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Abstract

We discuss the orbital angular momentum of partons inside a longitudinally polarized proton in
the recently proposed framework of spin decomposition. The quark orbital angular momentum
defined by Ji can be decomposed into the ‘canonical’ and the ‘potential’ angular momentum
parts, both of which are represented as the matrix element of a manifestly gauge invariant oper-
ator.

1. Introduction

Recent polarized beam experiments and global QCD analyses suggest that the contribution
of the gluon helicity ∆G to the spin of the proton is rather small [1]. This observation, to-
gether with the inexorable fact that the quark helicity contribution ∆Σ is also small (less than
30%), lead one to suspect that the key to understand the proton spin puzzle is the orbital an-
gular momentum (OAM) of quarks and gluons. However, progress in this direction has been
hindered by a number of difficulties in measuring, and even defining the OAM. So far, the only
well–recognized, gauge invariant definition of the quark OAM is the one by Ji [2] which can
be measured, indirectly, as the difference between a certain moment of the generalized par-
ton distribution and ∆Σ. Although generally accepted, this approach may be criticized on the
basis that the corresponding operator is not the ‘canonical’ one that satisfies the fundamental
commutation relation of the angular momentum operator in quantum mechanics. Efforts to im-
prove upon this point have led Chen et al. to propose a completely new decomposition scheme
of the QCD angular momentum tensor [3, 4] which has triggered a flurry of activity lately
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. However, the issue still remains very controversial, and the
overarching impact of this new formalism as well as its practical usefulness in phenomenology
are yet to be clarified.
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In this work, we investigate the quark OAM along the line of our previous work [10] which
we view as the proper rendition of the formalism [3, 4] in the context of high energy QCD.
We shall show that one can represent the canonical OAM as the matrix element of a manifestly
gauge invariant operator which turns out to be equivalent to that obtained in the Wigner dis-
tribution approach [16]. This paves the way to measure the canonical OAM experimentally
or numerically on a lattice, and thus helps to mitigate the criticism that the matrix elements
defined in [3] do not have known physical measurements [17]. Actually, in the gluon helicity
sector Ref. [10] has already shown how one can reconcile the gluon helicity defined in [3] with
∆G which is measurable. We now extend this finding to the OAM sector.

2. Decomposition of the QCD angular momentum operator

The main idea of [3, 4] is that one can achieve a complete, gauge invariant decomposition of
the QCD angular momentum operator by identifying the ‘physical’ and ‘pure gauge’ compo-
nents of the gauge field

Aµ = Aµ
phys + Aµ

pure , (1)
F µν

pure = ∂µAν
pure − ∂νAµ

pure + ig[Aµ
pure, A

ν
pure] = 0 , (2)

which transform differently under gauge transformations

Aµ
phys → U †Aµ

physU ,

Aµ
pure → U †Aµ

pureU −
i

g
U †∂µU . (3)

The QCD angular momentum tensor Mµνλ can then be written as a sum of the helicity and the
orbital angular momentum of quarks and gluons. In the ‘covariant’ form [5, 6] useful for high
energy experiments, the original proposal by Chen et al. [3, 4] reads

Mµνλ
quark-spin = −1

2
ϵµνλσψ̄γ5γσψ , (4)

Mµνλ
quark-orbit = ψ̄γµ(xνiDλ

pure − xλiDν
pure)ψ , (5)

Mµνλ
gluon-spin = F µλ

a Aνa
phys − F µν

a Aλa
phys , (6)

Mµνλ
gluon-orbit = F µα

a

(
xν(Dλ

pureA
phys
α )a − xλ(Dν

pureA
phys
α )a

)
. (7)

where Dν
pure ≡ ∂ν + igAν

pure, and a, b = 1, 2, · · · , 8 are the color indices.1 Using the transfor-
mation rule (3), it is easy to check that each of the above components is gauge invariant. Such a

