ability density function theory (MPDFT) [12, 13, 15, 16, 18, 19, 21] offers the most
precise analyses of the system including PDFs.
MPDFT is a statistical mechanical ensemble theory for analyzing those phe-

nomena providing fat-tail PDFs, which was constructed by the authors under the
assumption, following Frisch and Parisi [2], that the singularities due to the scale in-
variance of the Navier-Stokes (N-S) equation for high Reynolds number distribute
themselves multifractal way in real physical space. The degree of singularity for
those quantities which are responsible for intermittent phenomena is specified by
the singularity exponent α that is assumed to be equal to the parameter appeared
in the scale transformation as an arbitrary parameter taking real values (see (10)
and (11) below). Note that α is regarded as a stochastic variable, and is related
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definitely to the quantity representing intermittent behavior. Within the approach
of MPDFT, the p model [5], the log-normal model [22–24] and the A&A model [10–
13, 15, 16, 18, 19, 21] are categorized as models with increasing number of parame-
ters in the probability density function for α, which are determined self-consistently
as functions of the intermittency exponent µ. For the case of the p model, the dis-
tribution of α is given by the binomial distribution function with one parameter
that is specified by the definition of µ. For the log-normal model, the distribution
of α is given by the Gaussian distribution function with two parameters which are
determined by the condition for energy conservation and the definition of µ. For
the case of the A&A model, the distribution of α is given by Tsallis-type distri-
bution function with three parameters which are fixed by the condition of energy
conservation, the definition of µ and the scaling relation. The extraction of an
appropriate distribution for α may lead us to a resolution for the origin of inter-
mittency in turbulence. MPDFT provides us with a systematic framework to make
a connection between the distribution of α and the PDFs of observed quantities.
The superiority of A&A model within MPDFT to other theories has been checked
by comparing [15] the scaling exponents of the velocity structure function given by
the present theory with those by other theories, and furthermore by comparing [18]
the PDFs provided by the present model with those by the p-model [5] and by the
log-normal model [22–24].
In order to extract the intermittent character of the fully developed turbulence,

it is necessary to have information of hierarchical structure of the system. This
is realized by producing a series of PDFs for responsible singular quantities with
different lengths

ℓn = ℓ0δ
−n, δ > 1 (n = 0, 1, 2, · · · ) (1)

that characterize the sizes of eddies or the regions in which the physical quantities
are coarse-grained. The value for δ is chosen freely by observers. Note that the
number of steps n depends on δ, since if one took a smaller value for δ, he would
need more steps to reach the same length ℓn as before for a fixed value of ℓ0.
Therefore, the choice of δ should not affect the theoretical estimation of the values
for the fundamental quantities, i.e., observables characterizing the turbulent system
under consideration. The A&A model within the framework of MPDFT itself tells
us that this requirement is satisfied if the scaling relation has the form 1

(ln 2)/(1− q) ln δ = 1/α− − 1/α+. (3)

Here, q is the index associated with the Rényi entropy [27] or with the Havrda-
Charvat [28] and Tsallis [29] (HCT) entropy; α± are zeros of the multifractal spec-
trum (see below in sub-section 4.1). The multifractal spectrum is uniquely related
to the PDF for α which is responsible for the tail part of PDFs for those quantities
revealing intermittent behavior whose singularity exponents can have values α < 1.
With the new scaling relation (3), observables have come to include the parameter
δ only in the combination (1−q) ln δ. The difference in δ is absorbed in the entropy
index q.

1Since almost all the PDFs that had been provided previously were for the case where δ = 2, it has been
possible to analyze PDFs with the scaling relation

1/(1− q) = 1/α− − 1/α+ (2)

proposed by Costa, Lyra, Plastino and Tsallis [25, 26] in the context of dynamical systems.
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This generalization of the scaling relation naturally leads us to replace n appeared
in the Tsallis-type distribution function (see (45) below) within A&A model with
a new number

ñ = n ln δ. (4)

Then, the PDF of α becomes δ independent if the new number ñ is also independent
of δ (see (51) below). This conjecture is the one that should be verified with the
help of the data extracted out from ordinary or numerical experiments. We will
see this in the present paper. Note that, with the new number ñ, ℓn introduced in
(1) reduces to ℓn = ℓ0e

−ñ, and that ñ may provide us with a common number of
steps appropriate for the interpretation of turbulence within the cascade model.
In this paper, we will investigate in a high accuracy the validity of the new scaling

relation (3), which MPDFT claimed as a physically required relation for arbitrary
value of δ. This is performed by analyzing the series of PDFs for energy transfer
rates extracted by Kaneda and Ishihara from their 40963 DNS for fully developed
turbulence with the magnification rate δ = 21/4 [30]. The theoretical PDF formula
for physical quantities within MPDFT is provided with the minimal numbers of
adjustable parameters, i.e., one parameter for the partial PDF at the tail region and
two parameters for the partial PDF at the center region. Note that the theoretical
PDF is given by two partial PDFs, one for the tail part and the other for center
part. This is realized with the help of the Tsallis-type trial functions. By means of
the behavior of extracted parameters, we can check the validity of the new scaling
relation, and obtain the information about how to separate the coherent turbulence
motion and the fluctuations around the motion.
The organization of the paper is the following. In section 2, we introduce an

exponent representing the degree of singularity for observables responsible to in-
termittent character of turbulence. The singularity originates from the invariance
of the N-S equation under a scale transformation. The PDF for the singular ex-
ponents is introduced in section 3 in connection with the multifractal spectrum.
Other materials necessary for multifractal description, such as the mass exponent,
the generalized dimension and so on, are introduced. Section 4 provides an in-
troduction of the framework of MPDFT with the new scaling relation, and the
construction of the PDFs within A&A model whose variable range extends both
positive and negative regions. We put in this paper a minimal derivation of nec-
essary formulae in a self-contained manner in order to clarify the logic behind
the framework of MPDFT. In section 5, we analyze in a high precision the ob-
served PDFs for energy transfer rates by the theoretical PDF within A&A model
of MPDFT, and verify the proposed assumption through the analysis. Summary
and prospects are devoted in section 6.

