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Abstract

3C-SiC(111) on Si (110) surface with a particular alignment of the two planes offers

almost perfect fake matching of the lattice periodicity, albeit dense 3C-SiC and sparse Si

in spite of the large lattice mismatch ∼20% between them. We here report total-energy

electronic-structure calculations based on real-space density functional theory (RSDFT),

which elucidate new reconstruction mechanism of dense 3C-SiC(111) on sparse Si(110)

surface with the relaxed superstructures displaying undulation near the interface. We

explore a variety of candidate interface structures and reach two distinctive types called

type I and II which show bistability at the interface. We define interface energy as the

energy difference between the total energy of the interface structure and the energy of the

bulk constituent atoms. In type I, the interface energy where the silicon faces meet each

other (silicon-silicon) is calculated as 9.571 eV/cell or 0.117 eV/Å2 whereas the interface

energy where the silicon and carbon faces meet (silicon-carbon) is 10.406 eV/cell or 0.127

eV/Å2. Similarly, in type II, silicon-silicon interface energy is 9.890 eV/cell or 0.121

eV/Å2 and that of silicon-carbon is 10.840 eV/cell or 0.133 eV/Å2. Hence, We conclude

that in both types, the silicon-silicon interface is energetically favorable compared with

the silicon-carbon interface. The mechanism of the interface reconstruction is that, one of

the Si(110) interfacial layer atoms in the supercell completely breaks a nearest neighbor

sp3 bond to relax the strain between 3C-SiC(111) and Si(110) which might be the origin

of the undulation and relate to the lattice mismatch. We propose that bond breaking

creates a defect hole perpendicular to the interface around which charges are redistributed.

The new extended rebonding arrangement result in energy gain and subsequently make

the overall electronic property of the interface system exhibit semiconducting behavior.
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Chapter 1

Introduction

Heteroepitaxial growth of two dissimilar semiconductor materials has widespread appli-

cations in modern solid state electronics. The developments of modern electronics and

large-scale integrated circuits need multilayer semiconductor structures with a thick sub-

strate and multiple thin layers on top. The doping levels or chemical compositions of

the multilayer may be quite different from each other. Generally, two broad classes of

devices are considered. In the first class, carrier transport is across the interface (hetero-

junction bipolar transistor (HBT), lasers, photodiodes, light-emitting diode, etc.), and in

the second class, transport is along the interface (meta-oxide-semiconductor field-effect

transistor and others). Heterojunction parameters such as the valence- and conduction

band discontinuities, and the built-in potentials determine the performance of both classes

of devices. For example, they affect carrier confinement on both sides of the active region

where radiative recombination occurs in the heterojunction lasers, emitter efficiencies in

HBTs, as well as the gate voltage swing and the gate leakage current in modulation-doped

field effect transistor structures [1].

In current growth techniques such as molecular beam epitaxy, it is observed that strain

can build into a given semiconductor material by growing it on top of a suitable lattice-

mismatched substrate [2]. Lattice-mismatched heterostructures can be grown with essen-

tially no misfit-originated defect generation if the layers are sufficiently thin; the mismatch

is then completely accommodated by uniform lattice strain. The lattice constants parallel

to the interface adjust so that perfect matching of the two materials is obtained [3]. If the

lattice mismatch is large or the overlayer is too thick, the strain becomes too large and
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misfit dislocations are formed to release the strain, allowing the overlayer to approach its

own lattice constant. This type of growth is usually called islanding. But if the lattice mis-

match is modest and the overlayer is thin enough (below the critical layer thickness), the

so called pseudomorphic or commensurate growth is achieved (epilayers). The overlayer

assumes then an in-plane lattice constant equal to that of the substrate which acts as a tem-

plate. In short, three experimentally observed hetreoepitaxial growth modes are known

and loosely described as layer-by-layer, islanding and layer-by-layer plus islanding [4].

Silicon carbide SiC [5] is a semiconductor with many polytypes [6–8] which has a

different stacking sequence of double layers of Si and C atoms and wide indirect band

gap [9]. It is the focus of attention recently as a potential material for high-power and

high-frequency applications requiring high-temperature operation. It is chemically inert,

stable at high temperature environment and its radiation damage resistance makes it use-

ful for power electronics device application. Some of the possible applications of SiC

as a material for power electronics are for advanced turbine engines, propulsion systems,

automotive and aerospace electronics and applications requiring large radiation damage

resistance. Properties such as large breakdown electric field strength, large saturated elec-

tron drift velocity, small dielectric constant, reasonably high electron mobility and high

thermal conductivity make SiC a promising candidate for fabricating power devices with

reduced power losses [10–12]. The experimental production of SiC-based gas sensors to

optimize fuel efficiency and reduce emission have been proposed [13] for example. They

are expected to perform under steady state and transient conditions while operating reli-

ably in high pressure, harsh erosive environments. In spite of the potential usefulness and

the impressive volume of research papers on it, the realization of SiC technological appli-

cation still remains a science fiction. The main reason for this until now is that, research

pertaining to SiC electronic devices and their practical applications is hampered by the

lack of reproducible techniques to grow semiconductor-quality single large crystals and

epilayers by sublimation process.

The heteroepitaxial growth of SiC on a foreign substrate has the potential to solve the

size issue and can probably be the only way presently. It is reported that among the

SiC polytypes, the one capable of epitaxial growth on a substrate specifically Si, is the

cubic 3C-SiC or β-SiC form [14]. The reason for this might be due to the fact that Si

is also a cubic structure material. Regarding the enlargement of the size of SiC single
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crystals, the possibility to grow 3C-SiC on Si substrates is very attractive. For example,

if 3C-SiC of 30-cm in diameter can be epitaxially grown on a Si substrate its impact

will be tremendous from a technological point of view. For example, graphene science

[15] and graphene technology [16] on SiC is an envisaged next-generation technology

material. The boom is related to the intention of forming wide area graphene on SiC rather

than scotch-tape manufacturing and it is now established as an alternative, more practical

and viable method to fabricate a large graphene sheet. The strong reason is because,

graphene is a promising contender to succeed the throne of silicon in electronics beyond

complementary metal-oxide-semiconductor (CMOS) [17]. The challenges for graphene-

on-SiC technology however, are the abdication of the well-established Si technologies and

the high production cost of bulk SiC crystals. The preparation of single-layer graphene by

thermal decomposition of SiC is proposed as a potential route for the synthesis of uniform

wafer-size graphene layers for technological applications. As a consequence, the devices

fabricated based on 3C-SiC on the Si substrate have the potential of being integrated onto

the already well established Si-based devices [18, 19].

The progress on high-quality single-crystal growth of cubic 3C-SiC using chemical va-

por deposition (CVD) method was pioneered by Nishino and his coworkers as well as

other researchers [20–23]. This has brought tremendous advance for the potential appli-

cation of SiC as a high temperature semiconductor material. However, the improvement

in the growth technique of 3C-SiC on Si is currently a setback to realize 3C-SiC on a large

area substrate.

The most widely utilized substrate material for 3C-SiC growth is Si(001) surface [24–

31]. A group reported on the surface morphology, defects, as well as atomic structure

and composition of the cubic film grown on Si(001) [22]. The growth temperature of 3C-

SiC on Si substrate is usually achieved at temperatures higher than 1000◦ after formation

of a carbonized buffer layer [32]. As a result of the high vapor pressure of Si at such a

high temperature [33], structural damage and formation of voids are liable to occur at the

interface. Again, efforts to grow high quality 3C-SiC epitaxial film on the Si substrate

are also hindered largely by the structural difference between the two semiconducting

materials. The problems are largely intrinsic in the heteroepitaxial growth such as the

mismatch of the lattice constants. The presence of a large lattice mismatch of ∼20%

between the lattice parameters, asi = 5.43 and asic = 4.36Å affect heteroepitaxy [34].
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Another parameter that influences the heteroepitaxial quality is the difference in thermal

expansion coefficients (∼8%) between the two materials. This generates additional severe

strain in the epitaxial film during the cooling process after growth. The strain causes

defects at the interface and in the film itself, as misfit dislocation, stacking faults, cracks,

twinning rotations and antiphase domains [35, 36]. The antiphase boundary forms deep

levels in the energy gap and acts as scattering centers for carriers [37]. The presence

of such defects degrades interface morphology and result in a poor crystalline quality of

3C-SiC and consequently in poor device characteristics. It is of highest priority to form

a qualified epitaxial film on top of Si substrate. Therefore the large lattice mismatch

between 3C-SiC and Si crystals is a real challenge for researchers; as a result, the growth

between the two crystals is generally thought of as impossible to occur.

However, by special crystallographic orientation and alignments, 3C-SiC on Si can be

made to almost lattice match perfectly in a fake way. The fake matching of 3C-SiC

and Si makes it quite different from other forms of important interfaces already known

in the past which are not fake matched. Few examples are given here to illustrate the

point of non-fake matching semiconductors which exhibit moderately lattice mismatch

at their interfaces includes InAs on GaAs(110) 7.2% [38–40], Ge on Si(100) 4% [41,

42] and 3C-SiC on GaN 3.4% [43] with respect to their corresponding substrates. As a

consequence, epitaxial growths are achieved between these semiconductors with slight

interface modifications due to their respective mismatches. Although in some planes and

directions, 3C-SiC on Si appears to match, [34] this is fake because the atom in 3C-SiC

has no partner on the substrate atoms. Until now, nobody has investigated this type of

interface from atomic point of view. As a result, we are motivated in the present work to

quantum-mechanically clarify this unknown interface system.

It is reported that heteroepitaxial growth of 3C-SiC on Si is strongly related to the

orientation of the Si substrate used for the growth. Recently, Nishiguchi and his coworkers

have succeeded in epitaxially growing 3C-SiC on Si by CVD method with a good fake

lattice matching for the first time. They observed the crystallographic relationship that

Si(110) surface is parallel to 3C-SiC(111) and that the Si[1̄10] direction is parallel to 3C-

SiC[1̄10] direction as shown in Figure1.1 [28, 34]. Following their method [34], other

workers have succeeded in growing graphene films on insulating 3C-SiC(111)/ Si(111)

[46, 49, 50], 3C-SiC(111)/ Si(110) [45], 3C-SiC(110)/Si(110) [46] and 3C-SiC(100)/Si
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 Crossectional HRTEM image of 3C-SiC grown
on (110) Si
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Figure 1.1: The schematic atomic projections of (a) [110] Si and (b) [111] 3C-SiC. Solid
black, circles and hatched circle represent the first, second and third layers of atoms,
which exist within the same plane. (c) 3C-SiC(111) grown on the Si substrate [34]

wafers [48] superlattatices by gas-source molecular beam epitaxy.

Nishiguchi and his collaborators reasoned that Si(110) surface could match 3C-SiC(111)

in which Si[001] direction is parallel to 3C-SiC[1̄1̄2] with surprisingly drastic reduction

in the lattice mismatch to 1.6% with Si[1̄10] direction parallel to 3C-SiC[1̄10]. Of course

3C-SiC[1̄10] and Si[1̄10] should not match but five-time 3C-SiC periodicity matches with

four-time Si periodicity along [1̄10] direction with corresponding lattice mismatch of

0.2%. We emphasize that, this fake matching intuitively suggests, one of every 5th of

Si in 3C-SiC along [1̄10] direction might be lonely in the Si region which means that

the heterostructure may be energetically unfavorable. The reason is that the number of

3C-SiC(111) surface atoms are more (dense) than those of Si(110) surface atoms(sparse).

The difference in the number of atoms between the two crystal planes at the interface

area may result in some intrinsic effects, for example, nature of dangling bonds (DBs),

reconstruction and relaxation mechanism.

With the above fake matching, it is evident that the atomistic understanding of this inter-

face heterostructure is not known yet, since there is no report on this important interface

system. It is technologically important and scientifically interesting to clarify the interface

morphology of these two important semiconductors as two group IV elements of different

ionicity and electronegativity participates in bonding. Knowledge about the physics and

chemistry of this kind of interface is crucial but it is presently lacking. What we need to
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clarify includes determination of the nature of relaxation and reconstruction mechanism

of the interface, especially how flat is the interface between the two crystal planes and

what kind of atoms exist at the interface that yields most stable atomic geometry? What

is the nature of electronic charge distribution and the interface states? We shall under-

stand this heterojunction atomic and electronic properties based on accurate and reliable

first-principles calculations.

In this thesis, we use (111) and (1̄1̄1̄) index planes of 3C-SiC corresponding to Si-

and C- terminations respectively, or Si- and C- rich surfaces. These are often used in-

terchangeably. In the same way, if no reference to an index plane is used, it is called

bulk-terminated. These terminologies are frequently used in the literature. For the sake

of completeness, we study surface energies and surface electronic properties of Si(110),

Si- and C- terminated surfaces. The reason is that these data are unavailable but relevant

to science and technology.

