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1 Introduction

Lattice field theory is the most powerful theoretical framework for investigating non-perturbative

aspects of gauge theories such as quantum chromodynamics (QCD). In this framework, while

gauge fields are successfully incorporated without any obstacles [1], putting fermion fields on

the lattice is not straight-forward: A naive fermion formulation gives rise to undesirable super-

fluous fermion modes, producing sixteen flavors rather than one. The essence of this problem

is summarized in the form of Nielsen-Ninomiya’s no-go theorem [2, 3], which states that a lat-

tice fermion action with chiral symmetry, locality and other reasonable properties inevitably

produces one or more pairs of particles with opposite chiralities in the continuum limit.

To overcome this doubling problem, various types of lattice fermion formulation have been

proposed. Among them, the staggered fermion [4–6] and the Wilson fermion [1] are utilized

frequently for QCD simulations. In the staggered fermion formulation, the number of flavors is

reduced to four by the spin diagonalization method [7]. The staggered fermion action possesses

the flavor-singlet vector and non-singlet axial-vector U(1) symmetries, the latter of which is

spontaneously broken. In addition, it has several discrete symmetries as well [8]. In the case

of the Wilson fermion, on the other hand, doublers are eliminated by adding the Wilson term

at the cost of the chiral symmetry: The term is not invariant under the chiral transformation

even if the bare quark mass is set to zero, so that the additive mass renormalization is required

to realize massless or very light quarks. At the same time, the Wilson term splits sixteen

species doublers of the naive fermion into five branches composed of one, four, six, four, and

one fermion modes. One of the notable features of the Wilson fermion is its complicated phase

structure [9–12]: Parity symmetry is spontaneously broken by pion condensation, depending

on the values of the quark mass and the gauge coupling constant.

As is seen in the above, the existence of fermion doublers on the lattice entails the symmetry

structure different from that of continuum theory. Hence, it is important to understand the

underlying symmetries in lattice field theory, not only for QCD simulations with these fermion

formulations, but also for constructions of other lattice fermion formulations such as overlap

[13, 14], domain-wall [15–17], staggered Wilson [18–21], staggered overlap [19, 20, 22, 23] and

minimally doubled fermions [24–32]. Moreover fermion doublers could be used to economically

simulate QCD-like theories with many flavors,1 which might be relevant for the construction of

techni-color theories.

In the case of the naive fermion, it is known that the kinetic term possesses U(4) × U(4)

symmetries2 and it is spontaneously broken into the diagonal U(4) [7, 42]. In the case of the

Wilson fermion, branches other than the physical one have been taken little heed of. Recently,

1See, for example, refs. [33–39]
2For earlier discussion on the symmetry of the naive fermion, see also [40,41].
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it has been reported in the study of the Gross-Neveu model that the symmetry enhancement

would take place at the central branch (the third branch) of Wilson-type fermions [18].

The aim of this paper is to shed light on the structures of underlying continuous symme-

tries and their spontaneous breakdown in four types of lattice fermions formulation: the naive

fermion, the Wilson fermion and two kinds of minimally doubled fermion. For this purpose,

we rewrite lattice fermion actions in “the spin-flavor representation” [43,44], in which the spin

and doubler-multiplet structures of the lattice fermions become manifest. We first re-express

the U(4) × U(4) symmetry of the naive fermion in [7, 42] using the spin-flavor representation.

We then apply the same method to the Wilson fermion action, which is invariant under only

the ordinary U(1) vector transformation for general values of the mass parameter m. We show,

however, that an additional U(1) vector symmetry is realized by tuning m and this symmetry

is spontaneously broken by pion condensation. Finally, we explore the Karsten-Wilczek and

the Boriçi-Creutz minimally doubled fermion and discover that a similar type of symmetry

enhancement and its spontaneous breakdown occur.

This paper is organized as follows. In section 2, we revisit the symmetries of the naive

lattice fermion via the spin-flavor representation. In section 3, we discuss the symmetries of the

Wilson fermion with emphasis on the symmetry enhancement and its spontaneous breakdown.

We also explore minimally doubled fermions in section 4. Section 5 is devoted to a summary

and discussions. Some technical details are given in appendixes.

2 Naive fermion and Spin-flavor representation

In this section, we first review the U(4)×U(4) symmetries of the naive fermion [7,42]. Then we

introduce the spin-flavor representation, which simplifies the identification of symmetry in the

case of the Wilson fermion and the minimally doubled fermions.

The action of the naive fermion is given by

Snf =
1

2

∑
n,µ

(ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn) +m
∑

n

ψ̄nψn . (1)

Throughout this paper, we consider the nondimensionalized action. As is discussed in [7, 42],

the kinetic term of this action has larger symmetry than the action of the continuum theory:

ψn → ψ′
n = exp

[
i
∑
X

(
θ

(+)
X Γ

(+)
X + θ

(−)
X Γ

(−)
X

) ]
ψn ,

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑
X

(
−θ(+)

X Γ
(+)
X + θ

(−)
X Γ

(−)
X

) ]
.

(2)
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Here, Γ
(+)
X and Γ

(−)
X are site-dependent 4 × 4 matrices:

Γ
(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ , γν ]

2

}
, (3)

Γ
(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ , γν ]

2

}
, (4)

where ňµ =
∑

ρ 6=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ6=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ
(±)
X s, the link reflection positivity

constrains θ
(±)
X s to be real. In other words, only if θ

(±)
X s are real numbers, the transformations

commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (5)

The symmetry group (2) is U(4)×U(4)3, which is broken by the chiral condensate or the mass

term down to the diagonal U(4) generated by Γ
(+)
X . Therefore, there appear sixteen Nambu-

Goldstone bosons (NG bosons) when the symmetry is spontaneously broken. The existence of

these sixteen NG bosons is explicitly verified from the strong coupling analysis [42,45].