2. Scaling Invariance and Singularities

Let us start with the velocity difference (fluctuation) δun = |u(•+ ℓn)− u(•)| of a
component u of the velocity field u⃗ between two points separated by the distance ℓn,
defined by (1), which provides us with the measure of diameters of eddies generated
at the nth stage. The diameters of eddies being produced one after another become
δ−1 times smaller at each generation of eddies from bigger ones. Turbulence is not
fluctuating randomly but intermittently, i.e., in the intermittent rhythms.
The kinetic energy of eddies with the diameter ℓn ∼ ℓn + dℓn per unit mass

is defined by En =
∫ kn+1

kn
dk Ek = δu2n/2, where we put kn = ℓ−1

n . The velocity
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difference δun gives the order of the rotational velocity of the eddy. Ek is called
the energy spectrum. There are two characteristic times (relaxation times) for the
eddy. One is the time necessary for the eddy to rotate once, i.e., tn = ℓn/δun. This
can be interpreted as the time (life-time) for the eddy with the diameter ℓn to
pass its kinetic energy to eddies with the diameter ℓn+1 = δ−1ℓn. Then, the energy
transfer rate ϵn from the eddies with the diameter ℓn to the eddies with ℓn+1 may
be estimated as

|ϵn| ∼ En/tn ∼ (δun)
3/ℓn. (5)

We interpret it as follows; At each step in the cascade, say the nth step, where
an eddy breaks up into δ pieces, the energy is delivered from the eddy with the
diameter ℓn to those with ℓn+1 with the energy transfer rate ϵn per unit mass.
Another characteristic time is the time required for the energy of eddies to dissipate
into heat, i.e., tdissn ∼ ℓ2n/ν. This is given as a quantity having the dimension of
time by making use of the fact that the kinematic viscosity ν has the dimension
[ν] = L2/T. The energy dissipation rate εn averaged in the regions with diameter
ℓn is given by 1

εn ∼ νn (δun/ℓn)
2 (6)

where νn is the kinematic viscosity associated with the eddies under consideration.
For the condition tn ≪ tdissn , the dissipative effect to eddies can be neglected,
whereas for tn ≫ tdissn no eddy can survive as its rotational energy is transferred
into heat almost all at once.
Kolmogorov assumed in 1941 (K41) [31, 32] in his explanation of the universal

slope −5/3 observed in the energy spectrum of turbulence that, in the region where
the condition tn ≪ tdissn is satisfied and the effect of dissipation is safely neglected,
ϵn is constant and does not depend on n, i.e., ϵn = ϵ (> 0). Substituting this into

(5), we have δun ∼ (ϵℓn)
1/3, En ∼ (ϵℓn)

2/3. Then, we see that tn ∼
(
ℓ2n/ϵ

)1/3
,

and that the smaller the eddies become, the shorter their life-times become in the
delivery of their energy. The lifetime τη and the diameter η of the eddy satisfying
the condition tn = tdissn (= τη) are estimated, respectively, as

τη = (ν/ϵ)1/2 , η =
(
ν3/ϵ

)1/4
, (7)

which are called the Kolmogorov time and the Kolmogorov length, respectively.
The scaling exponent ζm of the mth order velocity structure function (the mth

moment of velocity fluctuations) defined through

⟨(δun/δu0)m⟩ = (ℓn/ℓ0)
ζm (8)

is one of the quantities which characterizes turbulence. Here, ⟨· · ·⟩ indicates to
take an appropriate time average, spatial average or ensemble average. Actually,
the present main issue is to search for an appropriate PDF for the average. The
scaling exponents for K41 [31, 32] are given by ζm = m/3.
We consider an incompressible fluid where the mass density ρ = ρ(x⃗, t) of the

fluid is constant in time and space. In this case, the N-S equation for the velocity

1Note that we are using the character ε for the energy dissipation rate, whereas the character ϵ for the
energy transfer rate.



February 25, 2011 21:17 Journal of Turbulence OnScalingRelationPeking

On the Scaling Relation within Multifractal PDF Theory 5

field u⃗ = u⃗(x⃗, t) reduces to

∂u⃗/∂t+ (u⃗ · ∇⃗)u⃗ = −∇⃗p+ ν∇2u⃗ (9)

where we introduced p = p̂/ρ, and the kinematic viscosity ν = η̂/ρ. Here, p̂ = p̂(x⃗, t)
is the pressure of fluid, and η̂ is the viscosity. The condition for incompressibility
reduces to the equation representing that there is no divergence in velocity field,
i.e., ∇⃗ · u⃗ = 0. The N-S equation (9) is invariant under the scale transformation

x⃗ → x⃗′ = λx⃗, u⃗ → u⃗′ = λα/3u⃗, t → t′ = λ1−α/3t, p → p′ = λ2α/3p (10)

and

ν → ν ′ = λ1+α/3ν (11)

with an arbitrary real number α. By the way, in the region where the intermit-
tency of turbulence is conspicuous, the effect of the dissipative term in the N-S
equation is very small compared with those of other terms (especially, the drift
term). Therefore, let us try to extract the phenomena which is invariant under the
scale transformation (10) without (11).1 We utilize the invariance under this scale
transformation in order to introduce at the zero-th order approximation the char-
acteristics that the appearance of the velocity field for fully developed turbulence is
invariant even if we change the scale (or the distance) of observation. However, we
should keep in mind that the dissipative term can become effective depending on
the region under consideration since the term breaking the invariance does exist,
i.e., non-zero (see the discussions in the following).
Let us now find out what character the system has when it is invariant under

the transformation (10). The scale transformation gives

δun/δu0 = (ℓn/ℓ0)
α/3 , δpn/δp0 = (ℓn/ℓ0)

2α/3 . (12)

The difference δpn = |p(• + ℓn) − p(•)| is also an important observable. From (5)
and (12), we also have

|ϵn|/ϵ = (ℓn/ℓ0)
α−1 , (13)

where we put ϵ0 = ϵ. As for the energy dissipation rate εn, we need the scale
transformation (11) giving

νn/ν0 = (ℓn/ℓ0)
1+α/3 (14)

since the dissipative term is necessary for energy dissipation. Then, (6) gives us

εn/ϵ = (νn/ν0) (δun/δu0)
2 (ℓ0/ℓn)

2 = (ℓn/ℓ0)
α−1 (15)

where we put ε0 = ϵ. Here, we introduced an interpretation of the energy balance
of eddies with diameter ℓn in a stationary state such that the input energy with
the rate |ϵn−1| for the eddies should go out from them with the effective energy

1Strictly speaking, the N-S equation (9) is invariant under this transformation only the case ν = 0, i.e.,
when the Reynolds number is infinite.
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dissipation rate εn obtained by averaging the actual energy dissipation rates in the
region specified by ℓn. Note that the actual dissipation rates exist for ℓn < η.
The velocity derivative u′ and the fluid particle acceleration a⃗ are described,1

respectively, by |u′| = limn→∞ u′n, |⃗a| = limn→∞ an. Here, we introduced the ve-
locity derivative u′n and acceleration an corresponding to the characteristic length
ℓn by u′n = δun/ℓn, an = δpn/ℓn, respectively. We see that the velocity derivative
and the fluid particle acceleration, respectively, have singularities 2 for α < 3 and

α < 1.5, i.e., |u′| ∝ limℓn→0 ℓ
(α/3)−1
n → ∞, |⃗a| ∝ limℓn→0 ℓ

(2α/3)−1
n → ∞. The en-

ergy transfer rate and the energy dissipation rate also have singularities for α < 1,
i.e., limn→∞ |ϵn| = limn→∞ εn = limn→∞ ℓα−1

n → ∞. The exponent α plays the
role of an index representing the degree of singularities [2].
Within the treatment of K41 [31, 32], as ϵn is assumed to be constant independent

of n, we see from (13) that K41 is the case corresponding to α = 1. If we look at
this way, the arbitrariness of α, appeared in the scale transformation (10), indicates
that ϵn can be viewed as a stochastic variable, i.e., one can introduce fluctuations
in ϵn. It means that there is a possibility to give an answer to the criticism against
K41 raised by Landau. In other words, the energy transfer rate ϵn can take various
values even for the eddies with the same diameter.3 The distribution of the values,
i.e., the distribution of α, is determined by a delicate balance between the non-
linear convective term and the dissipative term in the N-S equation.