We denote the interface system of 3C-SiC(111) on Si(110) surface as nL/nL where n is

a natural number to describe the number of atomic-layers for each material to be used and

L indicate atomic layers. In this thesis, we focus on 8-atomic layers (8L) of 3C-SiC(111)

grown epitaxially on top of 8-atomic layers of Si(110) substrate which we write as (8L/8L)

constituent slabs which we find to converge and sufficient to discuss realistic interface

structures. There are two candidates heterojunctions under consideration, for example, if

silicon and silicon face meet each other, we call it Si-Si interface and if silicon and carbon

face meet similarly, we call it Si-C interface. These notations we shall frequently use to

describe the interface systems accordingly.

We perform detailed geometric and electronic-structure calculations based on density

functional theory (DFT) in the framework of real-space formalism. DFT is a powerful

tool to reveal atom-scale mechanisms for a variety of phenomena in real materials, capa-

ble of treating quantitatively the physics and chemistry of these materials including two

dissimilar interface systems such as the one under present investigation. We find new

reconstruction mechanism of dense 3C-SiC(111) on sparse Si(110) surface with relaxed

structures displaying undulation near the interface.

We explore a variety of candidate interface structures after extensive, accurate and reli-

able total-energy minimization calculations. We reach two distinctive structures and call

them type I and II which shows bistability and undulation at the interface. In all types,
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Si-Si interface is found to be energetically favorable compared with the Si-C interface.

The mechanism of reconstruction and relaxation is clarified. The 3C-SiC sp3 bonds are

more difficult to bend than Si, therefore at the Si-Si interface bond bending is more flex-

ible than the bending at the Si-C interface. Hence the strain at the Si-C interface is more

than that at Si-Si interface.

The mechanism of the interface reconstruction is the breaking of one Si(110) surface

layer atom bond in the supercell which causes the disappearance of excess partially oc-

cupied dangling bonds from 3C-SiC(111) side. This results in the formation of extended

floating bonds around a hole at the interface due to new electron redistribution. The pe-

culiar atomic relaxation near the interface is characterized by the interface electron states.

We note that, irrespective of the interface system, the band dispersion at the interface

structures shows semiconducting behavior. The extended floating bond around a hole can

be arranged periodically, hence the reason for the strong dispersion near the interface. It is

expected that, these floating interface states and the defect hole near the interface should

be detected by experiment in the future.

The organization of this dissertation is as follows. In Chapter 2, we present the com-

putational methods used to carry out the research. We describe the method of the first-

principles total-energy electronic-structure calculation based on density functional theory

in the framework of the real space formalism. We then introduce the calculation model

and conditions. In Chapter 3, we show the results of atomic and electronic structure calcu-

lations of Si(110) surface as well as the (111) and (1̄1̄1̄) index planes of 3C-SiC terminated

surfaces. In Chapter 4, we show the results of calculations of Si(110)/3C-SiC(111) inter-

face by determining the energetics, relaxation mechanism and band structures. In order

to confirm the results of the interface calculations, we also prepare pre-relaxed slabs of

8L 3C-SiC(111) and Si(110) surfaces appropriately and match the two slabs to form the

interface. Finally in Chapter 5, we give conclusions of the present dissertation.
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Chapter 2

Method of Computation

In this chapter, We describe the computational approach adopted in the present thesis. The

Born-Oppenheimer approximation (BOA) is outlined in section 2.1. Density functional

theory DFT is discussed in section 2.2. We review the pseudopotential scheme, show how

to solve the Kohn-Sham equations on three dimensional grid and finally demonstrate how

to perform practical electronic structure calculations.

2.1 Born Oppenheimer Approximation

We first present the BOA based on an assumption that the electronic motion and the

nuclear motion in a system consisting of nuclei and electrons can be separated because

nuclei are more massive and treated as fixed than electrons. As a result, the electrons

see the ions as providing a kind of electrostatic background in which they move. This

physical picture is the very heart of the BOA [51]. It is useful at the onset to consider the

total Hamiltonian of a many body system as:

Ĥ = −
∑

i

~2∇2
i

2mi
+

1
2

∑
i, j

e2

|ri − r j|
−

∑
i,I

ZIe2

|ri − RI |

−
∑

I

~2∇2
I

2MI
+

1
2

∑
I,J

ZIZJe2

|RI − RJ |

= T̂e + Ûee(r) + ÛeN(r, R) + T̂N + ÛNN(R). (2.1)
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where RI , MI and Z I denote coordinates, masses and atomic numbers of nuclei respec-

tively and ri is the electronic coordinates. The constants e and m are the charge and mass

of an electron. The summations are over the number of electrons Ne and nuclei Nn. The

direct treatment of this Hamiltonian is formidably difficult due to the 3(Ne+Nn) degrees

of freedom in the system. Historically, the development of condense matter theory has

been a way of seeking for an eigenfunctions and eigenvalues of this Hamiltonian. The

Born-Oppenheimer approximation allows one to say that the nuclei are nearly fixed with

respect to electron motion (adiabatic approximation). Note that this Hamiltonian is uni-

versal because it describes all everyday matter from biological macromolecules such as

proteins, enzymes and nucleic acids, to metals and semiconductors to synthetic mate-

rials such as plastics. Thus, if we can solve for the eigenvalues and eigenfunctions of

this Hamiltonian, we can predict any property we wish of a given system. The second

line of Eq. (2.1), T̂ , Ûee, ÛeN , T̂N and ÛNN represents the electron kinetic energy term,

the electron-electron interaction term, the electron-nucleus interaction term, the nuclear

kinetic term and the nucleus-nucleus interaction term respectively. The coordinates of

electrons, {r1, r2, · · · }, for simplicity are labeled as {ri} and similarly for nuclei position,

{R1, R2, · · · } are labeled as {Ri}.

The time-independent Shrödinger equation is written as:

ĤΨ(r, R) = EΨ(r, R). (2.2)

where Ψ(r, R) is the full wave function and E is an eigenvalue. The approximate wave-

function (a function of the electronic position and nuclear position) in separable form is

written as Ψ(r, R) = ψ(r, R)Φ(R), where ψ(r, R) is an electronic wavefunction that para-

metrically depends on the nuclear positions and Φ(R) is the nuclear wavefunction. The

electronic wavefunction represent the electronic state for fixed nuclear configuration RI.

The nuclear wavefunction is actually the solution to the rotational-vibrational problem for

the nuclear coordinates in the presence of an electronic potential energy surface.

Consider again the original Hamiltonian (2.1). An exact solution can be obtained by

using an (infinite) expansion of the form

Ψ(r, R) =
∑

k

ψk(r, R)Φk(R), (2.3)
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although, to the extent that the BOA is valid, very accurate solutions can be obtained using

only one or few terms. Equation (2.2) can be re-written by substituting it into equation

(2.3) as follows:

Ĥψk(r, R)Φk(R) = Ekψk(r, R)Φk(R). (2.4)

Substituting Eq. (2.1) into Eq. (2.4) yields

(
T̂e + Ûee(r) + ÛeN(r, R) + T̂N + ÛNN(R)

)
ψk(r, R)Φk(R) = (Eke + EkN)ψk(r, R)Φk(R)

(2.5)

Equation (2.5) is then grouped into two parts as:

{(
T̂e + Ûee(r) + ÛeN(r, R)

)
ψk(r, R) − Ekeψk(r, R)

}
Φk(R)

+

{(
T̂N + ÛNN(R)

)
ψk(r, R)Φk(R) − EkNψk(r, R)Φk(R)

}
= 0 (2.6)

Equation (2.6) is satisfied if ψk(r, R) and Φk(R) are the solutions of the following two

coupled equations

(
T̂e + Ûee(r) + ÛeN(r, R)

)
ψk(r, R) = Ekeψk(r, R). (2.7)

and (
T̂N + ÛNN(R)

)
ψk(r, R)Φk(R) = EkNψk(r, R)Φk(R). (2.8)

Substituting Eq. (2.7) into the left-hand side of Eq. (2.5) is expressed as

Ekeψk(r, R)Φk(R) +
(
T̂N + ÛNN(R)

)
ψk(r, R)Φk(R)

= Ekeψk(r, R)Φk(R) +

−∑
I

~2∇2
I

2MI
+ ÛNN(R)

ψk(r, R)Φk(R)

= Ekeψ(r, R)Φk(R)

−
∑

I

~2

2MI

(
(∇2

Iψk(r, R))Φk(R) + 2(∇Iψk(r, R))(∇I)Φk(R) + ψk(r, R)(∇2
I Φk(R))

)
+ÛNN(R)ψk(r, R)Φk(R)

= ψk(r, R)

−∑
I

~2∇2
I

2MI
+ ÛNN(R + Eke(R)

 Φk(R)

−
∑

I

~2

2MI

{(
(∇2

Iψk(r, R))Φk(R) + 2(∇Iψk(r, R))∇IΦk(R)
)}
. (2.9)
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If the last term of the right-hand side of Eq. (2.9) is ignored, we obtain an eigenvalue

equation for the nuclear degrees of freedom

−∑
I

~2∇2
I

2MI
+ Eke(R) + ÛNN(R)

 Φk(R) = Ek(R)Φk(R). (2.10)

Equations (2.7) and (2.10) are the principal results of the BOA. Now, we can solve equa-

tion Eq. (2.2) as follows. First solve equation (2.7), followed by solving Eq. (2.10).

This implies that the motion of nuclei and electrons can be separated provided the sec-

ond term in Eq. (2.9) is neglected. The solutions to Eq. (2.10) describe the phonon

modes of the nuclei. Also, each electronic eigenvalue Eke(R) will give rise to an elec-

tronic surface, and these surfaces are known as Born-Oppenheimer surfaces. Thus, the

full internuclear potential for each electronic surface is given by ÛNN(R) + Eke(R). On

each Born-Oppenheimer surface, the nuclear eigenvalue problem can be solved, which

yields a set of levels (rotational and vibrational in the nuclear motion).

We justify the treatment of Eq. (2.9) that, the second term diagonal matrix element

−
∑

I

∫
drdRψ∗k′(r, R)Φ∗k′(R)

~2

2MI

{
(∇2

Iψk(r, R))Φk(R) + 2(∇Iψk(r, R))∇IΦk(R)
}
, (2.11)

can indeed be neglected. The first term in (2.11) is as follows:

−
∑

I

∫
drdRψ∗k′(r, R)Φ∗k′(R)

((
~2∇2

I

2MI
ψk(r, R)

)
Φk(R)

)
. (2.12)

The wavefunction, ψk(r, R), depends on the difference between ri and RI. Thus, the

derivative of the wavefunction with respect to RI is opposite in sign to the derivative of

the wavefunction with respect to ri:

∇Iψk(r, R) = −∇iψk(r, R). (2.13)

Equation (2.12) can be re-written as:

−
∑

I

mi

MI

∫
dRΦ∗k′(R)

{∫
drψ∗k′(r, R)

(
~2∇2

i

2mi
ψk(r, R)

)}
Φk(R). (2.14)

The ratio of mi to MI is very small since electrons are much lighter than the nuclei by three

orders of magnitude. Hence, the first term in equation (2.11) can easily be neglected. The
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second term in equation (2.11) is as follows:

−
∑

I

∫
drdR

~2

2MI
ψ∗k′(r, R)Φ∗k′(R)

{
2 (∇Iψk(r, R)) (∇IΦk(R))

}
= −

∑
I

~2

2MI

∫
dRΦ∗k′(R)2

{ ∫
drψ∗k′(r, R) (∇Iψk(r, R))

}
(∇IΦk(R)) . (2.15)

At this point, the real part of the integral with respect to {r} is zero:

Re
[∫

drψ∗k′(r, R) (∇Iψk(r, R))
]

=
1
2

Re
∫

dr
{
ψ∗k′(r, R) (∇Iψk(r, R)) + {ψ∗k′(r, R) (∇Iψk(r, R))}∗

}
=

1
2

Re
∫

dr
{
ψ∗k′(r, R) (∇Iψk(r, R)) + ψk(r, R) (∇Iψk(r, R))∗

}
=

1
2

{
∇I

∫
drψk(r, R)ψ∗k′(r, R)

}
=

1
2
{∇INe}

= 0. (2.16)

As shown in Eqs. (2.14) and (2.16), the diagonal matrix element of the second term in

equation (2.9) can be avoided.

2.2 Density Functional Theory

In this section, we shall explain density functional theory (DFT) formalism for total en-

ergy electronic structure calculations carried out in this dissertation. First-principles cal-

culation based on density functional theory has long been recognized as a practical means

of providing important microscopic information for physical properties of materials on

the basis of quantum theory. Presently, DFT is in premier status among various theoret-

ical methodologies for clarification and prediction of phenomena in condensed matters.