1Our convention is ϵ0123 = +1 , γ5 = −iγ0γ1γ2γ3. We shall use the light–cone coordinates x± = 1√
2
(x0±x3)

and denote the transverse coordinates with latin indices xT = {xi}, (i, j, · · · = 1, 2). The two–dimensional
antisymmetric tensor is defined as ϵij = −ϵ+−ij , ϵ12 = ϵ12 = −ϵ21 = 1.
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complete decomposition goes beyond Ji’s framework in which the gluonic part cannot be sepa-
rated into the helicity and orbital parts. The price to pay, however, is that the decomposition is
not local in the sense that Aµ

phys is in general nonlocally related to the total Aµ. Moreover, it is
not entirely covariant, either, because Aµ

phys actually depends on the frame as we shall soon see.
An alternative decomposition of the orbital part was suggested by Wakamatsu [5]

M
′µνλ
quark-orbit = ψ̄γµ(xνiDλ − xλiDν)ψ , (8)

M
′µνλ
gluon-orbit = F µα

a

(
xν(Dλ

pureA
phys
α )a − xλ(Dν

pureA
phys
α )a

)
+(DαF

αµ)a(x
νAλa

phys − xλAνa
phys) . (9)

The second term of (9) is gauge invariant on its own. Using the equation of motion DαF
αµ
a =

gψ̄γµtaψ, one sees that it accounts for the difference between Dν
pure in (5) and Dν in (8).

There is no consensus as to which definition, (5) or (8), is more appropriate for the quark
orbital angular momentum. To some extent, it is a matter of choice. It is (5), but not (8), that
is compatible with the (equal–time) canonical commutation relation of the angular momentum
operator L⃗× L⃗ = iL⃗,

L⃗ = x⃗× iD⃗pure , x⃗ = (x1, x2, x3) . (10)

The pure gauge condition (2) is crucial for this. (5) may thus be called the canonical angular
momentum.2 On the other hand, (8) is the same as Ji’s definition [2] and is accessible from the
analysis of the generalized parton distribution (GPD), whereas it has not been known how to
measure (5).

We will derive an explicit expression of the canonical angular momentum (5) in terms of
a manifestly gauge invariant operator whose matrix element is, in principle, related to experi-
mental processes or observables in lattice QCD simulations. For this purpose, one must specify
what Aµ

phys is. There are several proposals for Aµ
phys in the literature [4, 7, 10, 13]. These def-

initions are not equivalent as suggested by the work of Ref. [8] which showed that they give
different values of the gluon helicity (the proton matrix element of (6)). Here we employ the
one proposed in [10]

Aµ
phys(x) = −

∫
dy−K(y − x)W−

xyF
+µ(y−, x⃗)W−

yx , (11)

where we use the notation x⃗ = (x+, xi) from now on. W is the Wilson line operator

W−
xy ≡ P exp

(
−ig

∫ x−

y−
A+(y′−, x⃗)dy′−

)
, (12)

2Throughout this paper, we associate the term ‘canonical’ with the operator iDµ
pure instead of the usual i∂µ.

The former is actually the gauge covariant generalization of the latter without affecting the commutation relation.
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in the fundamental representation. The superscript ‘−’ denotes that the path ordering is in the
x− direction. K(y−) is either 1

2
ϵ(y−), θ(y−) or−θ(−y−), depending on the boundary condition

at x− = ±∞ in the light–cone gauge A+ = 0.3 The pure gauge part Apure is

Aµ
pure(x) ≡ −

i

g
W−

x,±∞W±∞∂
µ(W−

x,±∞W±∞)† , (13)

where W±∞ = P exp
(
−ig

∫ x⃗

∞⃗ A⃗(±∞, x⃗′) · dx⃗′
)

is the Wilson line in the spatial direction at
x− = ±∞. It represents the residual gauge symmetry of the light–cone gauge A+ = 0, and is
fixed by specifying the boundary condition of the gauge field at x− → ±∞ mentioned above.
It has been shown in [10] that (11) and (13) are a viable decomposition of the total gauge field
Aµ. We wish to stress that this particular choice is singled out among others by the criterion
of measurability: The corresponding gluon helicity coincides with the usual gluon helicity ∆G
that has been measured in experiments.