3. Distribution of α and Multifractal Spectrum

One needs (ℓn/ℓ0)
−d boxes in order to cover whole the space of volume 1d in d di-

mensional space by the boxes with volume (ℓn/ℓ0)
d without vacancy. Let us derive,

following the argument given by Meneveau and Sreenivasan [5], the probability
P (n)(α)dα to find a value within the domain α ∼ α+dα when we pay attention to

one of the boxes with volume (ℓn/ℓ0)
d in d dimensional space. Under the assumption

that the eddies specified by α occupy the space with the fractal dimension fd(α),

the probability is given by the proportion of the number (ℓn/ℓ0)
−fd(α) of boxes,

occupying fd(α) dimensional space without vacancy, to the number (ℓn/ℓ0)
−d of

all the boxes, i.e.,

P (n)(α)dα = c2(α) (ℓn/ℓ0)
d−fd(α) dα. (16)

The fractal dimension fd(α) is called the multifractal spectrum.
For εn ̸= 0, (15) shows that α is related with εn by α = 1+ ln(εn/ϵ)/ ln (ℓn/ℓ0) .

Then, the probability P (n)(α)dα is rewritten in terms of the conditional probability

P
(n)
ε (εn/ϵ | εn ̸= 0)d(εn/ϵ) to find in the box a non-zero value εn/ϵ between the

domain εn/ϵ ∼ εn/ϵ+ d(εn/ϵ) as

P (n)(α)dα = P (n)
ϵ (εn/ϵ | εn ̸= 0) d (εn/ϵ)P

(n)
εn ̸=0. (17)

Here, P
(n)
εn ̸=0 is the probability that the selected box satisfies the condition εn ̸= 0.

Assuming that the boxes satisfying εn ̸= 0 occupy Dd dimensional space without

1The fluid particle acceleration a⃗ is given by a⃗ = ∂u⃗/∂t+ (u⃗ · ∇⃗)u⃗.
2In practice, as the resolutions in experiments or numerical simulations are finite, it may be appropriate
to interpret that the term singularity here means to take abnormally large values.
3From (12), we interpret that the velocity fluctuation and the pressure fluctuation are also stochastic
variables.
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vacancy, we can estimate P
(n)
εn ̸=0 as the proportion of the number (ℓn/ℓ0)

−Dd of

boxes satisfying εn ̸= 0 to the number (ℓn/ℓ0)
−d of all the boxes, i.e.,

P
(n)
εn ̸=0 = c1 (ℓn/ℓ0)

d−Dd . (18)

Substituting (18) and (16) into (17), one obtains [5]

P (n)
ϵ (εn/ϵ) = [c2(α)/c1 ln (ℓn/ℓ0)] (ℓn/ℓ0)

1+Dd−α−fd(α) . (19)

In the following, we will proceed the investigation assuming that the α dependence
of the normalization coefficient c2(α) is negligible.
The mass exponent τd(q̄) is introduced by means of the partition function [5]

Z
(n)
d ≡

∑
# of boxes

(
εnℓ

d
n/ϵℓ

d
0

)q̄
=

∑
# of boxes

(ℓn/ℓ0)
(α−1+d)q̄ ∝ (ℓn/ℓ0)

−τd(q̄) . (20)

The summation with respect to the number of boxes may be translated into the
integration with respect to α as

Z
(n)
d =

∫
dαρ(α) (ℓn/ℓ0)

(α−1+d)q̄−fd(α) . (21)

Evaluating the integration with the help of the method of the steepest descent in
the limit ℓn/ℓ0 → 0, i.e., n → ∞, we obtain the relation 1

fd(α)− (α− 1 + d)q̄ = τd(q̄), q̄ = dfd(α)/dα. (22)

With

α− 1 + d = −dτd(q̄)/dq̄, (23)

(22) constitutes the Legendre transformation between fd(α) and τd(q̄). The gener-
alized dimension (the Rényi dimension) Dd(q̄) is introduced by the relation

τd(q̄) = (1− q̄)Dd(q̄). (24)

The q̄th moment of the energy transfer rate is given by using the mass exponent
as ⟨

(εn/ϵ)
q̄⟩ ≡

∫ ∞

0
d (εn/ϵ) (εn/ϵ)

q̄ P (n)
ϵ (εn/ϵ) ∼ (ℓn/ℓ0)

−τd(q̄)+Dd−q̄d . (25)

The condition for the normalization of probability, i.e., ⟨1⟩ = 1, reduces to

τd(0) = Dd = Dd(q̄ = 0) = fd(αq̄=0). (26)

Whereas, the energy conservation law, i.e., ⟨εn⟩ = ϵ, reduces to

τd(1) = Dd − d. (27)

1We are neglecting the α dependence of the density ρ(α) introduced in the translation
∑

# of boxes =∫
dαρ(α) (ℓn/ℓ0)

−fd(α).
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Since τd(1) = 0 in general when Dd(1) is finite, (27) gives

Dd = Dd(q̄ = 0) = d. (28)

The definition of the intermittency exponent µ, i.e.,
⟨
ε2n
⟩
= ϵ2 (ℓn/ℓ0)

−µ , provides
us with

µ = τd(2)−Dd + 2d. (29)

Summarizing (26), (28) and (29), we have

τd(0) = Dd(q̄ = 0) = d, τd(1) = 0, µ = d+ τd(2) = d−Dd(2). (30)

Note that the first equation in (30) is also obtained by noticing that the number of
boxes with the side length ℓn necessary to cover the d dimensional space is given

by
∑

# of boxes
1 ∝ (ℓn/ℓ0)

−d, and that
∑

# of boxes
1 ∝ (ℓn/ℓ0)

−τd(0) from (20), i.e.,
the definition of τd(q̄). Notice that the scaling exponent of the mth order velocity
structure function defined by (8) is related to the mass exponent as

ζm = d− τd (m/3) + (1− d)m/3. (31)

It is convenient to introduce f(α) and τ(q̄), respectively, through the relations

fd(α) = f(α) + d− 1, τd(q̄) = τ(q̄) + (d− 1)(1− q̄), (32)

and D(q̄) by

τ(q̄) = (1− q̄)D(q̄). (33)