The basic idea was introduced by Hohenberg, Kohn and Sham in the 1960s. The goal

as shown by Hohenberg and Kohn [52] is to find the exact ground-state density and total

energy of a system of N interacting electrons in an external potential without an explicit

reference to the many-body wavefunction. The electrons are assumed to interact pairwise

via Coulomb interaction. The ultimate aim of DFT calculation is minimization of an en-

ergy functional E[n] with respect to the density n. Furthermore, the nontrivial part of this

12



functional is universal, that is, it has the same form for all physical systems. Kohn and

Sham also demonstrated that it is possible to convert the many-electron problem to an

exactly equivalent set of self-consistent one-electron equations [53]. In the subsequent

subsections, we shall explain DFT formalism. Equations are in atomic unit, i.e., the fun-

damental constant ~, e2 and me are set to unity.

2.2.1 Density variational principle

Let us consider a system of interacting electrons whose Hamiltonian Ĥ is defined as:

Ĥ =
∑

i

(
−

1
2
∇2

i

)
+

1
2

∑
i, j

1
|ri − r j|

+
∑

i

∑
I

υext,I (ri − RI)

=
∑

i

(
−

1
2
∇2

i

)
+

1
2

∑
i, j

1
|ri − r j|

+
∑

i

υext (ri)

= T̂ + Û + V̂ext, (2.17)

where T̂ , Û and V̂ext are the electron kinetic energy term, the electron-electron interaction

term and the electron-nucleus interaction term (external potential term). Equation (2.17)

is in atomic unit.

We first introduce the electron density operator, n̂(r):

n̂(r) =
∑

i

δ (r − ri) . (2.18)

The many-electron wavefunction Ψ(r1, r2, · · · , rN), contains a great deal of information.

This is because it is a function of many variables, it is also not easy to calculate the

wavefunction itself.

Using the density operator, Eq. (2.18), the electron density is written as

n(r) = 〈Ψi| n̂(r) |Ψi〉

=

∫
dr1 · · ·Ψ

∗(r1, · · · )
{∑

i

δ(r − ri

}
Ψ(r1, · · · ). (2.19)
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In a similar way, the electron-nuclei interaction is expressed as

〈Ψi| V̂ext |Ψi〉 =

∫
dr1 · · ·Ψ

∗(r1, · · · )
{∑

i

υext(ri)
}
Ψ(r1, · · · )

=

∫
dr1 · · ·Ψ

∗(r1, · · · )
{∑

i

∫
drδ(r − ri)υext(ri)

}
Ψ(r1, · · · )

=

∫
drυext(r)

∫
dr1 · · ·Ψ

∗(r1, · · · )
{∑

i

δ(r − ri)
}
Ψ(r1, · · · )

=

∫
drυext(r)n(r). (2.20)

Hohenberg and Kohn presented the theoretical concept of DFT and the essential result is

that, the particle density determines the ground-state properties of the many-body system

in contrast to the Schroödinger formulation in which the many-body wavefunction does.

Their theory is composed of two theorems with respective collaries. The first theorem

states that, if a density n(r) is the ground-state density of the hamiltonian Ĥ with some

external or local potential υext(r), then υext(r) is uniquely defined up to an additive constant

for a system of interacting particles. We prove the above theorem as follows; first we guess

two different external potentials υ1
ext(r) and υ2

ext(r) which gives the same ground state den-

sity n(r). Their corresponding hamiltonian (Ĥ1, Ĥ2), wavefunctions Ψ1(r1, r2, · · · , rN),

Ψ2(r1, r2, · · · , rN) and ground state energies (E1,E1) are clearly different. It then follows

from the Rayleigh-Ritz variational principle that the inequality

E1 = 〈Ψ1| Ĥ1 |Ψ1〉 < 〈Ψ2| Ĥ1 |Ψ2〉

= 〈Ψ2| Ĥ2 |Ψ2〉 + 〈Ψ2| Ĥ1 − Ĥ2 |Ψ2〉

= E2 +

∫
dr{υ1

ext(r) − υ2
ext(r)}n(r), (2.21)

is strictly satisfied. Similarly

E2 = 〈Ψ2| Ĥ2 |Ψ2〉 < 〈Ψ1| Ĥ2 |Ψ1〉

= 〈Ψ1| Ĥ1 |Ψ1〉 + 〈Ψ1| Ĥ2 − Ĥ1 |Ψ1〉

= E1 +

∫
dr{υ2

ext(r) − υ1
ext(r)}n(r). (2.22)
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Addition of Eqs. (2.21) and (2.22) follows that:

E1 + E2 < E1 + E2. (2.23)

Hence, the assumption that there exist two different potentials which yield the same

ground state density is false. Therefore, the first theorem of Hohenberg and Kohn shows

that the external potential υext(r) uniquely determines the ground state density n(r). The

first corollary then suggests that the many-body wavefunction for all states are deter-

mined given only the ground state density because the hamiltonian is fully determined

which means all physical properties are completely determined. This theorem and the

corollary replaces the wavefunction Ψ(r1, r2, · · · , rN) with density n(r) to represent the

same many-body system.

As discussed above, the ground state energy is expressed as a functional of the ground

state density, n(r):

E[n(r)] = F[n(r)] +

∫
drυext(r)n(r), (2.24)

where F[n(r)] is universal in the sense that it refers neither to a specific system nor to

the external potential υext(r) and corresponds to the total kinetic plus electron-electron

interaction energy. The functional F[n(r)] is considered as the internal energy of the

interacting electron system expressed as:

F[n(r)] ≡ 〈Ψ| T̂ + Û |Ψ〉 . (2.25)

The system of the ground state density n(r)1 with external potential υ1
ext(r) can be chosen,

whose wavefunction is Ψ1. The total energy functional is equal to the expectation value

of the unique ground state.

E1 = 〈Ψ1| Ĥ1 |Ψ1〉

< 〈Ψ2| Ĥ1 |Ψ2〉 = E2. (2.26)

Equation (2.26) means that, the energy of the ground state density is lower than any other

density.
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The second theorem of Hohenberg and Kohn is that the ground state energy, E, is ob-

tained by minimization of the energy functional E[n(r)] with respect to the density n(r).

For the trial density ñ(r), which satisfies ñ(r) > 0 and
∫

drñ(r) = N,

E 6 E[ñ(r)]. (2.27)

The corollary of the second theorem is that the exact ground state energy and density are

deduced only from the energy functional E[ñ(r)]. This is because, the ground state energy

is found by searching the global minimum value of the energy functional with variation of

the density. The Hohenberg and Kohn formulation is based on the treatment of the ground

state density with some external potential which is called V-representability. Also, there

is the case that even if the external potential is determined, the ground state density cannot

be uniquely specified. For example, all the degenerate ground states density have the same

external potential in a system. Besides, the density which is determined by some external

potential is generally unknown.

Here, we show that the minimization can be performed with respect to the electron

density, instead of the wavefunction. The crucial step in the formulation of DFT is the

conversion of the familiar Rayleigh-Ritz variational principle of the quantum mechanical

wavefunction into a variational principle of the density. This conversion is most elegantly

accomplished by means of the constrained search algorithm. According to the Rayleigh-

Ritz principle the ground-state energy, E0, is found by minimizing the expectation value

of the hamiltonian with respect to the wavefuncion Ψ, as follows:

E0 = min
{Ψ}
〈Ψ| Ĥ |Ψ〉

= min
{Ψ}
〈Ψ| T̂ + Û + V̂ext |Ψ〉 . (2.28)

where Ψ must be an antisymmetric under interchange of two electrons because electrons

are fermions and satisfy the boundary conditions appropriate to the system under study.

The search for the wavefunctions that minimizes equation (2.28) can be accomplished in

two steps. First, we pick a density n(r) and minimize equation (2.28) within the subset of

wavefunctions that yield this density. Any reasonable density, must of course, be positive

and continuous, and add up to the total number of electrons in the system,
∫

n(r)dr = N,
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the N-representable condition is satisfied because antisymmetric wavefunction is used.

This gives the constraint search mnimum. It should be noted that Hohenberg and Kohn

worked in the space V-reprentable densities, i.e., those that can be realized for some

external potential which is a subspace of N-representable densities. Second step, we

perform the minimization with respect to n(r) as:

min
{Ψ}
〈Ψ| T̂ + Û + V̂ext |Ψ〉 = min

n

{
min
{Ψ}−→n

〈Ψ| T̂ + Û + V̂ext |Ψ〉

}
= min

n

{
min
{Ψ}−→n

〈Ψ| T̂ + Û |Ψ〉 +
∫

drυext(r)n(r
}
. (2.29)

The notation {Ψ}−→n indicates that the search for the minimum is restricted to antisymmet-

ric wave function which yield the density n(r). Levy and Lieb [54] gave another definition

of a universal functional based on the density obtained from the many-body wavefunctions

satisfying the N-repsentability condition by the first term of right-hand side of Eq.(2.29)

as:

F[n(r)] = min
{Ψ}−→n

〈Ψ| T̂ + Û |Ψ〉 , (2.30)

Finally, by using the universal functional, F[n(r)], the ground state energy is now ex-

pressed as:

E0 = min
n

{
F[n(r)] +

∫
drυext(r)n(r

}
(2.31)

= min
n

E[n(r)]. (2.32)

Looking back at what we have just done we see that the complexity of the original

Rayleigh-Ritz variational principle has been absorbed in the definition of the functional.

Levy and Lieb reformulation lead to the guideline of minimization of energy functional

for real practical application.

2.2.2 The Kohn-Sham Equation

The minimum principle of equation (2.31) offers an elegant approach to the problem of

calculating the ground-state density and energy, but the functional F[n(r)] is not known.

It is very hard, if not impossible to calculate F[n(r)] exactly and the obvious possibil-

ity is to embark immediately on an effort to find a suitable approximation. Kohn and
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Sham came up with an ingenious strategy to accomplish this. The ground-state density

of the interacting system, they argued, can be represented as the ground state density

of a non-interacting system in some effective potential. This is of course, an unproven

assumption. However, the Hohenberg-Kohn theorem guarantees that this potential, if it

exists, is unique. This means the effective potential in the interacting and non-intereacting

systems are not the same. Kohn and Sham introduced a virtual system, in which electrons

do not interact with each other under an effective potential υe f f and are described by the

independent-single particle equation as:

{
−

1
2
∇2 + υe f f (r)

}
ψi(r) = εiψi(r), (2.33)

n(r) =
∑

occupied

|ψi(r)|2, (2.34)

where ψi and εi are the single-particle wavefunction (Kohn-Sham wavefunction) and the

eigenvalue of the virtual system and the label i denotes each Kohn-Sham state. The above

equations are called the Kohn-Sham equations. They have also decomposed F[n(r)] into

three parts:

F[n(r)] = Ts[n(r)] + U[n(r)] + Exc[n(r)]. (2.35)

The first term Ts[n(r)] is the single particle non-interacting kinetic energy functional de-

fined as:

Ts[n(r)] =
∑

i

〈ψi| −
1
2
∇2 |ψi〉 (2.36)

=
∑

i

{
εi −

∫
drυe f f (r)n(r)

}
. (2.37)

The second term U[n(r)] is the Hartree electrostatic interaction

U[n(r)] =
1
2

∫
dr

∫
dr′

n(r)n(r′)
|r − r′|

. (2.38)

The last term Exc[n(r)] is the exchange-correlation energy including everything else omit-

ted from the first two terms.

By the decomposition of equation Eq. (2.35), the Kohn-Sham total-energy functional
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becomes:

E[n(r), {RI}] =
∑

i

〈ψi| −
1
2
∇2 |ψi〉 +

∫
drυext(r)n(r) +

1
2

∫
dr

∫
dr′

n(r)n(r′)
|r − r′|

+ Exc[n(r)], (2.39)

according to Eq. (2.31). Usually, the system consists of electrons and nuclei (or ions).

The total energy functional including the nuclei is thus expressed us:

E[n(r), {RI}] =
∑

i

〈ψi| −
1
2
∇2 |ψi〉 +

∫
drυion(r)n(r) +

1
2

∫
dr

∫
dr′

n(r)n(r′)
|r − r′|

+ Exc[n(r)] +
∑
I,J

ZIZJ

|RI − RJ |
, (2.40)

where υion(r) is the electron-ion potential same as υext(r) and the last term is the Coulomb

energy interactions among the nuclei with {ZI} at positions {RI}. From the theorems

previously discussed, we can obtain the ground state energy of any system by minimizing

the energy with respect to the electron density n(r). The variation of the total-energy

E[n(r)] with respect to the density as written in Eq. (2.40) is expressed as:

δE[n(r)] = δTs[n(r)] +

∫
drυion(r)δn(r) +

∫
dr

∫
dr′δn(r)

n(r′)
|r − r′|

+

∫
dr
δExc[n(r)]
δn(r)

δn(r). (2.41)

If we substitute equation (2.41) into (2.37) accordingly, we obtain the following equation.