Note that the definition (11) already selects a particular frame—the infinite momentum frame
where the partonic interpretation of hadrons is clearest. As emphasized in [15], the decomposi-
tion of spin into the helicity and the orbital parts cannot be made entirely covariant, but depends
on the frame of reference.

3. Potential angular momentum

We now focus on the orbital angular momentum of quarks inside a longitudinally polarized
proton. It is given by the forward matrix element of the µνλ = +ij component of (5) or (8)

ϵijLChen ≡
1

2P+

⟨PS|
∫
dx−d2xTM

+ij
quark-orbit|PS⟩

(2π)3δ3(0)

=
1

2P+

⟨PS|
∫
dx−d2xT ψ̄γ

+(xiiDj
pure − xjiDi

pure)ψ|PS⟩
(2π)3δ3(0)

, (14)

ϵijLJi ≡
1

2P+

⟨PS|
∫
dx−d2xTM

′+ij
quark-orbit|PS⟩

(2π)3δ3(0)

=
1

2P+

⟨PS|
∫
dx−d2xT ψ̄γ

+(xiiDj − xjiDi)ψ|PS⟩
(2π)3δ3(0)

, (15)

where P 2 = −S2 = M2 (the proton mass squared) and (2π)3δ3(0) =
∫
dx−d2xT is the mo-

mentum space delta function. The longitudinal polarization means Sµ = (S+, S−, ST ) ≈

3From the viewpoint of the PT (parity and time–reversal) symmetry which will be crucially used below, it
seems that the choice K(y−) = 1

2ϵ(y
−) is the most natural and convenient one, although the difference does not

matter in the end.
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(S+, 0, 0T ). We first observe that, since Aµ
pure = 0 in the light–cone gauge A+ = 0 [10], LChen

is actually identical to the Jaffe–Manohar (JM) definition [18] of the quark orbital angular mo-
mentum

LJM =
1

2P+

⟨PS|
∫
dx−d2xT ψ̄γ

+(x1i∂2 − x2i∂1)ψ|PS⟩LC

(2π)3δ3(0)
. (16)

The subscript LC means that the matrix element is evaluated in the light–cone gauge. In other
words, LChen is the generalization of LJM to arbitrary gauges (see, also, [5]). We thus unify the
notations LChen = LJM ≡ Lcan by introducing the canonical orbital angular momentum Lcan,
and write

LJi = Lcan + Lpot , (17)

where the so–called potential angular momentum [19, 5] is, with our choice of Aµ
phys,

ϵijLpot =
1

2P+(2π)3δ3(0)
⟨PS|

∫
dx−d2xT x

iψ̄(x)γ+(−g)(xiAj
phys − x

jAi
phys)ψ(x)|PS⟩

=
1

2P+(2π)3δ3(0)
⟨PS|

∫
dx−d2xT

{
xiψ̄(x)γ+

∫
dy−K(y− − x−)W−

xy gF
+j(y−, x⃗)W−

yxψ(x)

−xjψ̄(x)γ+
∫
dy−K(y− − x−)W−

xy gF
+i(y−, x⃗)W−

yxψ(x)
}
|PS⟩ . (18)

Now consider the non-forward matrix element

1

2P̄+(2π)3δ3(0)
⟨P ′S ′|

∫
dx−d2xT x

iψ̄(x)γ+
∫
dy−K(y− − x−)W−

xy gF
+j(y−, x⃗)W−

yxψ(x)|PS⟩ ,

where P̄ µ = (P µ+P ′µ)/2 and the momentum transfer will be denoted as ∆µ ≡ P ′µ−P µ. The
explicit factor xi can be traded for the derivative with respect to ∆i such that

ϵijLpot (19)

=
1

2P+
lim
∆→0

{ ∂

i∂∆i
⟨P ′S ′|ψ̄(0)γ+

∫
dy−K(y−)W−

0y gF
+j(y−)W−

y0ψ(0)|PS⟩ − (i↔ j)
}
.