Note that Dd(q̄) and D(q̄) are related with each other by

Dd(q̄) = D(q̄) + d− 1. (34)

Then, the Legendre transformation, consisting of (22) and (23), reduces to

f(α) = αq̄ + τ(q̄), q̄ = df(α)/dα, α = −dτ(q̄)/dq̄, (35)

and the relations in (30) and the one in (31), respectively, to

τ(0) = D(0) = f(α0) = 1, τ(1) = 0, µ = 1 + τ(2) = 1−D(2) (36)

and

ζm = 1− τ (m/3) . (37)

The probability (16) reduces to

P (n)(α)dα ∝ (ℓn/ℓ0)
1−f(α) dα (38)

by making use of the first equation in (32). It is worthwhile to note that the system
with f(α), τ(q̄) and D(q̄) is not only for the analyses of multifractal structure
of data-set with d = 1 but also for those with general dimension d > 1. The
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(multi)-fractal structures in d-dim are accumulated altogether into the (multi)-
fractal dimension f(α) = fd(α)− (d− 1).
It is the log-normal model [22–24] that was proposed to take in the intermittency

of turbulence by introducing fluctuation of εn, in the form of the first reply to
the criticism raised by Landau. The ratios εn/εn−1 (n = 1, 2, · · · ) of the energy
dissipation rates, which is interpreted as a measure how much energy received
by the eddy with the diameter ℓn−1 is delivered to the eddy of the size ℓn, are
regarded as stochastic variables defined within the domain [0,∞]. Let us assume
that the variables specified by n are, mutually, stochastically independent, and that
they have an identical distribution function. In this case, the distribution of the
stochastic variable

(
1/

√
nσ2

) n∑
j=1

ln (εj/εj−1) =
(√

n/σ
)
(1− α) ln δ (39)

must be the canonical distribution (Gaussian distribution)

P (n)(α) ∝ e−n(α−α0)2/2σ2

(40)

because of the central limit theorem for n ≫ 1. The domain of α is [−∞,∞]. The
two parameters α0 and σ are determined as the functions of µ in the forms

α0 = 1 + µ/2, σ2 = µ/ ln δ, (41)

respectively, with the help of the two independent relations, i.e., the energy con-
servation law given by the second equation in (36) and the definition of the inter-
mittency exponent µ given by the third equation in (36). Substituting (41) into
(40), we have

P (n)(α) ∝ e−ñ(α−1−µ/2)2/2µ (42)

with (4), which does not depend on the magnification δ. Substituting (40) into the
left-hand side of (38), we have with (41)

f(α) = 1− (α− α0)
2
/
2σ2 ln δ = 1− (α− 1− µ/2)2

/
2µ (43)

whose final expression is not dependent on δ nor on ñ. Then the mass exponent
becomes

τ(q̄) = (1− q̄) (1− µq̄/2) (44)

through the Legendre transformation (22). Therefore, the generalized dimension
for the log-normal model becomes D(q̄) = 1− µq̄/2.
Note that µ should not depend on δ since µ is unique once a turbulent system

is specified, and that the dependence of P (n)(α) on δ is absorbed into σ2 with the
help of ñ. It may be reasonable to interpret ñ as the “renormalized” number of
stages in the cascade model.
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4. Theoretical Framework of MPDFT

4.1. A&A Model

A&A model within MPDFT [10–13, 15, 16, 18, 19, 21] adopts for P (n)(α) the
Tsallis-type distribution function 1

P (n)(α) ∝
[
1− (α− α0)

2/(∆α)2
]n/(1−q)

(45)

with

∆α =
√

2X/(1− q) ln δ (46)

and the entropy index q. The domain of α is αmin ≤ α ≤ αmax where αmin and
αmax are given by αmin, max = α0 ∓ ∆α. The proportional coefficient in (45) is
specified by the normalization condition∫ αmax

αmin

dα P (n)(α) = 1. (47)

Substituting (45) into the left-hand side of (38), we obtain, for n ≫ 1, the multi-
fractal spectrum

f(α) = 1 +
{
ln
[
1− (α− α0)

2/(∆α)2
]} /

(1− q) ln δ (48)

whose Legendre transformation provides us with the mass exponent in the form

τ(q̄) = 1−α0q̄+2Xq̄2
/(

1 +
√

Cq̄

)
+
[
1− log2

(
1 +

√
Cq̄

)]
(ln 2)

/
(1−q) ln δ (49)

with Cq̄ = 1 + 2q̄2(1 − q)X ln δ. For large |q̄|, there appears in τ(q̄) the log term,
log2 |q̄|, which is the one of the characteristics of A&A model.
The three parameters α0, X and q are determined as the functions of µ with

the help of the three conditions, i.e., the energy conservation law given by the
second equation in (36), the definition of the intermittency exponent given by the
third equation in (36), and the scaling relation (3) with α± = α0 ±

√
2bX where

b =
(
1− e−(1−q) ln δ

)
/(1− q) ln δ. As was indicated below (3), α± are the solutions

of f(α±) = 0, i.e., fd(α±) = d−1. Here, the multifractal spectrum f(α) is given by
(48). The scaling relation (3) is a generalization of the one introduced by Tsallis
and others [25, 26] to which (3) reduces, when δ = 2. This generalization was born
out of the theoretical framework, A&A model within MPDFT, itself. The new
scaling relation (3) is solved as

√
2bX = −(1− q) log2 δ +

√
α2
0 + [(1− q) log2 δ]

2, (50)

and the parameter q is determined, altogether with α0 and X, as a function of µ
only in the combination (1− q) ln δ. It is quite reasonable in the following reason.
The value of the magnification δ is determined arbitrarily by observers, therefore
its value should not affect the values of physical quantities as long as one studies a

1Regardless if the fundamental entropy is the extensive Rényi entropy or the non-extensive HCT entropy,
the MaxEnt PDFs which give the extremum of these entropies have a common structure. Within the
present approach, one cannot determine which is the background entropy for turbulence.



February 25, 2011 21:17 Journal of Turbulence OnScalingRelationPeking

On the Scaling Relation within Multifractal PDF Theory 11

turbulent system. The difference in δ is absorbed into the entropy index q, which
may be reasonable in the sense that changing the zooming rate δ may result in
picking up the different hierarchy, containing the entropy specified by the index q,
out of multifractal structure of turbulence. The detailed investigation of this point
will be given elsewhere.
With the above generalization of the scaling relation, as the parameters are

dependent on q only in the combination (1 − q) ln δ, we are naturally lead to the
replacement of n in the expression of P (n)(α) in (45) with ñ defined by (4), i.e.,

P (n)(α) ∝
[
1− (α− α0)

2/(∆α)2
]ñ/(1−q) ln δ

. (51)

If it is revealed that ñ does not depend on δ, the distribution of α itself becomes also
independent of δ. Then, A&A model within MPDFT has come to the framework in
which the choice of the magnification δ does not affect the PDF for α in addition to
observables. Note that the new scaling relation (3) is found to be intimately related
to δ-scale Cantor sets produced by a series of the unstable δ∞ periodic orbits. ñ
may be interpreted as the number of stages in the δ-scale Cantor set, and can be
understood, intuitively, as the number of stages in the energy cascade model.