δE[n(r)] =
∑

i

δεi −

∫
drδυe f f (r)n(r) −

∫
drυe f f (r)δn(r)

+

∫
drυion(r)δn(r) +

∫
dr

∫
dr′δn(r)

n(r′)
|r − r′|

+

∫
dr
δExc[n(r)]
δn(r)

δn(r).

(2.42)

The Kohn-Sham equation under effective potential υe f f + δυe f f is expressed as:

{
−

1
2
∇2 + υe f f (r) + δυe f f (r)

}
(ψi(r) + δψi(r)) = (εi + δεi) (ψi(r) + δψi(r)) . (2.43)
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Further simplification yields the equation below:

{
−

1
2
∇2 + υe f f (r) + δυe f f (r)

}
δψi(r) + δυe f f (r)ψi(r) = εiδψi(r) + δεi (ψi(r) + δψi(r)) .

(2.44)

Considering only the first-order variations, we obtain

{
−

1
2
∇2 + υe f f (r)

}
δψi(r) + δυe f f (r)ψi(r) = εiδψi(r) + δεiψi(r), (2.45)

which can be re-written as

δυe f f (r)ψi(r) = δεiψi(r). (2.46)

At this juncture, we multiply both sides of Eq. (2.46) with ψ∗i (r) and integrate with respect

to r, ∫
drψ∗i (r)δυe f f (r)ψi(r) =

∫
drψ∗i (r)δεiψi(r). (2.47)

This follows that equation (2.47) becomes:

∫
drδυe f f (r)|ψi(r)|2 =

∫
drδεi|ψi(r)|2 = δεi. (2.48)

The summation of Eq. (2.48) with respect to the suffix i is given by

∫
drδυe f f (r)

{∑
i

|ψi(r)|2
}

=
∑

i

δεi,∫
drδυe f f (r)n(r) =

∑
i

δεi. (2.49)

Substituting Eq. (2.49) into Eq. (2.42)

δE[n(r)] = −

∫
drυe f f (r)δn(r)

+

∫
drυion(r)δn(r) +

∫
dr

∫
dr′δn(r)

n(r′)
|r − r′|

+

∫
dr
δExc[n(r)]
δn(r)

δn(r)

=

∫
drδn(r)

{
− υe f f (r) + υion(r) +

∫
dr′

n(r′)
|r − r′|

+
δExc[n(r)]
δn(r)

}
. (2.50)

To satisfy the variational condition that δE[n(r)] is equal to zero under the condition
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∫
drδn(r) = 0, the effective potential υe f f (r) is given by

υe f f (r) = υion(r) +

∫
dr′

n(r′)
|r − r′|

+
δExc[n(r)]
δn(r)

. (2.51)

Therefore, substituting Eq. (2.51) into Eq. (2.33) we obtain:

{
−

1
2
∇2 + υion(r) + υH(r) + υxc(r)

}
ψi(r) = εiψi(r), (2.52)

in more compact form

HKSψi(r) = εiψi(r), (2.53)

where υH(r) is the Hartree potential due to the electrons represented as

υH(r) =

∫
dr′

n(r′)
|r − r′|

. (2.54)

The exchange-correlation potential, υxc(r), is given formally by the functional derivative

of the exchange-correlation energy Exc[n(r)] as

υxc(r) =
δExc[n(r)]
δn(r)

. (2.55)

Equation (2.52) is the so called Kohn-Sham equations which must be solved self-consistently,

leading to the solution of single-particle Kohn-Shame states. The occupied Kohn-Sham

wavefunctions lead to electron density that produces the electronic potential and this po-

tential should be the same as the potential used to construct the equation. Again, equation

(2.52) contains the exchange-correlatin potential. If this term were known exactly, then

taking the functional derivative with respect to the density would produce an exchange-

correlation potential that included the effects of exchange and correlation exactly. Until

now, the exact functional form is a big unknown and thus approximations are usually

adopted. The simplest approximation methods describing the exchange-correlation en-

ergy is the local density approximation (LDA) proposed by Hohenberng-Kohn and ap-

propriate for sufficiently slowly varying density and that the correlation-energy functional

is purely local.

ELDA
xc [n(r)] =

∫
drεxc(n(r))n(r), (2.56)

wherer εxc(r), is the exchange-correlation energy per electron in a homogenous electron
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gas
δExc[n(r)]
δn(r)

=
d[n(r)εxc(r)]

dn(r)
. (2.57)

Ceperley and Alder [55] have calculated the energy of a uniform electron gas over a

wide range of densities. They used Quantum Monte Carlo simulation techniques to sam-

ple a correlated wavefunction for electrons in a finite volume subject to periodic bound-

ary conditions and extrapolated the energy per electron to infinite volume. Perdew and

Zunger [56] have parmaterized the results of Ceperley-Alder by interpolation formular

to link exact results for the exchange-correlation energy of high-density electron gas and

calculations of intermediate and low-density electron gas. For an upolalrized electron gas,

the exchange-correlation energy is given as:

εxc = εx + εc, (2.58)

εx = −
0.4582

rs
, (2.59)

εc =
−0.1432

1 + 1.0529
√

rs + 0.3334rs
(rs) > 1, (2.60)

= −0.0480 + 0.0311lnrs − 0.0116rrs + 0.0020rslnrs (rs) < 1, (2.61)

where εx and εc are the exchange and correlation terms respectively, and the quantity rs is

the radius of a sphere whose volume is the effective volume of an electron. We can obtain

the exchange-correlation potential as:

n(r) =
3

4πr3
s
. (2.62)

By subtituting Eq. (2.56) into the exchange-correlation potential in Eq. (2.55) we obtain

the following expression

υxc(r) =
δExc[n(r)]
δn(r)

,

= εxc (n(r)) + n(r)
dεxc(n(r))

dn(r)
. (2.63)

Eq. (2.63) means that the exchange-correlation functional can be represented by the local

energy functional εxc (n(r)). That is, supposing the homogenous electrons gas of density

n(r) distributes at each point r, the local energy functional should be replaced with that of

the homogenous electron gas εhom
xc (n(r)).
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More recently, generalized gradient approximations (GGA) has been proposed and the

exchange-correlation energy is expressed as a functional of the density gradient in addi-

tion to the density

EGGA
xc [(n(r)] =

∫
dr f (n(r),∇(r)) , (2.64)

where f is a parameterized analytic function.

2.2.3 Hellmann-Feynman force

Method to calculate the forces acting on nuclei is described in this section. Total energy

is expressed as a functional with respect to the wavefunctions, {ψ}, and the position of

nuclei {R}:

E
[
{ψ}, {R}

]
. (2.65)

When each ψi is an eigenstate of the Hamiltonian, H, the total differentiation of the total

energy with respect to the position of a nucleus, RI, gives the real physical force on the

nucleus [57, 58]. The force acting on ion FI, is minus the total differentiation of the total

energy of a system with respect to the position of a nucleus is written as:

FI = −
dE[

{
ψi

}
,
{
RI

}
]

dRI
(2.66)

= −
∂E
∂RI

−
∑

i

∫
dr

[
δE

δψi(r)
δψi(r)
δRI

+
δE

δψ∗i (r)
δψ∗i (r)
δRI

]
. (2.67)

The total energy of the electron system is given as:

E[n(r)] = −
1
2

∑
i

∫
drψ∗i (r)∇2ψi(r) +

∫
drυion(r)n(r) +

1
2

∫
dr

∫
dr′

n(r)n(r′)
|r − r′|

+ Exc[n(r)]. (2.68)
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The variation of the total energy of an electron system Eq. (2.68) with respect to ψ∗i , is

given by:

δE
δψ∗i

=

{
−

1
2
∇2 +

∫
dr′

n(r′)
|r − r′|

+
δExc[n(r)]
δn(r)

+ υion(r)
}
ψi(r) (2.69)

=

{
−

1
2
∇2 + υe f f (r)

}
ψi(r)

= HKSψi, (2.70)

where HKS is the Kohn-Sham Hamiltonian for the effective potential as shown in Eq.

(2.52). Now, we can re-write Eq. (2.67) by substituting (2.70) as:

FI = −
∂E
∂RI

−

{
〈ψi| ĤKS |

dψi

dRI
〉 + 〈

dψi

dRI
| ĤKS |ψi〉

}
. (2.71)

This is called Hellmann-Feynman force and expressed as:

−
∂E
∂RI

=

∫
drn(r)

∂υion(r)
∂RI

−
∂EII

∂RI
, (2.72)

where

EII =
∑
I,J

ZIZJ

|RI − RJ |
, (2.73)

is the nucleus-nucleus interactions. If a complete basis set is used, the second term in

(2.71) becomes zero and then Hellmann-Feynman force coincides with the force on the

nuclei. Otherwise, if some basis sets are introduced to represent the eigenstates, i.e.,

ψi(r) =
∑
µ

Ciµχµ, (2.74)

where χµ denotes the basis set, Eq. (2.71) is expressed as:

FI = −
∂E
∂RI

−
∑

i

{∑
µµ′

C∗iµ′Ciµ

(〈
dχµ′
dRI

∣∣∣∣∣ H − εi

∣∣∣∣∣ χµ〉 +

〈
χµ′

∣∣∣∣∣ H − εi

∣∣∣∣∣ dχµ
dRI

〉) }
. (2.75)

The second term of (2.75) contains the derivative of the basis set with respect to the

positions of the nuclei. The contribution of this term to the force on the nuclei usually

referred to as the Pulay force. If the basis functions do not depend on the positions of

nuclei, the Pulay force becomes zero.
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2.3 Total-Energy Electronic-Structure Calculations

In this section, we shall describe the method of performing total-energy electronic struc-

ture calculations based on DFT. As outlined in the previous section, DFT is a powerful

scheme to reveal atom-scale mechanisms for a variety of phenomena in real materials.

For example, it provides the theoretical framework for obtaining the ground state total

energies, the ground state electronic charge densities and optimized atomic structures. In

order to perform actual practical DFT calculations, several numerical methods are em-

ployed. The most important among them is the basis set used to expand the Kohn-Sham

single-particle orbitals. This is because it determines the construction of the Hamiltonian

matrix and its operations consist of selection of the exchange-correlation potential and

external potential terms. Although there are several basis set such as Slater-type basis

functions or Gaussian-type basis functions, Plane-wave basis is one of the most useful

basis sets to facilitate DFT calculations. However, a similar scheme exists in which func-

tions are not expanded in a basis set, but are sampled on a real-space mesh. The mesh

is commonly chosen to be uniform although other options are possible. The calculations

carried out in the present thesis are based on the real space formalism in reference to

the implementation of the real space density functional theory (RSDFT) code developed

in our group [59]. In the real-space approach, ionic potentials are replaced by smoother

pseudopotentials. The Schrödinger-type quantum mechanical equations are discretized

on three-dimensional spatial grids and solved by treating them as finite-difference (FD)

equations. In this section, we begin the discussion by introducing the real-space grid

method of Kohn-Sham energy functional, describe the pseudopotential scheme and elec-

tronic structure calculations based on the real-space scheme.

2.3.1 Real-space grid scheme

The standard approach of doing total-energy electronic-structure calculations are based

on density-functional theory. The method is used to provide theoretical framework for

interpreting experimental results and even to accurately predict properties before experi-

mental data are made available. The usual way to solve the Kohn-Sham equation which

is a variational equation of the total energy with respect to the electron density is to use

a basis set. In the real-space formulation grids (in real space) are introduced instead of
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basis sets and wavefunctions, electron density and potentials are computed on each grid

point which are very simple to visualize. Accuracy of the computation is guaranteed by

systematically decreasing the separation between the grid points. This corresponds to the

systematic increase of the number of plane waves in the plane-wave basis set approach

and thereby provides practically accurate solutions of Kohn-Sham equations.

Although the traditional plane-wave methods are highly successful, the method is con-

strained by the necessity of performing fast Fourier transforms (FFT’s) between real and

reciprocal spaces. One of the several advantages in real-space formulation is its being

almost free from the spell of FFT. While FFT’s maybe implemented in a highly efficient

manner on traditional vector supercomputers, the current trend in supercomputer design is

massively parallel multi-core architectures. It is difficult to implement an efficient FFT al-

gorithms on such machines due to the required long-range routine communications tasks

among all processors so that the large-scale calculations are indeed formidable. Real-

space methods are inherently local, and therefore do not lead to large overhead burden in

communication. The choice to overcome this numerical difficulty is to compute all the

necessary quantities in real-space, for example it is unnecessary to use FFT in Hamil-

tonian operations. In calculations of long-range Hartree potentials, it may be useful to

use FFT. Even for the calculations of Hartree potentials, solving Poisson equations in real

space may be an alternative to massive parallel computations. In the present version of the

RSDFT code, we use FFT only in calculating Hartree potentials. This makes the scheme

almost FFT-free and the efficiency of the computation is expected to be high.