In order to understand the relation between the U(4) × U(4) symmetries and the sixteen

doublers, it is useful to rephrase the above results using the spin-flavor representation [43, 44].

We use this representation also in the subsequent sections to clarify the symmetries of the

Wilson and minimally doubled fermions.

Using the field χn defined by

χn = γn4
4 γn3

3 γn2
2 γn1

1 ψn, χ̄n = ψ̄nγ
n1
1 γn2

2 γn3
3 γn4

4 , (6)

we can represent the naive fermion action (1) as follows:

Snf =

[∑
n,µ

ηµ(n) χ̄n
χn+µ̂ − χn−µ̂

2
+m

∑
n

χ̄nχn

]
with ηµ(n) = (−1)

P

ν<µ nν . (7)

As in the case of the staggered fermion [43,44], we define the field Ψ(N) as4

Ψ(N)α, f1, f2 =
∑

A

(γA

2

)
α, f1

χA(N)f2 , Ψ̄(N)α, f1, f2 =
∑

A

( γ̄A

2

)
α, f1

χ̄A(N)f2 , (8)

where Aµ = 0 or 1, χA(N) = χ2N+A, γA = γA1
1 γA2

2 γA3
3 γA4

4 , and γ̄A denotes the complex conjugate

of γA. Note that we can identify the index α with a spinor index and the indices f1, f2 with

flavor indices of sixteen doublers. The relation between the fields ψ and Ψ is given by

Ψ(N)α, f1, f2 =
∑

A

(γA

2

)
α, f1

(γ̄A)β, f2
(ψ2N+A)β , (9)

3The so-called “doubling symmetry” [2] is a discrete subgroup of U(4) × U(4).
4The spin-flavor representation becomes more complicated in the presence of gauge fields. However, because

the structure of global symmetry remains unchanged, we here consider the free theory for simplicity.
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Ψ̄(N)α, f1, f2 =
∑

A

( γ̄A

2

)
α, f1

(γA)β, f2

(
ψ̄2N+A

)
β
. (10)

In terms of Ψ(N), the naive fermion action (1) can be written as

Snf =

[
1

2

∑
N,µ

Ψ̄(N) (γµ ⊗ 14 ⊗ 14)∇µΨ(N) +m
∑
N

Ψ̄(N) (14 ⊗ 14 ⊗ 14) Ψ(N)

+
1

2

∑
N,µ

Ψ̄(N)
(
γ5 ⊗ γT

µ γ
T
5 ⊗ 14

)
∇2

µΨ(N)

]
, (11)

where

Ψ̄(A⊗B ⊗ C)Ψ =
∑

α, α′, f1, f ′
1, f2, f ′

2

Ψ̄α,f1,f2 (A)αα′ (B)f1f ′
1
(C)f2f ′

2
Ψα′,f ′

1,f ′
2
, (12)

∇µΨ(N) =
Ψ(N + µ̂) − Ψ(N − µ̂)

2
, (13)

∇2
µΨ(N) =

Ψ(N + µ̂) − 2Ψ(N) + Ψ(N − µ̂)

2
, (14)

and the superscript T denotes transposition. In (11), the third term breaks the vector and the

axial-vector symmetries among sixteen doublers down to the U(4)×U(4) symmetries generated

by (14⊗14⊗u(4)) and (γ5⊗γT
5 ⊗u(4)). Thus, the U(4)×U(4) symmetries are part of the vector

and the axial-vector symmetries among doublers. The reformulated action (11) is quite similar

to that of the staggered fermion [43,44] except that eq. (11) has an additional tensor structure

denoted by the index f2. This is manifestation of the well-known fact that the naive fermion

is composed of four copies of staggered fermions. Although this additional tensor structure is

trivial in the case of the naive fermion, it is nontrivial in the Wilson and minimally doubled

fermions and is important when we discuss the symmetry of these fermions in the following

sections.

3 Wilson fermion

In this section we discuss the symmetry and its breaking in the case of the Wilson fermion with

emphasis on the effect of the Wilson term. As is well-known, the Wilson term splits sixteen

doublers into five branches. Since numerical simulations almost exclusively use the “physical”

branch, which contains only one massless fermion mode, the symmetry and the structure in

other branches have not been fully investigated so far. Therefore, here we will clarify the

continuous symmetries and their spontaneous breaking in all the branches. As a consequence,

we will find an unexpected symmetry enhancement and its spontaneous breaking in the central

branch.
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3.1 Action and symmetries

The action for the Wilson fermion [1] is given by

S = Snf + SW with SW = −r
2

∑
n,µ

ψ̄n (ψn+µ̂ − 2ψn + ψn−µ̂) . (15)

In terms of the spin-flavor representation, the Wilson term SW is written as

SW = −r
2

∑
N,µ

[
2Ψ̄(N)

(
14 ⊗ γT

µ ⊗ γµ

)
Ψ(N) + Ψ̄(N)

(
14 ⊗ γT

µ ⊗ γµ

)
∇2

µΨ(N)

+Ψ̄(N)
(
γµγ5 ⊗ γT

5 ⊗ γµ

)
∇µΨ(N)

]
+ 4r

∑
N

Ψ̄(N) (14 ⊗ 14 ⊗ 14) Ψ(N) . (16)

The first three terms in (16) are invariant under the ordinary U(1) vector transformation, U(1)V ,

which is defined by

Ψ(N) → Ψ′(N) = exp [iθ(14 ⊗ 14 ⊗ 14)] Ψ(N) , (17)

Ψ̄(N) → Ψ̄′(N) = Ψ̄(N) exp [−iθ(14 ⊗ 14 ⊗ 14)] , (18)

ψn → ψ′
n = eiθψn , ψ̄n → ψ̄′

n = e−iθψ̄n , (19)

and the site-dependent U(1) vector transformation, U(1)−V , defined by

Ψ(N) → Ψ′(N) = exp
[
iθ(γ5 ⊗ γT

5 ⊗ 14)
]
Ψ(N) , (20)

Ψ̄(N) → Ψ̄′(N) = Ψ̄(N) exp
[
iθ(γ5 ⊗ γT

5 ⊗ 14)
]
, (21)

ψn → ψ′
n = ei(−1)n1+...+n4θψn , ψ̄n → ψ̄′

n = ei(−1)n1+...+n4θψ̄n . (22)

By contrast the last term in (16) is invariant only under the U(1)V transformation. Therefore,

the total Wilson fermion action possesses only the U(1)V symmetry for general values of m and

r. Interestingly enough, however, the additional U(1)−V symmetry appears if m and r satisfy

m+4r = 0, at which the on-site terms cancel out between the mass term and the Wilson term.