4.2. PDFs for Observables

Now, we derive the general formula for PDFs within MPDFT for an observable

|x′| = lim
n→∞

|x′n|, |x′n| = (δxn/ℓn)
/
(δx0/ℓ0) (52)

representing intermittent singular behavior, where δxn = |x(•+ ℓn) − x(•)| is the
fluctuation of a physical quantity x, and is assumed to be related to α through

|xn| = δxn/δx0 = (ℓn/ℓ0)
ϕα/3 . (53)

Since

|x′n| = |xn| (ℓn/ℓ0)−1 = (ℓn/ℓ0)
(ϕα/3)−1 , (54)

|x′| diverges for α < 3/ϕ. Note that |x′| reduces to the velocity derivative and
fluid particle acceleration for ϕ = 1 and ϕ = 2, respectively, and formally to the
energy transfer rates (13) or the energy dissipation rates (15) for ϕ = 3. The

probability Π
′(n)
ϕ (x′n)dx

′
n to find the physical quantity x′n taking a value in the

domain x′n ∼ x′n+dx′n is supposed to be rephrased by the probability Π
(n)
ϕ (xn)dxn

to find the physical quantity xn taking a value in the domain xn ∼ xn + dxn with
the relation

Π
′(n)
ϕ (x′n)dx

′
n = Π

(n)
ϕ (xn)dxn. (55)

Let us assume that the PDF Π
(n)
ϕ (xn) can be divided into two parts as

Π
(n)
ϕ (xn) = Π

(n)
ϕ,S(xn) + ∆Π

(n)
ϕ (xn). (56)

Here, the first term describes the contribution from the abnormal part of the phys-
ical quantity xn due to the fact that its singularities distribute themselves multi-
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fractal way in real space. It is the part given by

Π
(n)
ϕ,S(|xn|)d|xn| = Π̄

(n)
ϕ,S P (n)(α)dα (57)

through the variable translation (53) between |xn| and α. On the other hand, the

second term ∆Π
(n)
ϕ (xn) represents the contributions from the dissipative term in

the N-S equation and/or from the errors in measurements, etc.. The dissipative
term violates the invariance based on the scale transformation (10), and, therefore,

the effect of dissipation has been neglected in the consideration of Π
(n)
ϕ,S(xn) for the

distribution of singularities. The second term in (56) is a correction to the first one
in the analysis of observed PDF. The values of |xn| representing the part originated
from the singularities are describing the part larger than the standard deviation
due to intermittency. The values of |xn| for the part contributing to the correction
term are smaller than or about the order of its standard deviation.

4.3. PDFs for Variables taking Positive and Negative Values

Let us consider the PDF for the variable x′n whose range is (−Λn, Λn). The mth
moment of |x′n| is translated into the mth moment of the structure functions for
the variable |xn|, i.e.,∫ Λn

−Λn

dx′n|x′n|mΠ
′(n)
ϕ (x′n) = (ℓn/ℓ0)

−m ⟨⟨|xn|m⟩⟩ (58)

where

⟨⟨|xn|m⟩⟩ =
∫ Λn

−Λn

dxn|xn|mΠ
(n)
ϕ (xn) (59)

with

Λn = (ℓn/ℓ0)
(ϕαmin/3)−1 . (60)

The normalization of Π
′(n)
ϕ (x′n) is given by

∫ Λn

−Λn

dx′nΠ
′(n)
ϕ (x′n) = ⟨⟨1⟩⟩ = 1. (61)

Substituting (56) with (57) into (59), we have

⟨⟨|xn|m⟩⟩ = 2

∫ Λn

0
dxn (xn)

mΠ
(n)
ϕ,S(xn) + 2γ

(n)
ϕ,m

= 2Π̄
(n)
ϕ,S

∫ αmax

αmin

dα (ℓn/ℓ0)
ϕmα/3 P (n)(α) + 2γ

(n)
ϕ,m

= 2Π̄
(n)
ϕ,S aϕm (ℓn/ℓ0)

1−τ(ϕm/3) + 2γ
(n)
ϕ,m (62)

with

γ
(n)
ϕ,m =

∫ Λn

0
dxn (xn)

m∆Π
(n)
ϕ (xn), (63)
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aϕm =
√

|f ′′(α0)|
/
|f ′′(αϕm/3)| (64)

where f ′′(α) = d2f(α)/dα2. The third equality in (62) is estimated for n ≫ 1. For
m = 0, (62) gives ⟨⟨1⟩⟩ = 1 with the normalization condition (61), hence we have

Π̄
(n)
ϕ,S =

(
1− 2γ

(n)
ϕ,0

)/
2. (65)

Here, we used the facts a0 = 1 and τ(0) = 1. We finally obtain the compact
expression for the mth moment of the structure function in the form

⟨⟨|xn|m⟩⟩ = 2γ
(n)
ϕ,m + (1− 2γ

(n)
ϕ,0) aϕm (ℓn/ℓ0)

ζϕm (66)

with the corresponding scaling exponents

ζϕm = 1− τ (ϕm/3) . (67)

For ϕ = 1, ζϕm reduces to the scaling exponents ζm of the mth order velocity

structure function defined by (8). Note that Π
(n)
ϕ,S(xn)dxn now has the compact

form

Π
(n)
ϕ,S(|xn|)d|xn| =

1− 2γ
(n)
ϕ,0

2

√
|f ′′(α0)|| ln (ℓn/ℓ0) |

2π

(
ℓn
ℓ0

) 1−f(α)

dα. (68)

It is convenient to introduce the PDF

Π̂
(n)
ϕ (ξn) dξn = Π

(n)
ϕ (x′n) dx

′
n (69)

for the variable

ξn = x′n
/√

⟨⟨(x′n)2⟩⟩ = xn
/√

⟨⟨(xn)2⟩⟩ (70)

normalized by the standard deviation. The normalized variable ξn is related to α
through the relation

|ξn| = ξ̄n (ℓn/ℓ0)
(ϕα/3)−ζ2ϕ/2 (71)

with

ξ̄n =
[
2γ

(n)
ϕ,2 (ℓn/ℓ0)

−ζ2ϕ +
(
1− 2γ

(n)
ϕ,0

)
a2ϕ

]−1/2
. (72)

It is reasonable to assume that the origin of intermittent rare events is attributed
to the first singular term in (56), and that the contribution from the second term