The scaling of several critical parts of large calculations is improved from O(N2log2N)

in a plane-wave representation to O(N2) where N is the number of atoms. Furthermore,

preconditioning and convergence acceleration are most effectively carried out in real

space. The real-space formulation is required for an efficient implementation of O(N)

electronic structure methods in which computational work require scales linear with the

number of atoms. The method imposes a localization constraint on the electronic orbital

or the electronic charge density, which eliminates the O(N3) orthogonalization step.

Another advantage in real-space formulation is the flexibility to treat boundary con-

ditions of wavefunctions. In plane-wave basis set approach, supercell models where all

electrons wavefunctions satisfy periodic boundary conditions are imperative. The real-

space approach is capable of treating cluster models as well as supercell models in prin-
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ciple. In this formalism, one can study a finite system, a molecule or a cluster without

the need of a supercell, simply by imposing that the wavefunctions are zero at a surface

far enough from the system. In this way, an infinite system, a polymer, a surface or bulk

material can be studied by imposing the appropriate cyclic boundary conditions [61–63].

In RSDFT formulation, the kinetic energy operator is represented by the high-order

finite difference operator using values of corresponding functions at nearby grid points.

The order of the finite-difference formula suitable for practical computations is linked to

a choice of the spacing of grid points. Another big advantage of this approach is that the

potential operator is diagonal and that the Hartree potential is evaluated via solving the

Poisson’s equations rather than the direct integration.

The Hartree potential in the integral form is given by

υH(r) =

∫
dr′

n(r′)
|r − r′|

, (2.76)

or in the differential form also known as Poisson equation is given as

∇2υH(r) = −4πn(r). (2.77)

The Laplacian operator entering the kinetic energy in equation (2.52) and Poison equation

(2.77) is discretized at the grid points ri by the higher-order difference method. The

formula for the discretized Laplacian operators is given by

∇2∇ψ (xi, yi, zi) =

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ψ (xi, yi, zi)

≈

Md∑
m1=−Md

Cm1ψ (xi + m1Hx, yi, zi)

+

Md∑
m1=−Md

Cm2ψ
(
xi, yi + m2Hy, zi

)
+

Md∑
m1=−Md

Cm3ψ (xi, yi,m3Hz + zi) , (2.78)

where Hx, Hy, Hz are the grid spacings in each direction and Cm’s are the coefficients of

the Md-order finite difference. The approximation is accurate to order O(H2Nd+2) upon the

assumption that {ψ} can be approximated accurately by a power series in the grid spacing.

The numerical errors can adequately be reduced by using higher order-finite difference.
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In practice, it is sufficient to use order Md = 6 to avoid errors.

For solids or periodic systems, the unit cell is a parallelepiped which is specified by

three lattice vectors ã1, ã2 and ã3. The spatial grid is defined by dividing each lattice

vector by an integer, so that the grid spacing Hi(i = 1, 2, 3) is

Hi =
|ãi|

M i
,

and total number of grid points as ML = M1M2M3.

During parallel computation, we divide the target system into blocks, depending on the

available resources. Each processor is responsible for each block. Values of required func-

tions in each block are stored in each local memory. Most computations are performed

locally on each processor. Communications among different processors occur only when

the computation of finite-difference operations and inner products are performed. In the

case that we use FFT to compute Hartree potentials, it is convenient to store electron den-

sity at all memories and perform FFT at all processors. The computational cost for FFT

of the present target system size is of small portion.

Calculations using the real-space grid can be performed on cubic silicon carbide and

silicon interface system by using a supercell approach. Although the interface system is

periodic in the lateral directions, it has no periodicity in the perpendicular direction. We

use the repeating slab model in which thick enough atomic layers are cleaved out from

the individual bulk crystals of silicon carbide and silicon and the interface slab made from

them. The interface slabs are isolated by thick enough vacuum region from their mirror

images. To ensure accuracy of the calculation, the interface slabs and the vacuum regions

must be thick enough so that interactions between neighboring sides of the slab and the

periodically repeated adjacent surfaces are negligible. Details of the model calculation

are discussed in section 2.5.

2.3.2 Pseudopotential

It is well known that most physical and chemical properties of atoms, molecules or solids

are dependent on re-arrangement of valence electrons. The core electrons are strongly

bound and do not play any meaningful role in the chemical binding of atoms. The pseudo
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potential method exploits the importance of valence electrons by replacing the core elec-

trons and the strong ionic potential with a weaker pseudopotential that acts on a set of

pseudo wavefunctions rather than the true wavefunctions. In this section, we briefly de-

scribe both the conceptual and practical aspects of the pseuodoptential method.

The Pseudopotential Concept

The many-electron Schrödinger-type equation can be very much simplified if electrons are

divided in two groups: valence electrons and inner core electrons. The electrons in the

inner shells are strongly bound and do not play a significant role in the chemical binding

of atoms, thus forming with the nucleus an almost inert core. Binding properties are

almost completely due to the valence electrons, especially in metals and semiconductors.

This separation suggest that the inner electrons can be ignored in a large number of cases,

thereby reducing the atom to an ionic core that interacts with the valence electrons. The

use of an effective interaction, a pseudopotential that approximates the potential felt by

the valence electrons, was first proposed by Fermi in 1934 [60].

Let the exact solutions of the Schrödinger-type equation for the inner core electrons

be denoted by |ψc〉 and |ψυ〉 those for the valence electrons. Then, the Schrödinger-like

equation of the atom can be written as:

Ĥ |ψn〉 = En |ψn〉 , (2.79)

with n = c, υ. The valence orbitals can be written as the sum of a smooth functions

(called the pseudo wavefunction) |ϕυ〉 and an oscillating function that results from the

orthogonalization of the valence to the inner core orbitals:

|ψυ〉 = |ϕυ〉 +
∑

c

αcυ |ψc〉 , (2.80)

where

αcυ = − 〈ψc|ϕυ〉 . (2.81)

The pseudo wavefunctions for the smooth orbital |ϕυ〉 satisfy a Schrödinger-like equation
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with a pseudopotential V̂PP:

(
T̂ + V̂

)
|ϕυ〉 = Eυ |ϕυ〉 +

∑
c

(Ec − Eυ) |ψc〉 〈ψc|ϕυ〉 , (2.82)

Ĥ |ϕυ〉 = Eυ |ϕυ〉 +
∑

c

(Ec − Eυ) |ψc〉 〈ψc|ϕυ〉 , (2.83)

and then (
T̂ + V̂PP

)
|ϕυ〉 = Eυ |ϕυ〉 . (2.84)

Substitute equation (2.82) into (2.84) yields V̂PPas:

V̂PP = V̂ −
∑

c

(Ec − Eυ) |ψc〉 〈ψc| , (2.85)

where V̂ is the true potential, in which valence electrons move. The equation (2.85)

indicates that there is almost complete cancelation between the large negative potential

energy V(r) felt by a valence electron when it is inside the core of an atom, and its large

positive kinetic energy which is inherent in the oscillations of its wavefunction |ψc〉.

It is clear that this pseudopotential acts differently on wavefunctions of different angu-

lar momentum. In the region near the core, the orthogonalization of the valence orbitals

to the strongly oscillating core orbitals forces the valence electrons to have a high ki-

netic energy (The kinetic energy density is essentially a measure of the curvature of the

wavefunctions). The valence electrons feel an effective potential which is the result of

screening of the nuclear potential by the core electrons, the Pauli repulsion and exchange-

correlation effects between the valence and core electrons. The second term in Eq. (2.85)

represents a nonlocal repulsive potential, making the pseudopotential V̂PP much weaker

than the true potential V̂ in the vicinity of the core. These imply that the pseudo wave-

functions |ϕυ〉 will be smooth and will not oscillate in the core region, as desired [63]. The

equation (2.85) has a non unique |ϕυ〉 [64]

(
T̂ + V̂PP

)
|ϕ′υ〉 = Eυ |ϕ

′
υ〉 , (2.86)

where

|ϕ′υ〉 = |ϕυ〉 +
∑

c

βc |ψc〉 ,
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and βc is arbitrary. By using this feature, the pseudopotential V̂PP is generalized to

V̂PP
Fc

= V̂ +
∑

c

|ψc〉 〈Fc| . (2.87)

where Fc are arbitrary functions [65]. Therefore the eigenvalues and eigenfunctions of

the pseudo-Hamiltonian are given by:

(
Ĥ + V̂PP

Fc

)
|ϕ′υ〉 = Eυ |ϕ

′
υ〉 , (2.88)

and the βc are determined by the set of linear equations

∑
c′

{
(Ec − Eυ) δcc′ + 〈Fc|ψc′〉

}
βc′ = − 〈Fc|ψυ〉 . (2.89)

It is important to note that one can make an arbitrary selection of pseudopotentials only if

one wants to calculate eigenvalues and that the form of the pseudo wavefunction depends

on the adopted pseudopotential.

Norm-conserving pseudopotentials

The norm-conserving pseudoptentials are obtained by forcing the pseudo wavefunctions

to coincide with the true valence wavefunctions beyond a certain distance called cutoff ra-

dius and to have the same norm as the true wavefunction. To generate such pseudopoten-

tials, DFT calculations are performed for an isolated atom for a given reference electron

configuration. In this discussion, we outline a pseudopotential generation recipe proposed

by Troullier and Martins [66].

The norm-conserving pseudopotentials are constructed such that they satisfy the follow-

ing four general conditions. First, the normalized atomic radial pseudopotential wave-

function with angular momentum l (RPP
l ) is equal to the normalized radial all-electron

wavefunction with principal quantum number n and angular momentum l (RAE
nl ) beyond a

chosen cutoff radius rcl,

RPP
l (r) = RAE

nl (r) if r > rcl. (2.90)

Second, the norm of the true and pseudo wavefunctions inside the pseudized region must
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be the same (norm-conservation condition)

∫ rcl

0
dr|RPP

l (r)|2r2 =

∫ rcl

0
dr|RAE

nl (r)|2r2. (2.91)

Third, the eigenvalues of the pseudo wavefunctions coincide with those of the all-electron

wavefunctions for a chosen electronic configuration of the atom

εPP
l = εAE

nl . (2.92)

Finally, the valence pseudo wavefunctions generated from the pseudopotential should

be nodeless. Several schemes have been proposed to generate first-principles pseudopo-

tentials that satisfy the above conditions. These flavors differ mostly in the functional

form of the potentials and the smoothness conditions. Presently, some of the smoothest

norm-conserving pseudopotentials are obtained by Troullier and Martines. To obtain the

norm-conserving pseudopotential the procedure is outlined below [63, 66]

1. The single atom Kohn-Sham radial equations are solved self-consistently in a given

reference configuration (i.e. for a given distribution of electrons in the atomic en-

ergy levels) and by assuming spherical approximation to Hartree and exchange cor-

relation potential and relativistic effects are ignored.

{
−

1
2

d2

dr2 +
l (l + 1)

2r2 + υAE
KS [nAE](r)

}
rRAE

nl (r) = εAE
nl rRAE

nl (r), (2.93)

where nAE(r) is the total electron densities for the occupied all-electron wavefunc-

tions. The Kohn-Sham potential for the one-electron self-consistent solution, υAE
KS

is given by

υAE
KS [nAE] = −

Z
r

+ υH[nAE](r) + υxc[nAE](r), (2.94)

where υH[nAE](r) is the Hartree potential and υxc[nAE](r) is the exchange-correlation

potential.

2. Construct the pseudo wavefunctions on the basis of the above results. We defined
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the pseudo wavefunctions as

RPP
l (r) =


RAE

nl (r) if r > rcl

rlexp[p(r)] if r < rcl

(2.95)

with

p(r) = c0 + c2r2 + c4r4 + c6r6 + c8r8 + c10r10 + c12r12. (2.96)

The coefficients of p(r) are adjusted by imposing norm conservation condition, the

continuity of the pseudo wavefunctions and their first four derivatives at r = rcl

which in effect imposes the continuity of the screen pseudopotential and its first

two derivatives and that the screen pseudopotential has zero curvature at the origin.

This condition implies that

c2
2 + c4(2l + 5) = 0, (2.97)

and is the origin of the enhanced smoothness.

3. The pseudopotential is screened (scr) by inverting the Kohn-sham equation as

υPP
scr,l(r) = εPP

l −
l (l + 1)

2r2 +
1

2rRPP
l (r)

d2

dr2 [rRPP
l (r)]. (2.98)

The resulting pseudopotential, υPP
scr,l, still contains the screening effects due to the

valence electrons. These effects needs to be subtracted and they include Hartree

υPP
H and exchange-correlation υPP

xc potentials calculated from the valence pseudo

wavefunction from the screened potential yields an ionic pseudopotential υPP
ion,l:

υPP
ion,l(r) = υPP

scr,l(r) − υPP
H (r) − υPP

xc (r). (2.99)

This form contains a nonlocal operator which requires a huge operational time.