As we will show in the next subsection, this symmetry is spontaneously broken by the pion

condensate, 〈ψ̄γ5ψ〉.

3.2 Strong coupling analysis

Now we employ the strong coupling analysis to show that there appears an NG boson associated

with the U(1)−V symmetry breaking in the presence of the pion condensate. An effective action

for mesons in the strong coupling limit [42,9, 10] can be written in general as

Seff(M) = Nc

∑
n

[∑
µ

Tr f(Λn,µ) + tr M̂M(n) − tr logM(n)

]
, (23)
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Λn,µ =
Vn,µV̄n,µ

N2
c

, M(n)αβ =

∑
a ψ̄

a,α
n ψa,β

n

Nc

,

where Nc is the number of colors, Tr ( tr ) means a trace over color(spinor) index, and M(n)

is a meson field. The explicit form of the function f is determined by performing a one-link

integral of the gauge field. More explicitly we can write

V ab
n,µ = ψ̄b

nP
−
µ ψ

a
n+µ̂ , V̄ ab

n,µ = −ψ̄b
n+µ̂P

+
µ ψ

a
n , (24)

Tr f(Λn,µ) = −tr f
(
−M(n)(P+

µ )TM(n+ µ̂)(P−
µ )T

)
, (25)

where 4× 4 matrices P±
µ are specified later. In the large Nc limit, it is known that f(x) can be

analytically evaluated as

f(x) =
√

1 + 4x− 1 − ln
1 +

√
1 + 4x

2
= x+O(x2) . (26)

However, in the following part of this paper, we will approximate f(x) as f(x) = x unless

otherwise stated because qualitative features such as an appearance of NG bosons remain

unchanged by this approximation.

To calculate meson masses we expand the meson field as5

M(n) = MT
0 +

∑
X

πX(n)ΓT
X , X ∈ {S, P, Vα, Aα, Tαβ} , (27)

where M0 is the vacuum expectation value (VEV) of M(n), and

ΓS =
14

2
, ΓP =

γ5

2
, ΓVα =

γα

2
, ΓAα =

iγ5γα

2
, ΓTαβ

=
γαγβ

2i
(α < β). (28)

Then the effective action at the second order of πX is given by

S
(2)
eff = Nc

∑
n

[
1

2
tr (M−1

0 ΓXM
−1
0 ΓY ) πX(n)πY (n) +

∑
µ

tr (ΓXP
−
µ ΓY P

+
µ )πX(n)πY (n+ µ̂)

]
= Nc

∫
d4p

(2π)4
πX(−p)DXY (p)πY (p) , (29)

where

DXY (p) =
1

2

(
D̃XY (p) + D̃Y X(−p)

)
, (30)

D̃XY (p) =
1

2
tr (M−1

0 ΓXM
−1
0 ΓY ) +

∑
µ

tr (ΓXP
−
µ ΓY P

+
µ )eipµ . (31)

5In eq. (27), S, P, Vα, Aα and Tαβ stand for scalar, pseudo-scalar, vector, axial-vector and tensor respectively.
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In the case of the Wilson fermion, M̂ = (m+ 4r)14 ≡ MW14 and P±
µ =

γµ ± r

2
. By taking

M0 = σ14 + iπγ5, we have
σ =

−MW ±
√
M2

W + 8(1 − r2)

4(1 − r2)
, π = 0 , M2

W ≥M2
c

σ =
MW

4r2
, π2 =

1

16r4(1 + r2)
(8r4 −M2

W (1 + r2)) , M2
W < M2

c

(32)

where M2
c =

8r4

1 + r2
.

As discussed in the previous subsection, at MW = 0 we have an additional U(1) symmetry,

U(1)−V . Since this parameter regime resides in the parity broken phase, in which π2 6= 0 and

M2
W < M2

c , U(1)−V is spontaneously broken by the VEV of π in this case.

To compute the meson mass, we hereafter take r2 = 1 for simplicity. Because D(p) is block-

diagonal, we concentrate on its submatrix DXY (p) with X, Y ∈ {S, P,Aα}. Then, by setting

p = (π, π, π, π + imSPA ), we find that the S-P -Aα sector mass mSPA is given by

cosh(mSPA ) = 1 +
20M2

W

6 − 7M2
W

. (33)

Note that since the transformation (22) involves the site-dependent quantity (−1)n1+···+n4 , it

is natural to expand the momentum p around (π, π, π, π). Eq. (33) tells us that the meson

becomes a massless NG boson at MW = 0 as expected. If we use the exact form of f(x) in the

large Nc limit, we then obtain

cosh(mSPA ) = 1 +
2M2

W (16 +M2
W )

16 − 15M2
W

, (34)

which again shows that a massless NG boson appears at MW = 0.