∆Π
(n)
ϕ (xn) to the events is negligible. Therefore, we put, for ξ∗n ≤ |ξn| ≤ ξmax

n

(equivalently, αmin ≤ α ≤ α∗),

Π̂
(n)
ϕ,tl(|ξn|) d|ξn| = Π

(n)
ϕ,S(|xn|) d|xn|, (73)

where

ξmax
n = ξ̄n (ℓn/ℓ0)

(ϕαmin/3)−ζ2ϕ/2 . (74)
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Substituting (57) with (38) into (73), we have

Π̂
(n)
ϕ,tl(|ξn|) = Π̄

(n)
ϕ (ℓn/ℓ0)

(ζ2ϕ/2)−(ϕα/3)+1−f(α) = Π̄
(n)
ϕ (ℓn/ℓ0)

1−f(α) ξ̄n
/
|ξn| (75)

with

Π̄
(n)
ϕ =

[
3
(
1− 2γ

(n)
ϕ,0

)/
2ϕξ̄n

]√
|f ′′(α0)|

/
2π| ln (ℓn/ℓ0) |. (76)

Note that ξ∗n . 1 as can be seen below when we analyze experiments. This tail

part Π̂
(n)
ϕ,tl(|ξn|) represents the large deviations, and manifests itself the multifractal

distribution of the singularities due to the scale invariance of the Navier-Stokes
equation when its dissipative term can be neglected.
For smaller values, |ξn| ≤ ξ∗n (equivalently, α∗ ≤ α), we put

Π̂
(n)
ϕ,cr(ξn)dξn =

[
Π

(n)
ϕ,S(xn) + ∆Π

(n)
ϕ (xn)

]
dxn = Π̄

(n)
ϕ,cr e

−gϕ(ξn)dξn (77)

with some real valued function gϕ(ξn). The contribution to this center part Π̂
(n)
ϕ,cr(ξn)

comes from a specific fluctuations of the variable smaller than its standard devi-
ation. This part may represent a specific fluctuation which is a mixture of the
coherent turbulent motion and the incoherent motion stemmed from the dissipa-
tive term violating the scale invariance.

The two parts of the PDF, Π̂
(n)
ϕ,tl(|ξn|) and Π̂

(n)
ϕ,cr(|ξn|), are connected at

ξ∗n = ξ̄n (ℓn/ℓ0)
(ϕα∗/3)−ζ2ϕ/2 (78)

under the conditions that they have the common value, i.e.,

Π̂
(n)
ϕ,tl(|ξ

∗
n|) = Π̂

(n)
ϕ,cr(|ξ

∗
n|) (79)

and the common log-slope, i.e.,

d

dξn
ln Π̂

(n)
ϕ,tl(ξn)

∣∣∣
ξn=ξ∗n

=
d

dξn
ln Π̂

(n)
ϕ,cr(ξn)

∣∣∣
ξn=ξ∗n

. (80)

The conditions (79) and (80) give

Π̄
(n)
ϕ,cr = Π̄

(n)
ϕ egϕ(ξ

⋆
n) (ℓn/ℓ0)

1−f(α⋆) ξ̄n
/
ξ∗n (81)

and

dgϕ(ξn)
/
dξn

∣∣
ξn=ξ∗n

=
[
ϕ+ 3f ′(α∗)

] /
ϕξ∗n, (82)

respectively. With the help of (81), we obtain

Π̂
(n)
ϕ,cr(ξn) = Π̄

(n)
ϕ e−[gϕ(ξn)−gϕ(ξ∗n)] (ℓn/ℓ0)

1−f(α⋆) ξ̄n
/
ξ∗n. (83)

The value of α∗, therefore the value of ξ∗n (see (78)), is determined for each PDF as
an adjusting parameter in the analysis of PDFs obtained by ordinary or numerical
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experiments.1 By this refinement, the PDF Π̂
(n)
ϕ (ξn) has come to be able to re-

produce experimental PDFs around the connection point much better than before
with only negligible changes at the tail part and the center part of the PDF. Note
that the reproduction of the PDF for the tail and central parts within MPDFT
have been quite satisfactory from the beginning.
With the assumption (73) that, for ξ∗n ≤ |ξn| ≤ ξmax

n , one can neglect the con-

tribution from ∆Π
(n)
ϕ (xn)dxn, we are able to write down the formula to calculate

2γ
(n)
ϕ,m. From (77), (83) and (68), ∆Π

(n)
ϕ (xn)dxn has its value

∆Π
(n)
ϕ (xn)dxn = Π̄

(n)
ϕ e−[gϕ(ξn)−gϕ(ξ∗n)]

(
ℓn
ℓ0

)1−f(α⋆) ξ̄n
ξ∗n

dξn

−
1− 2γ

(n)
ϕ,0

2

√
|f ′′(α0)|| ln (ℓn/ℓ0) |

2π

(
ℓn
ℓ0

) 1−f(α)

dα (84)

only for the center part, hence, from (63), we have

2γ
(n)
ϕ,m = 2

∫ x∗
n

0
dxn(xn)

m ∆Π
(n)
ϕ (xn) =

(
1− 2γ

(n)
ϕ,0

)(
K

(n)
ϕ,m − L

(n)
ϕ,m

)
(85)

with

K
(n)
ϕ,m =

3

ϕ

(
ℓn
ℓ0

)1−f(α∗)+mϕα∗/3
√

|f ′′(α0)|
2π| ln (ℓn/ℓ0) |

∫ 1

0
dz zme−[gϕ(ξ∗nz)−gϕ(1)],(86)

L
(n)
ϕ,m =

(
ℓn
ℓ0

)√
|f ′′(α0)|| ln (ℓn/ℓ0) |

2π

∫ αmax

α∗
dα

(
ℓn
ℓ0

) mαϕ/3−f(α)

. (87)

For m = 0, (85) gives

1− 2γ
(n)
ϕ,0 = 1

/(
1 +K

(n)
ϕ,0 − L

(n)
ϕ,0

)
. (88)

Then, we finally obtain

2γ
(n)
ϕ,m =

(
K

(n)
ϕ,m − L

(n)
ϕ,m

)/(
1 +K

(n)
ϕ,0 − L

(n)
ϕ,0

)
. (89)

The flatness F
(n)
x of the PDF for the variable xn, and therefore of the PDF for

x′n, defined by

F (n)
x = ⟨⟨|xn|4⟩⟩

/
⟨⟨|xn|2⟩⟩2 = ⟨⟨ξ4n⟩⟩, (90)

reduces to

F (n)
x =

2γ
(n)
ϕ,4 +

(
1− 2γ

(n)
ϕ,0

)
a4ϕ (ℓn/ℓ0)

ζ4ϕ[
2γ

(n)
ϕ,2 +

(
1− 2γ

(n)
ϕ,0

)
a2ϕ (ℓn/ℓ0)

ζ2ϕ
]2 . (91)