Parity and time–reversal (PT ) symmetry tells that the following parametrization of the matrix
element is possible

⟨P ′S ′|ψ̄(0)γ+
∫
dy−K(y−)W−

0y gF
+i(y−)W−

y0ψ(0)|PS⟩ = iϵij∆jS̄
+h(ξ) + · · · , (20)

where S̄ = (S + S ′)/2 and ξ ≡ −∆+/2P̄+ is the skewness parameter. [The dependence of
h(ξ) on the renormalization scale is implicit. We also suppress the dependence on ∆2 ≈ −∆2

T
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since it is of higher order. Similar comments apply to other distributions defined below.] This
leads to

Lpot = h(0)
S+

P+
. (21)

(20) thus defines the potential angular momentum as the matrix element of a manifestly gauge
invariant operator.

The quark–gluon mixed operator that appears in the matrix element (20) is familiar in the
context of the twist–three mechanism of the single spin asymmetry (SSA). Let us pursue this
analogy and consider the following non-forward matrix element

T µν(x1, x2, ξ) =

∫
dy−dz−

(2π)2
e

i
2
(x1+x2)P̄+z−+i(x2−x1)P̄+y−

×⟨P ′S ′|ψ̄(−z−/2)γ+W−
−z
2
y
gF µν(y−)W−

y z
2
ψ(z−/2)|PS⟩

=
1

P̄+
ϵµνρσS̄ρP̄σΨ(x1, x2, ξ) +

1

P̄+
ϵµνρσS̄ρ∆σΦ(x1, x2, ξ) + · · · . (22)

By symmetry considerations, it follows that Ψ(x1, x2, ξ) = Ψ(x2, x1,−ξ) and Φ(x1, x2, ξ) =
−Φ(x2, x1,−ξ). In the forward limit, and in the transversely polarized case Sµ = δµi S

i, only the
Ψ–term survives. The function Ψ(x1, x2, 0) plays the cental role in the so–called soft gluonic
pole mechanism of the SSA [20, 21]. In the longitudinally polarized case S̄µ ≈ δµ+S̄

+, the
Ψ–term vanishes for the relevant component µν = +j. By performing Fourier transformations,
we find

⟨P ′S ′|ψ̄(0)γ+
∫
dy−K(y−)W0y gF

+j(y−)W−
y0ψ(0)|PS⟩

= iP̄+

∫
dx1dx2K(x1 − x2)T+j(x1, x2)

= iϵjkS̄+∆k

∫
dXdxK(x)Φ(X, x, ξ) , (23)

where we switched to the notation X = x1+x2

2
, x = x1 − x2. The kernel is

K(x) = p.v.
1

x
=

1

2

(
1

x+ iϵ
+

1

x− iϵ

)
, (24)

in the case K(y−) = 1
2
ϵ(y−) and

K(x) = 1

x± iϵ
, (25)

in the cases K(y−) = ±θ(±y−). Comparing with (20), we obtain an alternative expression for
the potential angular momentum

Lpot =

∫
dXdxK(x)Φ(X, x, 0) . (26)
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Note that, since Φ(X, 0, 0) = 0, different choices for K lead to the same result, as they should.

4. Canonical angular momentum

Next we exploit the relation between the twist–three approach to the SSA and the approach
based on the transverse momentum dependent distribution (TMD).4 In the longitudinally polar-
ized and non-forward case, we define

f(x, qT ,∆) ≡
∫
dz−d2zT
(2π)3

eixP̄
+z−−iqT ·zT (27)

×⟨P ′S ′|ψ̄(−z−/2,−zT/2)γ+W−
−z
2
,±∞W

T
−zT
2

,
zT
2

W−
±∞, z

2
ψ(z−/2, zT/2)|PS⟩ ,

whereWT is the Wilson line in the transverse direction at x− = ±∞. In the forward case ∆ =
0, the matrix element (27) reduces to the usual TMD. As is well–known in that context, there is
freedom in choosing the path connecting the points (−z−/2,−zT/2) → (z−/2, zT/2). Using
the Wilson line that goes to future infinity and then comes back −z−/2 → +∞ → z−/2, one
takes care of the final state interaction. The TMD in this case is relevant to the semi-inclusive
DIS (SIDIS). The other case −z−/2 → −∞ → z−/2 includes the initial state interaction
relevant to the Drell–Yan process. For the present purpose, one may as well take the average of
the two cases.