Before closing this subsection, it is worth noting that the point MW = 0 corresponds to

the central cusp in the parity broken phase, at which six fermion modes with momentum shift,

p = (π, π, 0, 0), (π, 0, π, 0), (π, 0, 0, π), (0, π, π, 0), (0, π, 0, π) and (0, 0, π, π), are expected to

appear in the continuum limit. Although we have not yet known much about the continuum

limit for this cusp, it is expected to describe QCD with six flavors, which is still asymptotically

free. Therefore, if an appropriate continuum limit exists, we expect the theory in the limit

will be Lorentz-symmetric as in the “physical” branch because the Wilson fermion action itself

possesses the hypercubic symmetry.6 In addition, the above NG boson propagator recovers

6Although the third term in (16) seems to break Lorentz invariance in the continuum limit, it is just an
expressional artifact: The spin-flavor representation does not respect space-time symmetries of the original
action [46]. Actually such a term cannot exist by itself because of the original translational invariance. This
representation is not suitable for study of Lorentz symmetry although it gives good insight into other symmetries.
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the Lorentz-covariant dispersion relation in the naive a → 0 limit even in the strong coupling,

which is far from the continuum limit. We also suggest that the Wilson fermion at MW = 0

may be applicable to the simulation of the six-flavor QCD without any fine-tunings since the

additive mass renormalization is forbidden by the additional U(1) symmetry. At this point

(MW = 0), while the chiral condensate σ is zero, the pion condensate π is non-zero and its

magnitude becomes maximal.

4 Minimally doubled fermions

Having discussed the naive and the Wilson fermion, now we move on to the analysis on mini-

mally doubled fermions. Minimally doubled fermions are a class of lattice fermions with only

two physical fermion modes. Continuous symmetries and their spontaneous breaking for these

fermions have not yet been investigated enough. Therefore, in this section, we study two

canonical examples of minimally doubled fermions, the Karsten-Wilczek and the Boriçi-Creutz

fermion, with emphasis on symmetry and its spontaneous breaking.

4.1 Karsten-Wilczek fermion

4.1.1 Action and symmetries

The action for the Karsten-Wilczek fermion [24] is given by

S = Snf + SKW + S
(3)
KW + S

(4)
KW , (35)

with

SKW = − ir

2

∑
n

3∑
k=1

ψ̄nγ4

(
ψn+k̂ − 2ψn + ψn−k̂

)
, (36)

S
(3)
KW = id3

∑
n

ψ̄nγ4ψn , S
(4)
KW =

d4

2

∑
n

ψ̄nγ4(ψn+4̂ − ψn−4̂) , (37)

where S
(3)
KW and S

(4)
KW are counter terms of dimension three and four, respectively [28]. This

fermion action possesses the cubic subgroup of the hypercubic symmetry. We also note it has

CT and P invariance while each of C and T is broken [26].

In the free theory, the Dirac operator in the momentum space becomes

DKW(p) = i
∑

µ

γµ sin pµ − irγ4

∑
k

(cos pk − 1) + id4γ4 sin p4 +m+ id3γ4, (38)

whose zero modes appear at p = (0, 0, 0, 0) and (0, 0, 0, π) in the absence of the mass and

counter terms, namely m = d3 = 0, though such a fermionic mode can be well-defined only
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when we consider the free theory. Note that we work on the dimensionless action as shown

in (36) and (37); thus r, m, d3 and d4 all stand for dimensionless parameters. In the analogy

of the Wilson fermion, d3 corresponds to the mass parameter m because both are parameters

for the dimension three terms in the action while the parameter r corresponds to the Wilson

parameter. Thus, although the purpose of tuning d3 is to recover the hypercubic symmetry, it

will be tuned in a similar way to the tuning of the mass parameter m for the chiral limit in

the Wilson fermion in Sec. 3. On the other hand, d4 is also tuned to recover the hypercubic

symmetry, but there is no corresponding parameter in the Wilson fermion.

We first consider the symmetries of the Karsten-Wilczek term SKW. In terms of the spin-

flavor representation, SKW is written as

SKW = − ir

2

∑
N, k

[
2Ψ̄(N)

(
γ4 ⊗ γT

4 γ
T
k ⊗ γ4γk

)
Ψ(N) + Ψ̄(N)

(
γ4 ⊗ γT

4 γ
T
k ⊗ γ4γk

)
∇2

kΨ(N)

+Ψ̄(N)
(
γ4γkγ5 ⊗ γT

4 γ
T
5 ⊗ γ4γk

)
∇kΨ(N)

]
+ 3ir

∑
N

Ψ̄(N)
(
γ4 ⊗ γT

4 ⊗ γ4

)
Ψ(N) . (39)

The first three terms on the right-hand side of (39) are invariant under the ordinary axial U(1)

symmetry U(1)A defined by

Ψ(N) → Ψ′(N) = exp
[
iθ(γ5 ⊗ γT

5 ⊗ γ5)
]
Ψ(N) , (40)

Ψ̄(N) → Ψ̄′(N) = Ψ̄(N) exp
[
iθ(γ5 ⊗ γT

5 ⊗ γ5)
]
, (41)

ψn → ψ′
n = eiθγ5ψn , ψ̄n → ψ̄′

n = ψ̄n eiθγ5 , (42)

and the site dependent axial U(1) transformation U(1)+A
7 defined by

Ψ(N) → Ψ′(N) = exp [iθ(14 ⊗ 14 ⊗ γ5)] Ψ(N) , (43)

Ψ̄(N) → Ψ̄′(N) = Ψ̄(N) exp [−iθ(14 ⊗ 14 ⊗ γ5)] , (44)

ψn → ψ′
n = eiθ(−1)n1+...+n4γ5ψn , ψ̄n → ψ̄′

n = e−iθ(−1)n1+...+n4γ5ψ̄n , (45)

in addition to the U(1)V and U(1)−V , introduced in the previous section. On the other hand,

the last term on the right-hand side of (39) is invariant only under the U(1)V and U(1)A

transformations. Therefore the Karsten-Wilczek term SKW possesses only the ordinary vector

and axial-vector U(1) symmetries, U(1)V and U(1)A.