1In the previous treatments, the connection point ξ∗n had been determined as the point where Π̂
(n)
ϕ (ξ∗n)

has the least dependence on n.
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Figure 1. The PDFs of energy transfer rates for δ = 21/4 on (a) log and (b) linear scale in the vertical
axes. For better visibility, each PDF is shifted by −1 unit along the vertical axis in (a) and by −0.1 unit
along the vertical axis in (b). Open circles are the PDFs by DNS from the smallest value (top) to the
largest value (bottom) in 2r/η which are listed in Table 1 where 2r corresponds to ℓn. Solid lines represent
the curves given by the present theory with µ = 0.320 ((1 − q) ln δ = 0.323, α0 = 1.19, X = 0.382). Note
that q = −0.862.
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Figure 2. The PDFs of energy transfer rates for δ = 21/2 on (a) log and (b) linear scale in the vertical
axes. For better visibility, each PDF is shifted by −2 unit along the vertical axis in (a) and by −0.2 unit
along the vertical axis in (b). Open circles are the DNS data points for 2r/η corresponding to the series A

for the case δ = 21/2 in Table 1 where 2r corresponds to ℓn. Solid lines represent the curves given by the
present theory with µ = 0.320 ((1− q) ln δ = 0.323, α0 = 1.19, X = 0.382). Note that q = 0.068.

5. Analyses of Observed PDFs for Energy Transfer Rates

In order to see that the value δ actually does not affect the values of observables
within the framework of MPDFT, we will analyze the PDFs of energy transfer
rates extracted by Kaneda’s group from their 40963 DNS [30]. The PDFs are sym-
metrized under the assumption that the intermittent character of turbulence is not
affected by the existence of a stationary energy flow which is providing the skew-
ness of the observed PDF for energy transfer rates, since the character originates
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Figure 3. The PDFs of energy transfer rates for δ = 2 on (a) log and (b) linear scale in the vertical axes.
For better visibility, each PDF is shifted by −4 unit along the vertical axis in (a) and by −0.4 unit along
the vertical axis in (b). Open circles are the DNS data points for 2r/η corresponding to the series A for
the case δ = 2 in Table 1 where 2r corresponds to ℓn. Solid lines represent the curves given by the present
theory with µ = 0.320 ((1− q) ln δ = 0.323, α0 = 1.19, X = 0.382). Note that q = 0.534.

from the multifractal distribution of singularities owing to the invariance of the N-S
equation under the scale transformation (10). We believe that the correctness of
this assumption is proven by the success in precise re-creation of the symmetrized
PDFs by the theoretical PDFs produced under this assumption as has been realized
in our previous works and also in the present one (see below).

Now, each observed PDF Π̂ (n)(ξn) is symmetrized with respect to ξpeakn , at which

PDF has its peak value, by averaging the part ξn ≥ ξpeakn and the part ξn ≤ ξpeakn .

The value ξpeakn is positive for positively skewed PDF. After the symmetrization,

we shift the horizontal position of the symmetrized PDF by putting ξpeakn as the
origin of the horizontal axis. However, for the present analyses in this paper, each
PDF is symmetrized at ξn = 0, since the peak points of the extracted PDFs locate
between ξn = 0 and the next data point in the positive ξn axis. In order to do the
proper symmetrization, we need more data points especially for the center part of
the PDF.
The PDF for the energy transfer rates is given by the formulae in subsection 4.2

with ϕ = 3. We put for Π̂
(n)
ϕ,cr(ξn) in (77) the trial function

e−g3(ξn) =
{
1−

(
1− q′

) [
1 + f ′(α∗)

]
[(ξn/ξ

∗
n)

w − 1]
/
w
}1/(1−q′)

(92)

of the Tsallis-type just because it can cover various shapes by changing the single
parameter q′.1 For example, it reduces to exponential function for q′ → 1, and
to a Lorentzian shape for q′ = 2 with respect to the variable (ξn/ξ

⋆
n)

w/2. The
parameters q′ and w are adjusted by the property of the experimental PDFs near

ξn = 0 with the theoretical formula for the PDF Π̂
(n)
ϕ (ξn). The paremeter q′ is tuned

by adjusting the peak height of PDF at the center, i.e., at ξn = 0. Throughout the
following analyses in this paper, the parameter w is settled to w = 1.20.
The PDFs of energy transfer rates by DNS are analyzed in Fig. 1, Fig. 2 and

1This parameter is another entropy index different from q in (45).
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Figure 4. The relation between ñ and 2r/η extracted from the PDFs of energy transfer rates for δ = 21/4

(open triangles), for δ = 21/2 (crosses; the series A in Table 1) and for δ = 2 (open circles; the series A in
Table 1). The line is ñ = −1.02 ln(2r/η) + 9.75. Here, 2r corresponds to ℓn. Note that the inertial range is
the region between the vertical dash-dotted lines.

Fig. 3, respectively, for the magnifications δ = 21/4, δ = 21/2 and δ = 2 on (a) log
and (b) linear scale in the vertical axes. For better visibility, each PDF is shifted
by appropriate unit along the vertical axis. Open circles in the figures are the DNS
data points for PDF. The profiles of the PDF are shown only the part of their
right-hand side. Solid lines represent the theoretical PDFs given in subsection 4.2
with ϕ = 3.
Through the analyses, it turns out that the turbulent system under consideration

is characterized with the value µ = 0.320 for the intermittency exponent. Then,
the parameters necessary for the PDF within A&A model are determined as (1−
q) ln δ = 0.323, α0 = 1.19 and X = 0.382, which are independent of δ. The entropy
indexes become q = −0.862 for δ = 21/4 (= 1.19), q = 0.068 for δ = 21/2 (= 1.41)
and q = 0.534 for δ = 2. Other parameters extracted by the analyses of the PDFs
from DNS with the theoretical PDFs are listed in Table 1 for each δ. There are
two distinct series of observations A and B for the magnification δ = 21/2, whereas
there are four distinct series A, B, C and D for δ = 2.
The dependences of the values of ñ on 2r/η = ℓn/η, listed in Table 1, are shown

in Fig. 4. The formulae for the dependences are extracted by the method of least
squares for δ = 21/4, δ = 21/2 and δ = 2 as

ñ = −1.02 ln(2r/η) + 9.72, (93)

ñ = −1.03 ln(2r/η) + 9.76, (94)

ñ = −1.02 ln(2r/η) + 9.78, (95)

respectively. Here, the Kolmogorov scale η for the DNS [30] is η = 5.12 × 10−4.
Since these formulae are almost common for every δ, we draw in Fig. 4 the line

ñ = −1.02 ln(2r/η) + 9.75 (96)

for reference. This independence of δ proves the correctness of the conjecture that ñ
is independent of δ. From Fig. 4, we find the remarkable outcome that there exists
a scaling behavior extended to smaller region from the inertial range that is the
range between the vertical dash-dotted lines, i.e., 126 < 2r/η < 448 [30]. This may
be attributed to the fact that MPDFT is the theory looking at the singularities
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Figure 5. The relation between ξ∗n and 2r/η extracted from the PDFs of energy transfer rates for δ = 21/4