The relation between (27) and (20) is revealed by taking the second moment of f in qT [23]5

F i(x,∆) ≡
∫
d2qT q

i
Tf(x, qT ,∆)

=
1

2

∫
dz−

2π
eixP̄

+z−

{
⟨P ′S ′|ψ̄(−z−/2)γ+

(
W−

−z
2
, z
2

i
−→
D i − i

←−
D iW−

−z
2
, z
2

)
ψ(z−/2)|PS⟩

−⟨P ′S ′|ψ̄(−z−/2)γ+
∫
dy−

(
K(y− − z−/2) +K(y− + z−/2)

)
×W−

−z
2
,y
gF+i(y−)W−

y, z
2
ψ(z−/2)|PS⟩

}
, (28)

where the kernel K is in one–to–one correspondence with the choice of the Wilson line path in
(27). In the forward case, (28) vanishes for the longitudinal polarization by rotational symmetry
in the transverse plane. In the non-forward case, however, the following structure

f(x, qT ,∆) ∼ i

P̄+
ϵ+−ijS̄+qTi∆j f̃(x, q

2
T , ξ,∆T · qT ) , (29)

4The following discussion is similar to the works of Ref. [22, 16]. We improve upon these works by fully taking
into account the gauge field and the issue of gauge invariance.

5Cf. Eq. (39) of [23]. Via partial integration, qiT is replaced by the spatial derivative ∂i
T . When acting on the

Wilson line, it brings down the factor ∂i
TA

+ = D+Ai + F i+ which reduces to the two terms in (28).
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is allowed, so that (28) is not necessarily zero. Note that, because of an extra minus sign from
∆j under the PT transformation, the function f̃ does not change signs when changing the
directions of the Wilson line,6 in contrast to the known sign flip of the spin–dependent TMDs
in the SIDIS and Drell–Yan reactions [24].

We then take the first moment in x∫
dxF i(x,∆) =

1

P̄+

{1
2
⟨P ′S ′|ψ̄(0)γ+(i

−→
D i − i

←−
D i)ψ(0)|PS⟩

−⟨P ′S ′|ψ̄(0)γ+
∫
dy−K(y−)W−

0y gF
+i(y−)W−

y0ψ(0)|PS⟩
}

=
1

P̄+

{1
2
⟨P ′S ′|ψ̄(0)γ+(i

−→
D i − i

←−
D i)ψ(0)|PS⟩+ ⟨P ′S ′|ψ̄(0)γ+Ai

physψ(0)|PS⟩
}

=
1

2P̄+
⟨P ′S ′|ψ̄(0)γ+(i

−→
D i

pure − i
←−
D i

pure)ψ(0)|PS⟩ . (30)

The matrix element (20) indeed appears in the second term of the first equality, but somewhat
remarkably, it is absorbed by the covariant derivative in the first term. The final expression
features precisely the ‘pure gauge’ part of the covariant derivative Dpure. Differentiating with
respect to ∆, we arrive at

ϵijLcan =
1

2P+
lim
∆→0

∂

i∂∆i
⟨P ′S ′|ψ̄(0)γ+(i

−→
D j

pure − i
←−
D j

pure)ψ(0)|PS⟩

= lim
∆→0

∂

i∂∆i

∫
dxF j(x,∆)

= lim
∆→0

∂

i∂∆i

∫
dxd2qT q

j
Tf(x, qT ,∆)

= ϵij
S+

P+

1

2

∫
dxd2qT q

2
T f̃(x, q

2
T ) . (31)

This is a formula relating the canonical OAM of quarks to the matrix element of a well–defined,
manifestly gauge invariant operator.7 The final expression in (31) agrees with the OAM con-
structed by Lorcé and Pasquini [16] from the Wigner distribution (neglecting gauge invariance).
We have thus established a gauge invariant link between the Wigner distribution approach and
the spin decomposition framework of Chen et al.