Next let us consider the counter terms S
(3)
KW and S

(4)
KW. In terms of spin-flavor representation,

they are written as

S
(3)
KW = id3

∑
N

Ψ̄(N)
(
γ4 ⊗ γT

4 ⊗ γ4

)
Ψ(N) , (46)

7Here“site dependent” and “axial” refer to original fermion fields ψ and ψ̄.
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S
(4)
KW =

d4

2

∑
N

[
Ψ̄(N) (γ4 ⊗ 14 ⊗ 14)∇4Ψ(N) + Ψ̄(N)

(
γ5 ⊗ γT

4 γ
T
5 ⊗ 14

)
∇2

4Ψ(N)
]
. (47)

We notice that the dimension three counter term S
(3)
KW takes the same form as the last term

on the right-hand side of (39). Therefore, the dimension three counter term is invariant under

U(1)V and U(1)A. On the other hand, the dimension four counter term S
(4)
KW is invariant under

all of the U(4) × U(4) transformations.

From the above discussions, the Karsten-Wilczek fermion action possesses only the U(1)V

symmetry for general values of m, r, d3 and d4, and it acquires the U(1)A symmetry at m = 0.

If d3 + 3r = 0 and m = 0 are simultaneously satisfied, it further acquires the U(1)−V and the

U(1)+
A symmetry in addition to U(1)V and U(1)A.

4.1.2 Strong coupling analysis

In the case of the Karsten-Wilczek fermion, we have M̂ = m14 + i(d3 + 3r)γT
4 and

P+
µ =

{
1
2
(γµ + irγ4) µ = 1, 2, 3

1
2
γ4(1 + d4) µ = 4

, P−
µ =

{
1
2
(γµ − irγ4) µ = 1, 2, 3

1
2
γ4(1 + d4) µ = 4

. (48)

As we discussed in the previous subsection, r corresponds to the Wilson parameter while d3

corresponds to the mass parameter m in the analogy of Wilson fermion. Thus, in the following,

d3 will be tuned as the mass parameter m in the Wilson fermion was tuned as m + 4r = 0 in

Sec. 3.

By taking M0 = σ14 + iπ4γ4, the corresponding gap equations become

3(1 + r2) + (1 + d4)
2

2
σ +m− σ

σ2 + π2
4

= 0 , (49)

3(1 − r2) − (1 + d4)
2

2
π4 − (d3 + 3r) − π4

σ2 + π2
4

= 0 . (50)

Since the VEV of π4 would violate the Lorentz invariance, we would like to consider a solution

with σ 6= 0 and π4 = 0. To obtain a solution with π4 = 0, we need to tune d3 + 3r = 0 for the

dimension three counter term. In this case we need to impose

2

σ2
=

2m

σ
+ 3(1 + r2) + (1 + d4)

2. (51)

As discussed in the last subsection, at m = 0 and d3 + 3r = 0, the action is invariant under

an additional U(1)−V and U(1)+
A symmetries in addition to U(1)V and U(1)A. Since the chiral

condensate 〈ψ̄nψn〉 6= 0 spontaneously breaks U(1)A and U(1)−V , we expect two massless NG

bosons at m = 0. Note that the number of fermion zero modes at d3 + 3r = 0 is not two but

does depend on the values of r and d4. At r = 1 and d4 = 0, for example, there appear six
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zero modes at p = (0, 0, π, π/2), (0, π, 0, π/2), (π, 0, 0, π/2), (0, π, π,−π/2), (π, π, 0,−π/2) and

(π, 0, π,−π/2).

The inverse meson propagator matrix for S-P -Tαβ sector can be factorized as

DSPT =

(
DST 0

0 DPT

)
, (52)

where the matrix DST is defined by

DST
XY (p) =

(
δabDa(p) −i r

2
sa

i r
2
sb DS(p)

)
, (53)

Da(p) =
1

2σ2
+

1

4

[∑
k

{(1 + r2) − 2δka − 2r2}ck − (1 + d4)
2c4

]
, (54)

DS(p) =
1

2σ2
+

1

4

[∑
k

(1 + r2)ck + (1 + d4)
2c4

]
, (55)

for X = (Ta4, S) and Y = (Tb4, S), and the matrix DPT is defined by

DPT
XY (p) =

(
δacδbdDab(p) −iεabe r

2
se

i r
2
εcdese DP (p)

)
, (56)

Dab(p) =
1

2σ2
+

1

4

[∑
k

{(1 + r2) − 2δka − 2δkb}ck + (1 + d4)
2c4

]
, (57)

DP (p) =
1

2σ2
− 1

4

[∑
k

(1 + r2)ck + (1 + d4)
2c4

]
, (58)

for X = (Tab, P ) and Y = (Tcd, P ). Here sa = sin(pa) and ca = cos(pa). Since DST (π + p) =

DPT (p), it is enough to first consider DPT (p) only and then double the degeneracy of the

spectrum.

By taking p = (0, 0, 0, imP ), we obtain

cosh(mP ) = 1 +
1

(1 + d4)2

2m

σ
. (59)

This mode corresponds to a massless NG boson at m = 0. Together with the corresponding

mode in the S sector, totally two NG bosons appear at m = 0 as expected.