(open triangles), for δ = 21/2 (crosses; the series A in Table 1) and for δ = 2 (open circles; the series A in
Table 1). The solid line, the dotted line and the dashed line are, respectively, ξ∗n = 0.0986 ln(2r/η)+0.0392,
ξ∗n = 0.0945 ln(2r/η) + 0.0714 and ξ∗n = 0.0883 ln(2r/η) + 0.142. Here, 2r correspond to ℓn. Note that the
inertial range is the region between the vertical dash-dotted lines.

which become more conspicuous as 2r (= ℓn) getting smaller (see the discussion in
section 2). Note that the scaling behavior breaks near the larger end of the inertial
range.
The comparison of the extracted formula (96) for ñ with the theoretical relation

ñ = − ln(2r/η) + ln(ℓ0/η) (97)

provides us with the estimation ℓ0/η = 1.72× 104. Since the smallest grid spacing
is 3η [30], ℓ0/3η = 5.72× 103 provides us with the number of grids corresponding
to ℓ0. Note that the estimated value of ℓ0/3η is about 2.8 times larger than the
possible largest meaningful length 2048 in the unit of the number of grids due to the
periodic boundary condition of the DNS. Note also that ℓ0/η is about 8 times larger
than the integral length L/η = 2.130× 103 of the DNS under consideration [30].
The values α∗ of the connection point are almost constant with respect to 2r/η,

but they depend slightly on δ (see Table 1). The corresponding values for the
connection point ξ∗n are given by (78) with (72) and (89) for ϕ = 3, and are listed
in Table 1. The dependence of ξ∗n on 2r/η is extracted out by the method of least
squares in the forms

ξ∗n = 0.0986 ln(2r/η) + 0.0392, (98)

ξ∗n = 0.0945 ln(2r/η) + 0.0714, (99)

ξ∗n = 0.0883 ln(2r/η) + 0.142, (100)

respectively, for δ = 21/4, δ = 21/2 and δ = 2. These lines are drawn in Fig. 5. It is
remarkable that the extracted formula has rather simple form in spite of the fact
that ξ∗n has a complicated dependence on 2r/η due to the implicit dependences
through the quantities (72) and (89) in addition to the explicit dependence in (78).
It is also remarkable that the connection point ξ∗n has a scaling behavior extended
to smaller region from the inertial range which is the region between the vertical
dash-dotted lines [30].
The entropy index q′ of the PDFs (ϕ = 3) for the central part (83) with (92)

for δ = 21/4, δ = 21/2 and δ = 2 are plotted in Fig. 6. Although the values of q′

locate around 0.5, they are scattered for the present analyses of the energy transfer
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Figure 6. The relation between q′ and 2r/η extracted from the PDFs of energy transfer rates for δ = 21/4

(open triangles), for δ = 21/2 (crosses) and for δ = 2 (open circles). Note that the inertial range is the
region between the vertical dash-dotted lines.

rates. The cause of the scattered values of q′ and of the sharp peak at ξn = 0 may
be attributed to the inappropriate symmetrization of the experimental PDFs. We
expect that, with the analyses near the center part of PDFs based on more data
points and with the appropriate symmetrization of PDFs, one can extract the more
reasonable characteristics of fluctuations around the coherent turbulent motion.
The results of the reexamination in this direction will be published elsewhere in
the near future.

6. Summary and Prospects

We showed successfully the validity of the scaling relation (3) in a high accuracy
through the analyses of the PDFs for energy transfer rates, extracted out from
40963 DNS [30] with the magnification δ = 21/4. As the value δ (> 1) is chosen
arbitrarily by observers when they produce a series of PDFs, observables of a
turbulent system should not depend on δ. From the original series, we created two
more series with magnifications δ = 21/2 and δ = 2 in order to check if the choice of
δ does not affect observables of the turbulent system under the analysis by MPDFT
with the new scaling relation. Here, observables are the multifractal spectrum, the
mass exponents, the scaling exponents and so on. The independence of observables
on δ has been proven through the accurate analyses of PDFs performed in this
paper (see Fig 1, Fig. 2 and Fig. 3). It is also revealed that ñ does not depend on
δ, which ensures the uniqueness of the PDF of α for any value of δ.
It is found from the dependence of ñ on 2r (= ℓn) that the scaling behavior

extends itself to smaller region with respect to 2r than the inertial range (see
Fig. 4). It is reasonable in the sense that MPDFT is the formalism analyzing the
singularities of those observables responsible for intermittency which is important
for smaller ℓn. The dependence of the connection point ξ∗n on 2r also shows a scaling
behavior extended to smaller region than the inertial range (see Fig. 5), although
the scaling relation has a slight dependence on δ which may be attributed to the
fact that the lack of data points for the center part of PDF. The reconsideration of
this point accompanied by the refinement to the scattered q′ values is in progress
and will be reported elsewhere in the near future. The information of the connection
point ξ∗n may be useful for the analyses by wavelet [33–36] and curvelet [37, 38] to
separate the coherent motion of eddies in turbulence and the fluctuation around
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eddies.
It is revealed that α∗ at the connection point are constant with respect to 2r for

each δ, but its value depends slightly on δ. In this paper, we adjusted the connection
point α∗, therefore ξ∗n, in order for the best fit of the PDF around the point. In
the previous analyses, we had chosen the connection point under the criterion that

the PDF Π̂
(n)
ϕ (ξ∗n) at the connection point should have the least dependence on

n. The values α∗
old thus determined are also constant with respect to 2r, but are

different from the values α∗ extracted through the adjustment performed in the
present paper. The difference between the values α∗ and α∗

old is quite small. For the
case of the PDFs for energy transfer rates with δ = 2 investigated in this paper,
α∗ = 0.930 (see Table 1) and α∗

old = 0.928. Note that the previous analyses had
been done only for δ = 2.
The precise verification of the scaling relation (3), as was done in the present

paper, is essential to provide a new interpretation of turbulence since we observe
that the scaling relation is intimately related to a δ-scale Cantor set associated
with unstable δ∞ periodic orbits. We expect that the present work opens a door
to the route for deeper understanding of the role of the Tsallis-type distribution
function, and that its goal can be found by a further investigation on the properties
of the unstable δ∞ periodic orbits. The new scaling relation proposed in this paper
is related to the one extracted in a dynamical system, say the system of logistic
map. Then, we observe that the origin of the multifractal character of the fully
developed turbulence is deeply related to the δ-scale Cantor sets created from
δ∞ periodic orbits. From the present analyses, we conjecture that the system of
the fully developed turbulence consists of the accumulation of the Cantor sets
characterized by unstable δ∞ periodic orbits with different values of δ. Observation
of the system with the magnification δ extracts the information of the δ-scale
Cantor sets constituting the turbulence. Further investigations to this direction is
now in progress, and will be given elsewhere in the near future.
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