4. Form the ionic pseudopotential operator which is defined as

υ̂PP
ion(r) =

∑
l

υPP
ion,l(r)P̂l, (2.100)
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where P̂l projects out the lth angular-momentum component from the wavefunction.

This summation, however, needs to be truncated at some value of l in practice.

This suggests that local potential, υPP
ion,local(r) which is independent of l acting on

electrons with higher angular momentum than lmax can be replaced as υPP
ion,local(r) =

υPP
ion,lmax

(r). The ionic pseudopotential can be re-written in a mathematical form as

follows

υ̂PP
ion(r) =

∞∑
l=0

υPP
ion,l(r)P̂l

=

lmax∑
l=0

υPP
ion,l(r)P̂l +

∞∑
l=lmax+1

υPP
ion,l(r)P̂l

≈

lmax∑
l=0

υPP
ion,l(r)P̂l + υPP

ion,local(r)
∞∑

l=lmax+1

P̂l

=

lmax∑
l=0

υPP
ion,l(r)P̂l + υPP

ion,local(r)
{
1 −

lmax∑
l=0

P̂l

}
= υPP

ion,local(r) +

lmax∑
l=0

[
υPP

ion,l(r) − υPP
ion,local(r)

]
P̂l. (2.101)

We now define the nonlocal potential which can be written in a form that separates

long and short range components. The long range component is local and corre-

sponds to the Coulomb tail. Choosing an arbitrary angular-momentum l component

(usually the most repulsive one) is written as

υPP
nonlocal,l(r) = υPP

ion,l(r) − υPP
ion,local(r). (2.102)

Hence the practical form of the ionic pseudopotential operator is thus given as

υ̂PP
ion(r) = υPP

ion,l(r) +

lmax∑
l=0

|l〉 υPP
nonlocal,l(r) 〈l| . (2.103)

This is the procedure of constructing the pseudopotential proposed by Troullier-Martins.

The cutoff radii, rcl, are not adjustable pseudopotential parameters. The choice of a

given set of cutoff radii establishes only the region where the pseudo and true wavefunc-

tions coincide. Therefore, the cutoff radii can be considered as a measure of the quality

of the pseudopotential. Their smallest possible value is determined by the location of the
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outermost nodal surface of the true wavefunction. For cutoff radii close to this minimum

value, the pseudopotential is considered realistic, but also very strong. If very large cutoff

radii are selected, the pseudopotentials will be smooth and almost angular momentum

independent, but of very low quality. A smooth potential leads to a fast convergence of

calculation. The choice of the ideal cutoff is then the result of a balance between cost of

calculations and pseudopotential accuracy. Now that we have obtained the pseudopoten-

tial for an isolated ion, we substitute equation Eq. (2.103) into (2.52), the Kohn-Sham

equation of valence electrons in a system consisting of many atoms is represented as fol-

lows

{
−

1
2
∇2 +

∑
I

 lmax∑
l=0

|l〉 υPP
nonlocal,l(r − RI) 〈l| + υPP

ion,local(r − sRI)

 + υH(r) + υxc(r)
}
ψi(r)

= εiψi(r). (2.104)

Here, υion(r) in (2.52) is replaced as

υion(r) =
∑

I

υ̂PP
ion(r − RI). (2.105)

Kleinman and Bylander [64] suggested that the nonlocal part (the second term which

is semi-local) in Eq. (2.103) can be written as a separable potential, thus transforming

semi-local potential into a truly nonlocal pseudopotential, if ϕlm = RPP
l (r)Ylm(r) are

the solutions to the atomic pseudopotential for the valence states of interest, then the

Kleinman and Bylander separable form is given by

υ̂KB
nonlocal,l(r) =

lmax∑
l=0

l∑
l=−m

|ϕlm(r)υPP
nonlocal,l(r)〉 〈ϕlm(r)υPP

nonlocal,l(r)|

〈ϕlm(r)| υPP
nonlocal,l(r) |ϕlm(r)〉

. (2.106)

The advantages of the separable form is that its operations need only the products of

projection operators and that it is suited for time-saving calculations. However, there is a

report of possibility of unphysical states appearing at energies below the true ground states

eigenvalues of a specific angular momentum [67] resulting in what is called ghost states

and can be graphically observed as divergences in the energy plot of the logarithmic

derivative at unphysical low energies.

We replace the first term in the bracket of Eq. (2.104) by Eq. (2.106) and obtain the
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complete expression of Kohn-Sham equations within Kleinman-Bylander approximation,

{
−

1
2
∇2 +

∑
I

[
υ̂KB

nonlocal,l(r − RI) + υPP
ion,local(r − RI)

]
+ υH(r) + υxc(r)

}
ψi(r)

= εiψi(r). (2.107)

Pseudopotential Transferability

The generated pseudopotential must at least reproduce the following features of a free

atom in the reference configuration

1. The pseudo eigenvalues obtained by using pseudopotential are equal to the all-

electron ones, and the corresponding orbitals agree exactly out side the cutoff radii.

2. The scattering properties are correct at each εi, in the sense that the logarithmic

derivative and its energy derivative match the all-electron one at the same energy.

A useful pseudopotential needs to be transferable, i.e., it needs to describe accurately the

behavior of the valence electrons in several different chemical environment. The logarith-

mic derivatives provide a first test of the transferability of the screened pseudopotential:

The logarithmic derivative of the pseudo wavefunction determines the scattering proper-

ties of the pseudopotential. As long as the norm-conserving pseudopotential is concerned,

the following relation is fulfilled:

∫ rcl

0
dr

{
rRl(r, ε)

}2
= −

1
2

{
[rclRl(rcl, ε)]2 ∂

∂ε

d
dr

lnRl(r, ε)
}ε=εk

r=rcl

(2.108)

where Rl(r, ε) is the radial wavefunction corresponding to energy ε, εk is the eigenvalue

used in the pseudopotential-preparation, and rcl is the radius of the core sphere. This

suggests that the energy derivative of the logarithmic derivative obtained by using the

norm-conserving pseudopotential coincides with the all-electron one to the the first order

with respect to δε. Logarithmic derivative is not an absolute test of the transferability of

a pseudopotential. The ideal method to assess the transferability of a potential consists of

testing it in diverse chemical environments.
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2.3.3 Kohn-Sham Equation on three dimensional grid

In a real-space grid implementation, the Kohn-Sham equations must be discretized ex-

plicitly, the quantum-mechanical operators are known only at a discrete set of grid points.

The wavefunctions, electron charge density, and potentials are directly represented on

a three dimensional real-space grid of ML grid points with linear grid spacing H. The

kinetic-energy operator is expanded by using the higher order finite difference method as

shown in equation (2.78). Following that, we set up a one-particle Kohn-Sham equation

in real space using equations (2.107) and (2.106) of Kleinman-Bylander approximation.

We assume a uniform grid over the three dimensions, but this is not a necessary assump-

tion of equation (2.107). Over these grid points, we must solve the Kohn-Sham equation

in real-space mesh as:

−
1
2

{ Md∑
m1=−Md

Cm1ψ(xi + m1Hx, y j, zk) +

Md∑
m1=−Md

Cm2ψ(xi, y j + m2Hy, zk)

+

Md∑
m1=−Md

Cm3ψ(xi, y j,m3Hz + zk)
}

+

∑
I

υI
ion(Xi,Y j,Zk) + υH(xi, y j, zk) + υxc(xi, y j, zk)

ψ(xi, y j, zk)

= εψ(xi, y j, zk). (2.109)

When the separable form of the pseudopotential given by Kleinman and Bylander is used

as a nonlocal component, the inner product between the pseudopotential and wavefunc-

tion is given by

υI
ion(Xi,Y j,Zk)ψ(xi, y j, zk) = υPP,I

ion,local(Xi,Y j,Zk)ψ (xi, yi, zk)

+

lmax∑
l=0

l∑
l=−m

GI
lmυ

PP,I
nonlocal,l(Xi,Y j,Zk)ϕI

lm(Xi,Y j,Zk). (2.110)

Here

GI
lm =

∑
i, j,k ϕ

∗I
lm(Xi,Y j,Zk)υPP,I

nonlocal,l(Xi,Y j,Zk)ψ (xi, yi, zk) HxHyHz∑
i, j,k ϕ

∗I
lm(Xi,Y j,Zk)υPP,I

nonlocal,l(Xi,Y j,Zk)ϕI
lm(Xi,Y j,Zk)HxHyHz

, (2.111)

is the projection coefficients. Now, (Xi,Y j,Zk) = (xi−RI
x, y j−RI

y, zk−RI
z) and (RI

x,R
I
y,R

I
z) is

the location of the I − th pseudopotential ion υI
ion interacting with an electron. The nonlo-
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cality in υI
ion is reflected by the occurrence of ψ(xi, yi, zk) in Glm. The Kleinman-Bylander

form is advantageous in real space formulations because outside the pseudopotential core

radius, rcl, υ
PP,I
nonlocal,l(Xi,Y j,Zk) = 0. This limited nonlocality means that the discrete repre-

sentation of υI
ion is sparse [68]. Additionally, it means in periodic systems only the local

pseudopotential has infinit periodic replicas, and that those replicas behave in the usual

∼ 1
r manner of the true ionic potential.

If there are ML grid points, the size of the full matrix resulting from the above eigen-

value problem is ML × ML. Here υI
ion contains the nonlocal ionic pseudopotential, υH is

the Hartree potential and υxc the exchange and correlation potential in real space repre-

sentation. Two fixed grid parameters used in setting up the matrix are the grid spacing H

and the order Md.

2.3.4 Bloch theorem

Bloch’s theorem states that the electronic wavefunctions can be expanded in terms of

a discrete plane-wave basis set: According to the Bloch’s theorem, in a periodic solid

each electronic wavefunction can be written as the product of a cell-periodic part and a

wavelike part.

ψnk(r) = exp [ik · r] · unk(r) (2.112)

unk(r + R) = unk(r), (2.113)

where n,k,R represents, band index of a particular wavefunction, wave vector and Bra-

vais lattice vector respectively. The cell-periodic part of the wavefunction can be ex-

panded using a basis set consisting of a discrete set of plane waves whose wave vectors

are reciprocal lattice vectors of the crystal,

unk(r) =
∑

G

cnkG(r)exp[iG · r], (2.114)

where the reciprocal lattice vectors G are defined by G · l = 2πm for all l where l is a

lattice vector of the crystal and m is an integer, therefore each electronic wavefunction
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can be written as sum of plane waves

ψnk(r) =
∑

G

cnk+G(r)exp[i(k + G) · r]. (2.115)

In principle, accurate physical quantities such as total energies and electronic charges are

obtained by solving the Kohn-Sham equations at infinite k points. It is impossible to per-

form calculations at infinite k points within finite time frame. However, the electronic

wavefunctions at k points which are very close to each other will be almost identical.

Hence it is possible to represent the electron wavefunctions in a region of k space by the

wavefunction at a single k points in the region. In this case, the electron wavefunctions

at only a finite number of k points are required to calculate physical quantities such as

total energies, electron charges and so on of the solid. Methods for generating the sets of

special k points in the Brillouin zone exist which provides efficient means of integrating

periodic functions of the wave vector [69–71]. Efficient methods have been devised to

obtain accurate physical quantities of an insulator and semiconductor by calculating the

electron wavefunctions at a very small number of k points. On the other hand, the elec-

tronic potential and total energy are more difficult to calculate in metallic system because

a dense set of k points are required to define the Fermi surface precisely. In principle, a

converged electronic potential and total energy can always be obtained provided that the

computational time is available to calculate the electronic wavefunctions at sufficiently

dense sets of k points.

2.3.5 Grid spacing

When plane waves are used as a basis set for the electronic wavefunctions, the Kohn-Sham

equations assume a particular simple form. Substituting equation (2.115) into (2.52) and

integration carried out over r gives the secular equation

∑
G′

{
1
2
|k + G|2δGG′ + Vion(G −G′) + VH(G −G′) + Vxc(G −G′)}

cnk+G′ = εncnk+G. (2.116)

The kinetic energy is diagonal in this form and various potentials have been described

in their Fourier transforms. The solution of equation (2.116) is done by diagonalizing
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the hamiltonian matrix given by the terms in the brackets. The size of the matrix is

determined by the kinetic energies 1
2 |k+G|2. However, the choice of the minimum kinetic

energy needed to determine the matrix size sufficient for accurate calculation is called the

cutoff energy given by

Ec =
|Gcut|

2

2
. (2.117)

In the real space grid method, this cutoff energy is determined by the grid spacing H given

as

Ec =
1
2

[
π

Hi

]2

, (2.118)

where Hi(i = 1, 2, 3) for each spatial direction.