If we introduce a small but non-zero spatial momentum, energy of the meson in the P − T

sector becomes E2 = m2
P +X(~p)2 where

X =
mP

sinh(mP )
× 1

(1 + d4)2

[
(1 + r2) − 2r2

T

]
, (60)

T =
m

2σ
+

1

2
{1 + 3r2 + (1 + d4)

2} . (61)
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To require the Lorentz covariance for the dispersion relation at m = 0, we need to choose d4 as

(1 + d4)
2 = −r2 +

√
1 + 4r4 . (62)

If we use the exact form of f(x) in the large Nc limit, we then obtain

coshmP = 1 +
m

Aσ
, (63)

A =
(1 + d4)

2

4
√

1 − σ2(1 + d4)2
, (64)

which again corresponds to a massless Goldstone boson at m = 0. The introduction of small

but finite spatial momenta results in

E2 = m2
P +X(~p)2 , (65)

X =
mP

A sinhmP

(
B − 2B2

T ′

)
, (66)

T ′ = 2
(
A+

m

σ

)
+ 4(B − C) , (67)

B =
1

2
√

1 − 4σ2
, (68)

C =
σ2

(1 +
√

1 − 4σ2)2
√

1 − 4σ2
. (69)

This shows that we can recover the relativistic dispersion by tuning d4. As the discussion here is

only on the strong coupling limit, the above results are not directly related to the properties of

the continuum limit. However, the strong coupling analysis in this subsection exhibits several

important features, such as the rotational symmetry breaking and its restoration by tuning

counter terms, which are expected to appear also in the study of the continuum limit. We thus

consider that our study is useful, at least qualitatively, for the investigation of the continuum

limit of the minimally doubled fermions at d3 + 3r = 0.

4.2 Boriçi-Creutz fermion

4.2.1 Action and symmetries

The action for the Boriçi-Creutz fermion [25] is given by

S = Snf + SBC + S
(3)
BC + S

(4)
BC , (70)

with

SBC =
ir

2

∑
n, µ

ψ̄n(Γ − γµ) (ψn+µ̂ − 2ψn + ψn−µ̂) , (71)
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S
(3)
BC = ic3

∑
n

ψ̄nΓψn , S
(4)
BC =

c4
2

∑
n, µ

ψ̄nΓ(ψn+µ̂ − ψn−µ̂) , (72)

Γ =
1

2

∑
µ

γµ, γ′µ = ΓγµΓ = Γ − γµ, (73)

where S
(3)
BC and S

(4)
BC are counter terms of dimension three and four, respectively [29,30], and Γ

satisfies Γ2 = 1 and {Γ, γµ} = 1. This action has the S4 subgroup of the hypercubic symmetry

while C, P and T symmetries are broken to the combined CPT [26].

In the free theory, the Dirac operator in the momentum space can be expressed as

DBC(p) = i
∑

µ

[
γµ sin pµ + rγ′µ(cos pµ − 1) + c4Γ sin pµ

]
+m+ ic3Γ. (74)

If we consider the case with m = c3 = 0, DBC(p) has one zero mode at p = (0, 0, 0, 0), and

another one at p = (π/2, π/2, π/2, π/2) if∑
µ

(γµ + c4Γ − rγ′µ) = 2Γ + 4c4Γ − 2rΓ = 0, (75)

which determines c4 = (r−1)/2. We note there are generically two zero modes in the momentum

space, but their positions depend on the choice of parameters. As with the Karsten-Wilczek

fermion, c3 corresponds to m while r corresponds to the Wilson parameter in the analogy

of the Wilson fermion. Thus c3 will be tuned as m for the Wilson fermion and d3 for the

Karsten-Wilczek fermion.

First we consider the symmetries of the Boriçi-Creutz term SBC. In terms of the spin-flavor

representation, it is written as

SBC =
ir

4

∑
N, µ, ν

[
2Ψ̄(N)

(
γν ⊗ γT

ν γ
T
µ ⊗ γνγµ

)
Ψ(N) + Ψ̄(N)

(
γν ⊗ γT

ν γ
T
µ ⊗ γνγµ

)
∇2

µΨ(N)

+Ψ̄(N)
(
γνγµγ5 ⊗ γT

ν γ
T
5 ⊗ γνγµ

)
∇µΨ(N)

]
− ir

2

∑
N, µ

[
2Ψ̄(N) (γµ ⊗ 14 ⊗ 14) Ψ(N) + Ψ̄(N) (γµ ⊗ 14 ⊗ 14)∇2

µΨ(N)

+Ψ̄(N)
(
γ5 ⊗ γT

µ γ
T
5 ⊗ 14

)
∇µΨ(N)

]
−ir

∑
N,µ

Ψ̄(N)
(
γµ ⊗ γT

µ ⊗ γµ

)
Ψ(N) . (76)

While the first six terms on the right-hand side of (76) are invariant under U(1)V , U(1)A, U(1)−V ,

and U(1)+
A, the last term is invariant only under U(1)−V and U(1)+

A. Therefore the Boriçi-Creutz

term SBC possesses only the ordinary vector and axial-vector U(1) symmetry, U(1)V and U(1)A.
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In terms of spin-flavor representation, the counter terms S
(3)
BC and S

(4)
BC are written as

S
(3)
BC =

ic3
2

∑
N,µ

Ψ̄(N)
(
γµ ⊗ γT

µ ⊗ γµ

)
Ψ(N) , (77)

S
(4)
BC =

c4
4

∑
N, µ, ν

[
Ψ̄(N)

(
γν ⊗ γT

ν γ
T
µ ⊗ γνγµ

)
∇µΨ(N)

+Ψ̄(N)
(
γνγµγ5 ⊗ γT

ν γ
T
5 ⊗ γνγµ

)
∇2

kΨ(N)
]
. (78)

We notice that the dimension three counter term S
(3)
BC takes the same form as the last term

on the right-hand side of (76). Therefore, the dimension three counter term is invariant only

under U(1)V and U(1)A. On the other hand, the dimension four counter term, S
(4)
BC, is invariant

under U(1)V , U(1)A, U(1)−V , and U(1)+
A.

From the above discussions, the Boriçi-Creutz fermion action possesses only the U(1)V

symmetry for general values of m, r, c3 and c4, and it acquires the U(1)A symmetry at m = 0.

If c3 − 2r = 0 is satisfied at the same time, it possesses U(1)−V and U(1)+
A in addition to the

ordinary vector and axial-vector U(1) symmetries, U(1)V and U(1)A.