Similarly, for the gluon orbital angular momentum one can define

g(x, qT ,∆) ≡ −i
∫
dz−d2zT
(2π)3

eixP̄
+z−−iqT ·zT (32)

×⟨P ′S ′|F+α(−z−/2,−zT/2)W−
−z
2
,±∞W

T
−zT
2

,
zT
2

W−
±∞, z

2
Aphys

α (z−/2, zT/2)|PS⟩ ,

6More precisely, f̃(x, q2T , ξ,∆T · qT ) → +f̃(x, q2T ,−ξ,−∆T · qT ) after changing the directions. But the
difference is immaterial in the limit ∆→ 0.

7We note that a possible UV regularization of the qT –integral (31) and its evolution require an entirely separate
analysis.
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where Aphys is as in (11), and now the Wilson lines are in the adjoint representation. Under
the PT transformation, one gets the same operator back (up to the direction of the Wilson line)
provided the skewness parameter ξ vanishes, which we assume here. In deeply virtual Compton
scattering (DVCS), ξ = 0 corresponds to the elastic scattering of the photon.

Proceeding as before, one finds the double moment in x and qT∫
dxd2qT q

i
Tg(x, qT ,∆) =

1

2P̄+
⟨P ′S ′|F+α(

−→
D i

pure −
←−
D i

pure)A
phys
α |PS⟩ . (33)

The matrix element of (7) thus becomes

1

2P+

⟨PS|
∫
dx−d2xT M

+ij
gluon-orbit|PS⟩

(2π)3δ3(0)
= lim

∆→0

∂

i∂∆i

∫
dxd2qT q

j
Tg(x, qT ,∆)

= ϵij
S+

P+

1

2

∫
dxd2qT q

2
T g̃(x, q

2
T ) , (34)

where we parameterized, as ∆→ 0,

g(x, qT ,∆) =
i

P̄+
ϵ+−ijS̄+qTi∆j g̃(x, q

2
T ) + · · · . (35)

5. Conclusions

We have shown that the physical part of the gauge field Aphys proposed in [10] leads to well–
defined expressions for the canonical and potential angular momenta in terms of the matrix
element of certain gauge invariant operators. If one defines ∆G as the gluon helicity, consis-
tency requires that (31) is the corresponding canonical angular momentum. Now that we can,
at least in principle, measure LJi, Lcan and the difference Lpot = LJi − Lcan separately, it seems
more legitimate to call Lcan, or equivalently the OAM from the Wigner distribution [16, 25],
the quarks’ genuine orbital angular momentum since it satisfies the fundamental commutation
relation.

Regarding measurability, it should be possible to compute (31) in lattice QCD simulations
as in the case of the ordinary (forward) TMD (see, e.g., [26]). Since there is no sign flip in (27)
when changing the directions of the Wilson lines, the matrix element may not be very sensitive
to the choice of the path. If so, and if one is not interested in the x–dependence, one may
first integrate over x in (27) and connect the quark operators (at the same value of z− = 0) by
a purely spatial Wilson line in the transverse plane. This avoids the introduction of lightlike
Wilson lines on a Euclidean lattice which appears to be a vague issue. For the gluon orbital
angular momentum (34) with g defined in (32), one has to deal with lightlike Wilson lines even
after the x–integration.

Finally, from the experimental point of view, the matrix elements such as (22) are related to
the twist–three GPDs [27, 28] which are hard to extract. It would be interesting to see if there
are processes in which these functions contribute to the cross section at leading order as in the
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single spin asymmetry.
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