2.4 Flow Chart of Total-Energy Electronic-Structure

Calculations

Total-energy electronic-structure calculations in the norm conserving pseudopotential scheme

can be performed in real-space scheme discussed below for massively parallel calcula-

tions [59]. DFT calculations in real-space can be classified in two categories (1) system

with periodic boundary conditions, this is typical of crystalline solids or supercell geome-

tries: (2) systems with decaying boundary conditions, usual for molecules or clusters.

Calculations in this present thesis is based on the former. First we set up the initial coor-

dinates and the species of each atom in the unit cell. Second we construct the Kohn-Sham

equation Eq. (2.109). Third we perform the self-consistency calculation to solve the

Kohn-Sham equation. Fourth we calculate the Hellmann-Feynman forces. Figure 2.1

outlines the basic steps of such calculations. In the geometry optimization procedure, the

ionic configuration RI are updated according to their Hellmann-Feynman forces until the

residual forces on all the ions are smaller than a given value. In the Hellmann-Feynman

force calculations, the Kohn-Sham equations under given configuration are solved iter-

atively until self-consistency is achieved. This means, there are two main loops in the

total-energy electronic structure calculations. In the following, we briefly explain each

step of the calculations. Note that, f (r) is a general function defined by its Fourier trans-
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1. Set up System {Ri=1}and calculation condition

2. Generate sample k-points and G-vectors
3. Construct initial potential and charge density 

4. Generate initial  orbitals 

5. Construct ionic pseudo potential

6. Solve Kohn-Sham equation
a.  Update orbitals by
Conjugate-Gradient method (CG)

b. Ortho-normalize orbitals 
by Gram-Schmidt method (GS)

c. Update{density, Hartree and
 exchange correlation potentials}

d. Solve eigen-value problem  
by subspace diagonlization(SD)

Geometry 
 relaxed?

7. Calculate Hellmann-Feynman force update
 the atomic configuration

New{Ri+1}

i+1

No

No

Yes

Yes

Ground-state total energy and electron densities
                 Optimized geometry
                  Electronic structure

Output

SCF converged?

Figure 2.1: Flow chart of total-energy electronic-structure calculations by using norm-
conserving pseudopotential in the real-space grid.
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form as:

f (r) =
∑

G

f (G)eiG·r (2.119)

f (G) =
1
Ω

∫
Ω

dr f (r)e−iG·r, (2.120)

where Ω is the crystal volume.

1. Set up a system and calculation conditions such as: Unit cell, symmetry, initial

ionic configuration RI , grid spacing, convergence conditions, pseudopotentials, etc.

The pseudo potentials are prepared and stored to external files before the DFT cal-

culation begins.

2. Generate sample k-points and the reciprocal lattice vectors G, according to the

calculation conditions.

3. Pseudopotentials data from external files are read and then prepared on each grid

point by interpolation. In actual fact, raw data are not used for the interpolation

but rather preconditioned by Fourier-filtering or double grid method to avoid the

so-called egg-box effect which is a spurious energy dependence on atomic position

relative to neighboring grid points. We obtain the local potential Vion,local(r) by

placing an ionic local pseudopotential at the position of every ion in a periodic

system. First construct the local potential Vion,local(G) from VRI
ion,local(G), which is

the Fourier components of the ionic local pseudopotential for the ion located at RI

in the unit cell. VRI
ion,local(G) are parts of those of the total ionic local pseudopotential
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Vion,local(G) The pseudopotential is considered in its more general non-local form

Vion,local(r) =
∑

I,l

Vion,local (r − RI − l)

=
∑

I,l

{
1
Ω

∑
G

VRI
ion,local(G)eiG·(r−RI−l)

}
=

∑
G

eiG·r
{

1
Ω

∑
I,l

VRI
ion,local(G)e−iG·RIe−iG·l

}
=

∑
G

eiG·r
{

1
Ω0

∑
I

VRI
ion,local(G)e−iG·RI

}
≡

∑
G

eiG·rVion,local(G), (2.121)

VRI
ion,local(G = 0) =

∫
drVRI

ion,local(r)e−i0·r

= 4π
∫

drr2VRI
ion,local(r) (2.122)

VRI
ion,local(G , 0) =

∫
drVRI

ion,local(r)e−iG·r

= 4π
∫

drr2VRI
ion,local(r)

sin(Gr)
Gr

, (2.123)

where Ω0 is the volume of the unit cell and VRI
ion,local(r) corresponds to ionic species

are calculated during the pseudopotential generation. It is important to recognize

that the pseudopotential is a pure Coulomb potential of the form Zυ/r, where Zυ

is the number of valence electrons, at large distance and thus the pseudopotential

diverges as 1/G2 at small wave vectors. Yet there are similar divergences in the

Coulomb energies due to the ion-ion interactions and the electron-electron interac-

tions. These three divergence terms of the total energy exactly cancel out due to

charge neutrality.

4. Initial orbitals are prepared using a random-number generator and ortho-normalized

by Gram-Shmidt procedure.

5. We generate an initial electron density nin as a superposition of the isolated pseudo

atom densities which are accompanied with the pseudopotentials and calculate ini-

tial local potential Vlocal = Vion,local + VH + Vxc. Construct the initial charge density

n(G) from nRI(G), which is the Fourier components of the atomic charge density for

the local atom at RI in the unit cell. nin(r) is obtained by placing a charge density
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at the position of every atom in a periodic system

nin(r) =
∑

I,l

n(r − RI − l)

=
∑

I,l

{
1
Ω

∑
G

nRI (G)eiG·(r−RI−l)
}

=
∑

G

eiG·r
{

1
Ω

∑
I,l

nRI(G)e−iG·RIe−iG·l
}

=
∑

G

eiG·r
{

1
Ω0

∑
I

nRI(G)e−iG·RI

}
≡

∑
G

eiG·rn(G), (2.124)

nRI(G = 0) =

∫
drnRI (r)e−i0·r

= 4π
∫

drr2nRI (r) (2.125)

nRI(G , 0) =

∫
drnRI (r)e−iG·r

= 4π
∫

drr2nRI (r)
sin(Gr)

Gr
, (2.126)

nRI(r) =
∑

l

Nocc(l)|RP
l |

2, (2.127)

where Nocc(l) is the number of occupied electron at l orbital. When we calculate

the initial charge density from the atom pseudo wavefunction, the initial Hartree

potential VH, and exchange-correlation potential Vxc, are obtained from the initial

electron density:

Vlocal(G) = Vion,local(G) + VH(G) + Vxc(G), (2.128)

where

Vion,local(G) =
1

Ω0

∑
I

VRI
ion,local(G)e−iG·RI , (2.129)

VH(G) =
4π
|G|2

n(G), (2.130)

Vxc(G) =
1

Ω0

∫
drυxc(r)e−iG·r. (2.131)

(2.132)
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Therefore, the initial local potential Vlocal(r) is obtained by Fourier transforming

Vlocal(G) as:

Vlocal(r) =
∑

G

Vlocal(G)eiG·r. (2.133)

6. Construct the Kohn-Sham equations by using the initial electron densities n(i)
in (r)

and the ionic configuration {R(i)
I }, and solve the equations to obtain new Kohn-

Sham wavefunction |ψ(i+1)
nk 〉 and their eigenvalues ε(i+1)

nk . The procedure to obtain

the Kohn-Sham wavefunction and eigenvalues under fixed potential are outlined in

steps (a)∼(d) below

(a) We find the subspace spanned by the eigenfunctions associated with the small-

est MB eigenvalues of the Hamiltonian HKS in ML dimension and minimize the

Rayleigh quotients (RQ) to update the orbitals as:

εnk =
〈ψnk|HKS |ψnk〉

〈ψnk|ψnk〉
. (2.134)

The minimization is performed using conjugate gradient (CG) method, but

other schemes can be used. The intention is, we numerically solve ML ×

ML hermitian matrix eigenvalue problem for the lowest MB eigen-pairs since

ML � MB.

(b) Following the minimization, we update the wavefunction by performing Gram-

Schmidt (GS) procedure to recover the ortho-normalization relations among

the orbitals as follows:

|φnk〉 = |ψnk〉 −

n−1∑
m=1

ψmk〈ψmk|ψnk〉, (2.135)

〈φmk|φnk〉 = δmn. (2.136)

(c) We calculate the Fermi energy, update the new electron densities n(i+1) by

using ε(i+1)
nk and ψ(i+1)

nk . The electron densities are calculated by using the Fermi

energy, compute new local potential V (i+1)
local by using the new electron densities

n(i+1) as follows:

V (i+1)
local (r) = V ion

local(r) + VH

[
n(i+1)(r)

]
+ Vxc

[
n(i+1)(r)

]
. (2.137)
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Compare the present local potential V (i)
local(r) with the new one V (i+1)

local (r), the

self-consistency loop is stopped when some convergence criterion is reached

(then follow on to step 7). For instance, one can use the averaged-squared

error between the two local potentials, 〈
{
V (i)

local − V (i+1)
local

}2
〉r < ε where ε is a

given value typically ∼ 10−16[Ht2]. If the criterion is not satisfied, one restarts

the self-consistency cycle with the new local potential V (i+1)
local starting from step

6(a).

(d) We perform subspace diagonalization (SD) to reduce the ML-dimension of

HML×ML = HKS hamiltonian to MB-dimension of HMB = HMB×MB hamiltoinian

eigenvalue problem. The subspace is refined through subspace diagonaliza-

tion. Approximate eigenvectors are obtained as resultant Ritz vectors, and are

used as the initial vectors for the next iteration. The procedure a, b and c are

performed until the subspace converges sufficiently to be that spanned by the

eigenvectors. This operation results in an improved wavefunctions by linear

combination of the updated wavefunctions as:

|ψnk〉 =

MB∑
m=1

cn
m |φmk〉 . (2.138)

The optimal coefficients for the linear combinations can be obtained as fol-

lows:

HKS |ψnk〉 = εn |ψnk〉 , (2.139)

substitute Eq. (2.139) into (2.138) we obtain

MB∑
m=1

cn
mHKS |φmk〉 = εn

MB∑
m=1

cn
m |φmk〉 . (2.140)

We then multiply 〈φlk| from the left hand side and re-write the equation as:

MB∑
m=1

cn
m 〈φlk|HKS |φmk〉 = εn

MB∑
m=1

cn
m 〈φlk|φmk〉 (2.141)

MB∑
m=1

cn
m
{
HMB×MB

}
lm = εn

MB∑
m=1

cn
mδlm

= εncn
l , (2.142)
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where

{
HMB×MB

}
lm = 〈φlk|HKS |φmk〉 = 〈φlk|HML×ML |φmk〉 . (2.143)

This matrix equation is expanded as



H1,1 H1,2 · · · H1,n

H2,1 H2,2 · · · H2,n
...

...
. . .

...

HMB,1 HMB,2 · · · HMB,MB





c1
n

c2
n
...

cMB
n


= εn



c1
n

c2
n
...

cMB
n


(2.144)

The matrix equation (2.144) is an eigenvalue problem from which the optimal

coefficients and eigenvalues can be obtained by solving its corresponding cir-

cular equation. The coefficients are used to compute the Ritz vectors in equa-

tion (2.138). The adopted MB Ritz vectors are used as the approximate initial

eigenvectors for the next subspace diagonalization. The procedure a ∼ d

is repeated until self-consistency field (SCF) is achieved among the orbitals,

density and potential.

7. Calculate the Hellmann-Feynman forces using the converged self-consistent elec-

tronic structures. The geometry-optimization loop is stopped when the residual

forces on all the ions are smaller than a given value, typically ∼ 10−3[Ht/a.u.].

If the criterion is not fulfilled, one moves the ions according to their Hellmann-

Feynman forces and restart the geometry-optimization loop with new ionic config-

uration
{
R(i+1)

I
}

(go to step 5).

2.5 Models and Calculation Conditions

In this thesis, nuclei and core electrons are simulated by norm-conserving pseudopoten-

tials generated by Troullier-Martins scheme [66]. The ground-state atomic configuration

of C and Si are (1s)2(2s)2(2p)2 and (1s)2(2s)2(2p)6(3s)2(3p)2 respectively. We regard 2s

and 2p of C as well as 3s and 3p of Si as valence orbitals. Nonlocality for both s and

p potentials are considered. We examined the transferability of the pseudopotentials by

changing their hardness and computing the structural parameters of 3C-SiC, C and Si

47



Table 2.1: Condition for constructing C, Si and H pseudopotentials using Troullier-
Martins scheme.

species Carbon Silicon Hydrogen

configuration 1s22s22p2 1s22s22p63s23p2 1s1

core 1s 1s, 2s, 2p −

valence 2s, 2p 3s, 3p 1s
local 3d 3d 1s

rcl [a.u.] 1.50(2s) 2.25(3s) 1.68(1s)
1.54(2p) 2.25(3p)

1.54(local) 2.25(local) 1.68(local)

crystals and similarly have compared the vibrational properties of SiH4 and CH4 in the

breathing mode. We find that the core radius rcl of 1.50 a.u and 1.54 a.u for 2s and 2p of C

and 2.25 a.u for both 3s and 3p of Si as shown in Table 2.5 accordingly. Similarly, we have

also prepared hydrogen pseudopotential for the slab model, where rcl = 1.68 a.u is taken

for 1s orbital of H. We used the reference configuration of C and Si as empty d-orbital for

the generation of the local pseudopotential. The nonlocal angular-momentum-dependent

wavefunctions and pseudopotentials of carbon and silicon atoms are shown in Figure 2.2

and Figure 2.3 respectively.