4.2.2 Strong coupling analysis

For the Boriçi-Creutz fermion we have M̂ = m14 + i(c3 − 2r)ΓT and

P+
µ =

1

2
{γµ(1 + ir) + (c4 − ir)Γ}, P−

µ =
1

2
{γµ(1 − ir) + (c4 + ir)Γ}. (79)

We note c3 will be tuned as with d3 for the Karsten-Wilczek fermion. By takingM0 = σ14+iπΓΓ,

the corresponding gap equations become

2(1 + r2 + c24 + c4)σ +m− σ

σ2 + π2
Γ

= 0 , (80)

(1 + r2 − 2c24 − 2c4)πΓ − (c3 − 2r) − πΓ

σ2 + π2
Γ

= 0 , (81)

To have πΓ = 0, we need c3 − 2r = 0. In this case, σ is determined by

1

σ2
=

m

σ
+ 2(1 + r2 + c24 + c4). (82)

As discussed in the last subsection, at m = 0 and c3 − 2r = 0, the action is invariant under the

U(1)−V and the U(1)+
A symmetries in addition to U(1)V and U(1)A. Since the chiral condensate

〈ψ̄nψn〉 6= 0 breaks U(1)A and U(1)−V , we expect two massless NG bosons at m = 0. Note that

the number of fermion zero modes at c3 − 2r = 0 depends on r and c4. For example, at r = 1

and c4 = −1, there are sixteen zero modes at pµ = π/2 or π for each µ.
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In the strong coupling limit, there exists non-trivial mixing between mesons, which compli-

cates the analysis on the meson mass. Fortunately, by taking c4 + 1 = 0, we can avoid such

mixing. For this choice, the inverse propagator for the S or P sector can be expressed as

DSS(p) =
1

2σ2
+

1 + r2

4

∑
µ

cos pµ, (83)

DPP (p) =
1

2σ2
− 1 + r2

4

∑
µ

cos pµ. (84)

Note that to derive the above expressions we have already used c4 +1 = 0. By solving DXX(p+

∆Xπ) = 0 for X = S or P with p = (~p, EX), ∆µ
S = 1 and ∆µ

P = 0, we obtain

2(cosh(EX) − 1) =
2m

σ

2

1 + r2
+ (~p)2, (85)

which has the relativistic dispersion relation at m = 0. These two modes correspond to NG

bosons associated with the breakdown of two U(1) symmetries as expected.

5 Summary and Discussion

In this paper we clarify the detailed structure of continuous symmetry and its spontaneous

breaking in four types of lattice fermion using the spin-flavor representation and the strong

coupling analysis.

We begin by reviewing the U(4)×U(4) symmetries of the naive fermion from the viewpoint

of the spin-flavor representation. These symmetries can be interpreted as generalizations of

U(1) × U(1) symmetry of the staggered fermion and are a subgroup of the U(16) × U(16)

symmetries, which are expected to be restored in the continuum limit. We then apply the same

method to the Wilson fermion and discover an incidental symmetry enhancement in the central

branch of the Dirac spectrum (or equivalently, at the third cusp in the parity-broken phase).

In this branch, on-site terms cancel out between the Wilson term and the mass term and an

extra U(1) symmetry emerges in addition to the ordinary vector U(1) symmetry. Using the

strong coupling analysis, we show that this extra symmetry is spontaneously broken by the pion

condensate. We also discuss two types of minimally doubled fermions, the Karsten-Wilczek and

the Boriçi-Creutz fermions. The symmetry enhancement and its breaking also occur in these

fermions when on-site terms are absent. Enhanced symmetries are spontaneously broken by

the ordinary chiral condensate in this case.

Now let us discuss possible applications of our results. First, we suggest that the central

branch with six species of doublers in the Wilson fermion is potentially useful for the simulation
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of many flavor QCD, especially for the simulation with six or twelve flavors. As elucidated in

this paper, the action of the Wilson fermion without on-site terms has the enhanced U(1)

symmetry. Since this symmetry will prohibit appearance of mass terms through quantum

correction, we are free from additive mass renormalization in this case. In this branch, the roles

of σ and π mesons are interchanged. The enhanced U(1) symmetry, which is broken by the pion

condensate, is considered as a counterpart of the flavor non-singlet chiral symmetry. Although

this U(1) is expected to enhance to U(6)×U(6) in the continuum limit of the free theory, it is

not clear at present whether this flavor symmetry is intact also in the presence of gauge fields.

If we could take a continuum limit of the Wilson fermion at the central cusp which restores the

flavor symmetry, it would be valuable since it would give an alternative approach to the twelve

flavor QCD: there is still a controversy on whether this theory is in the conformal window or

not [33–39].

Second, we comment on the implication of our results on simulations with minimally doubled

fermions. When one uses minimally doubled fermions, one needs to fine-tune several param-

eters to restore the Lorentz covariance, broken by the actions, in the continuum limit. To

clarify this parameter tuning process and restoration of the Lorentz covariance, several works

on the nonperturbative renormalization have already been done [28–30]. However restorations

of the Lorentz covariance in the absence of on-site terms, discussed in this paper, is not di-

rectly relevant to the nonperturbative renormalization of minimally doubled fermions, since a

number of fermion zero modes is actually not minimal without on-site terms. To study the

non-perturbative renormalization of minimally doubled fermions by the strong-coupling anal-

ysis, we need to find other tuning points at which the number of fermion zero modes is truly

minimal. At such points, the condensate 〈ψ̄γ4ψ〉 or 〈ψ̄Γψ〉 is generally nonzero. Investigations

into such parameter regions are currently in progress.
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A Spin-flavor representation of fermion actions

In this appendix, we present some details on how we rewrite fermion actions in terms of the

spin-flavor representation.
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Let us first describe the case of naive fermions. The action of the naive fermion, expressed

by χ as in (7), can be recast in the following form.

Snf =
1

2

∑
N, µ, A, B

ηµ(A)χ̄A(N)
(
(δA+µ̂, B + δA−µ̂, B)∇µχB(N) − (δA+µ̂, B − δA−µ̂, B)∇2

µχB(N)
)

+m
∑
N, A

χ̄A(N)χA(N) ,

(86)

where Aµ and Bµ take zero or one, and the definitions of ∇µ and ∇2
µ are given in (13) and

(14). In order to further rewrite the above action using the field Ψ, defined in (9) and (10), the

following formulas are useful;∑
A, B

ηµ(A)(δA+µ̂, B + δA−µ̂, B)
(γA

2

)
α, f1

( γ̄B

2

)
α′, f ′

1

=
∑

A

(γA

2

)
α, f1

(
γT

µ

γ̄A

2

)
α′, f ′

1

= (γµ)α, α′ δf1, f ′
1
,

(87)

and ∑
A, B

ηµ(A)(δA+µ̂, B − δA−µ̂, B)
(γA

2

)
α, f1

( γ̄B

2

)
α′, f ′

1

=
∑

A

(
γ5
γA

2
γ5

)
α, f1

( γ̄A

2
γT

µ

)
α′, f ′

1

= (γ5)α, α′ (γT
5 γ

T
µ )f1, f ′

1
.

(88)

To derive (87) and (88), it is convenient to first consider the cases when Aµ = 0 and Aµ = 1

separately and put them together at the end. Using these formulas one obtains the expression

(11) for the naive fermion.

In the case of Wilson fermions, we also need to re-express the Wilson term, which can be

represented in terms of χA(N) as

SW = − r

2

∑
N, µ, A, B

η̃µ(A)χ̄A(N)γµ

[
2(δA+µ̂, B + δA−µ̂, B)χB(N) − (δA+µ̂, B − δA−µ̂, B)∇µχB(N)

+ (δA+µ̂, B + δA−µ̂, B)∇2
µχB(N)

]
+ 4r

∑
N,A

χ̄A(N)χA(N) .

(89)

To derive the expression in terms of Ψ, this time one needs the variants of (87) and (88);∑
A, B

η̃µ(A)(δA+µ̂, B + δA−µ̂, B)
(γA

2

)
α, f1

( γ̄B

2

)
α′, f ′

1

=
∑

A

(γA

2

)
α, f1

( γ̄A

2
γT

µ

)
α′, f ′

1

= δα, α′ (γT
µ )f1, f ′

1
,

(90)

and ∑
A, B

η̃µ(A)(δA+µ̂, B − δA−µ̂, B)
(γA

2

)
α, f1

( γ̄B

2

)
α′, f ′

1

=
∑

A

(
γ5
γA

2
γ5

)
α, f1

(
γT

µ

γ̄A

2

)
α′, f ′

1

= (γ5γµ)α, α′ (γT
5 )f1, f ′

1
.

(91)
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Applying these formulas one can re-express the Wilson term and obtain (16).

The actions of minimally doubled fermions can also be re-expressed by Ψ in a similar way

and the resultant expressions are (39) and (76).

B Strong coupling analysis for Boriçi-Creutz fermion

In this appendix, some details of our analysis in the strong coupling limit for Boriçi-Creutz

fermion are given.

Before calculating the inverse propagator, it is useful to consider the following trace formulas.

tr (ΓVaP
+
µ ΓVb

P−
µ ) = −tr (ΓAaP

+
µ ΓAb

P−
µ ) =

δab

4

{
(1 + r2)(2δaµ − 1) − c24 − c4

}
+

c24 + r2

8
+
c4 − r2

4
(δaµ + δbµ) , (92)

tr (ΓVaP
+
µ ΓAb

P−
µ ) = −tr (ΓAb

P+
µ ΓVaP

−
µ ) =

r(1 + c4)

4

∑
ν

εabµν , (93)

tr (ΓSP
+
µ ΓSP

−
µ ) = −tr (ΓPP

+
µ ΓPP

−
µ ) =

1 + r2 + c24 + c4
4

, (94)

tr (ΓTab
P+

µ ΓTcd
P−

µ ) = δacδbd
(1 + r2)(1 − 2δaµ − 2δbµ) + (c24 + r2) + (c4 − r2)

4

+
c24 + r2

8
(δad + δbc − δbd − δac) +

c4 − r2

4
{(δaµ(δbc − δbd) + δbµ(δad − δac)

+ δcµ(δad − δbd) + δdµ(δbc − δac)} , (95)

tr (ΓSP
+
µ ΓTab

P−
µ ) = −tr (ΓTab

P+
µ ΓSP

−
µ ) =

r(1 + c4)

4
(δaµ − δbµ) , (96)

tr (ΓPP
+
µ ΓTab

P−
µ ) = −tr (ΓTab

P+
µ ΓPP

−
µ ) =

r(1 + c4)

4

∑
ν

εabµν . (97)

Since eqs. (93), (96) and (97) produce mixing among several sectors, which complicates our

analysis on the meson mass, we tune c4 in order to avoid such mixings: c4 + 1 = 0.

Then, an inverse propagator for the S or P sector is given by

DS(p) =
1

2σ2
+

1 + r2

4

∑
µ

cos pµ, (98)

DP (p) =
1

2σ2
− 1 + r2

4

∑
µ

cos pµ, (99)

where we have already used c4 + 1 = 0.

An inverse propagator matrix for V or A sector is given by

DVaVb
(p) = δab

[
1

2σ2
+

1 + r2

4
(2ca −

∑
µ

cµ)

]
+

1 + r2

8

∑
µ

cµ − 1 + r2

4
(ca + cb) , (100)
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DAaAb
(p) = δab

[
1

2σ2
− 1 + r2

4
(2ca −

∑
µ

cµ)

]
− 1 + r2

8

∑
µ

cµ +
1 + r2

4
(ca + cb) , (101)

so that DVaVb
(π + p) = DAaAb

(p).
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