We use the local density approximation (LDA) functional to express the exchange-

correlation energy. The functional as parametrized by Perdew and Zunger [56] is used.

The conjugate gradient scheme [72] is used for solving Kohn-Sham equations in or-

der to obtain wavefunctions and also when optimizing atomic geometries according to

Hellmann-Feynman forces. Forces on acting atoms in fully relaxed positions are less than

1.0 × 10−3 eV/Å.

For the calculation of 3C-SiC(111) on Si(110) surface, the mesh size of the grid used

is determined by calculating total energies of bulk carbon changing the mesh size in the

range 0.25∼0.18Å equivalent to 44∼85 Ry. We find that 0.21Å (∼62Ry) grid spacing is

enough cutoff energy sufficient to assure the convergence in reproducing physical proper-

ties of the materials. Calculated bond lengths of CH4 and SiH4 and the lattice constants

of C, Si and 3C-SiC crystals using these calculational parameters rcl and Ec agree with

the experimental values within acceptable errors as indicated in Table 2.2 and 2.3. These

results are consistent with the trend that, LDA underestimate lattice constant and overes-

timate bulk modulus [73, 74]. Calculated vibrational frequencies and bulk modulus of
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Figure 2.2: Real and pseudo radial wavefunctions are shown for the 2s (a) and the 2p (b)
states of C. The norm conserving pseudopotential of 2s, 2p and 3d states with 3d state
being local potential of C are shown in (c).
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Figure 2.3: Real and pseudo radial wavefunctions are shown for the 3s (a) and the 3p (b)
states of Si. The norm conserving pseudopotential of 3s, 3p and 3d states with 3d state
being local potential of Si are shown in (c).
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Table 2.2: Comparison between calculated and experimental values of lattice constant
and bulk modulus.

species C
lattice constant (Å) bulk modulus (Mbar)

calculation 3.502 5.064
experiment 3.567 4.440
error in % -1.6 +14

species Si
lattice constant (Å) bulk modulus (Mbar)

calculation 5.372 1.042
experiment 5.429 0.990
error in % -1.06 +5

species SiC
lattice constant (Å) bulk modulus (Mbar)

calculation 4.289 2.461
experiment 2.461 2.240
error in % -1.62 +9.8

these materials are in good agreement with experimental values within several percent.

We calculate 3C-SiC(111)/Si(110) interface energies and the surface energies of clean

Si(110) surface, Si- and C-terminated clean surfaces using these pseudopotential and the

mesh size used is 0.21Å (∼62Ry) throughout this thesis. The reason for this is, we find

that surface and interface energies are strongly sensitive to the mesh spacing hence the

decision to treat all calculations on equal footing. The surface energies of Si(110), Si-

and C-terminated surfaces are found to converge within 0.05, 0.01 and 0.001 eV/atom

respectively when the surfaces primitive cells are used.

We converge the 3C-SiC(111)/Si(110) interface slab thickness by displacement of atomic

positions from the ideal configuration instead of interface energy. The initial attempts

to converge the interface energy proved difficult, because we realized that Si- and C-

terminated surfaces are polar and Si(110) surface nonpolar, trying to converge the inter-

face energy of these polar and nonpolar materials is a hard task so we avoided it after

several efforts. As a result we used mean atom displacement per layer and find that 8L/

8L atomic layers converge to value less than 0.1Å of the layers far from the interface. We
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Table 2.3: Comparison between calculated and experimental values of bond length and
phonon frequency of CH4 and SiH4.

species CH4

bond length (Å) Phonon frequency (cm−1)
calculation 1.093 2947.00
experiment 1.089∼1.095 2917.00∼3137
error in % +0.3 +1.03

species SiH4

bond length(Å) Phonon frequency (cm−1)
calculation 1.478 2127.70
experiment 1.480 2186.84
error in % -0.14 -2.7

believe this is sufficient to discuss convergence of the slab thickness as LDA is unlikely

to give accuracy better than 0.1Å.

The surface properties of Si(110), 3C-SiC(111) and 3C-SiC(1̄1̄1̄) were simulated using

repeated slab model. The calculation model is shown in Figure 2.4 schematically. The

slabs are cut out from bulk Si and 3C-SiC crystals and put in a supercell with sufficient

vacuum thickness. Si crystal has equivalent symmetry and thus we can make two equiv-

alent surfaces at both ends of the slab. This property allows us to calculate the surface

energy without resorting to passivating the dangling bonds.

We systematically increase the atomic layers in the supercell until the surface energy is

converged. Figure 2.4(a) shows Si(110) surface supercell model calculation. We inves-

tigate surface and not thin film, therefore the possible interaction between the upper and

lower surfaces is avoided. As a result, the thickness of the slab has to be thick enough

that interaction between the two surfaces is negligible for which surface energy can con-

verge. We achieve that by gradually increasing the atomic layers and keeping the vacuum

thickness within the supercell constant. The model has the periodicity in the direction

perpendicular to the surface. The vacuum layer must be thick enough so that the interac-

tion between the periodically repeated adjacent surfaces in the direction perpendicular to

the surface is negligible. We use 12 Å for all surface calculations after careful check.

When calculating the Si- and C-terminated surface energies of 3C-SiC, the supercell

similar to Si(110) surface as previously described in Figure 2.4(a) is prepared and same
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Figure 2.4: Schematic drawings of slab model cut out completely from bulk Si and 3C-
SiC crystals respectively (a) two equivalent clean Si(110) surfaces (b) two inequivalent
surfaces, one clean surface and other hydrogen passivated of 3C-SiC(111) surface. Small
thick blue circles indicate hydrogen passivating the dangling bonds.
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calculation conditions apply. However the crystal symmetry of Si- and C-terminated sur-

faces are different from Si(110) surface as shown in Figure 2.4(b). Because these two

surfaces are inequivalent, several problems can occur during the self consistency cycle.

At first, there might occur an artificial charge transfer to give rise to long-range electro-

static potentials, since the surface states of the cation (Si-terminated) dangling bonds lie

above those of the anion (C-terminated) dangling bonds when the two surfaces are clean

for a given slab. As a result, these surface states on both sides could interact with each

other through the slab. Several possibilities exist to avoid these artificial effects. One way

is to construct a slab containing a mirror plane. However, this slab would contain twice

as many atoms, since the mirror plane had to lie in the ’bulk’ of the slab. The approach

we have taken is to saturate the dangling bonds of one surface with hydrogen atoms and

the other allow to be clean surface as adopted by these workers [75,76]. Detail discussion

is given in section 3.1. For relaxed atomic geometry calculation, the atomic positions

of the bottom-most atoms as well as the H atoms attached are fixed to their ideal posi-

tions. Technically, the surface energy calculated by this approach is not very correct since

the hydrogen terminated surface energy part has not been removed from it and needs to

be corrected. However we observed that, the surface energy calculated by this approach

compares favorably well with the experimental value which suggests that calculation error

due to the non-removal of the hydrogen terminated surface is insignificant or minimal.

Next we consider the 3C-SiC(111) on Si(110) surface system. The interface model is

constructed by cutting out the required surfaces from the individual bulk crystals of 3C-

SiC and Si and put together in a supercell simulated by repeated slab model as shown

in Figure 2.5(a). The two outer-most surfaces are passivated with hydrogen which are

fixed including the atomic layer the hydrogen is attached to and the rest of the atoms are

allowed to relax completely. The supercell consists of two possible candidate interfaces.

(i) silicon-carbon (Si-C) that is 3C-SiC(1̄1̄1̄)/Si(110) and (ii) silicon-silicon (Si-Si) that is

3C-SiC(111)/Si(110) interfaces as shown in Figure 2.5[(b), (c)] respectively.

When interface structures are discussed, one takes slab model and terminate it with hy-

drogen. The hydrogen and the atomic layer it is attached to are fixed and the remaining

layers are relaxed. The atomic layers are then subsequently increased until the desired

convergence is achieved. In this case, we encounter several problems. The obvious ex-

amples are, in the lateral direction there are many atoms which means large degrees of
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Figure 2.5: Schematic drawing of 3C-SiC(111) on Si(110) surface slab model cut out
completely from both Si and 3C-SiC crystals and put together to construct the interface
(a) interface slab model with hydrogen passivation on the outer surfaces of Si(110) and
the 3C-SiC bulk terminated surface (b) interface where silicon face and carbon face meet
form the Si-C interface (c) similarly interface where silicon and silicon faces meet form
Si-Si interface. Small thick blue circles indicate hydrogen passivating the dangling bonds.
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freedom. It is unknown the relative atomic positions of Si(110) face which meets 3C-

SiC(111) face to form the interface system and secondly the interface separation between

the two crystals together. This nobody knew before the present calculations and therefore

we will determine by extensive total energy calculation in this thesis.

As for the separation between the two materials, we first assume Si-C and Si-Si bond

distances as an initial interface separation and perform structural optimization to reach the

most stable geometries. Of course the result converged with a number of atomic layers

is the only meaningful quantity here. We perform careful convergence test and reached a

conclusion that 8L/8L slab is sufficient enough to compute the real interface energy.

2.6 Mean atomic displacement

We treat the slab convergence as a function of mean displacement of relaxed atom position

from the ideal per atomic layer. We separate the individual crystals for this treatment after

relaxation accordingly.

dA
i = RA

i − RA
i,ideal, (2.145)

4di = ‖dA
i ‖ (2.146)

δmean =

∑
4di

N
, (2.147)

where RA
i , RA

i,ideal are the atomic position of the i-th atom in the relaxed and ideal structures

and N is the number of atoms per layer in each component atomic layers. We find that N

is 10 for 3C-SiC(111) side per atomic layer and 8 for Si(110) surface accordingly.

2.7 Integrated density and average potential

We analyze the charge density profile ρ(x, y, z) by integrating it over x and y grid points

as follows:

ρ̃(z) =

∫ ∫
ρ(x, y, z)dxdy, (2.148)
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which is a function of z-coordinate. we call this ρ̃(z) “integrated density” hereafter. For

example, integrated density of i-th Kohn-Sham wavefunction ψi(x, y, z) is represented as:

ρ̃i(z) =

∫ ∫
|ψi(x, y, z)|2dxdy. (2.149)

In the same fashion, we use “average potential” Ṽ(z) instead of V(x, y, z) for analysis. The

average potential Ṽ(z) is defined as:

Ṽ(z) =
1
A

∫ ∫
V(x, y, z)dxdy, (2.150)

where A is the area of the base of the supercell.
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Chapter 3

Energetics of Si(110) and 3C-SiC(111)

Surfaces

In this chapter, we present atomic and electronic structure calculations of Si(110), Si-

and C-terminated surfaces by real space density functional formalism. The systematic

convergence of the above mentioned surfaces energies with corresponding relaxation is

discussed. We shall similarly show the electronic structure properties of these surfaces and

compare the results with experimental and other theoretical works whenever available.

3.1 Surface energy of Si(110) and 3C-SiC(111) crystals

Surface energy is defined as the work done required to separate a crystal into two parts

along a given plane. The value of the surface energy of a crystalline solid is one of the

most important fundamental quantities which characterizes a large number of physical

phenomena. Among them are crystal growth, surface faceting, growth of thin layers and

the shape of small crystallites. Due to their technological significance, a thorough micro-

scopic understanding of their surface structures is highly desired. One of the fascinating

problems concerns the equilibrium shape of nanocrystallites fabricated from solid state

materials such as Si and 3C-SiC. The formation of self-assembled islands or quantum

dots during the epitaxial growth of Ge on Si(100) [4, 77] and Si on α-SiC(0001) [78] is

characterized by several distinct island shapes and unusual size distribution.

Apart from knowledge of the strain, the construction of the crystal shape requires com-
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plete determination of the surface energy γ as a function of the surface orientation. In

spite of its importance, there are few experimental data concerning surface energies due

to the fact that they are difficult to measure [79]. By studying equilibrium shape of voids

in silicon allows one to extract the surface energies for three orientations [110], [100]

and [311] [80]. As for the 3C-SiC(111) surface energy, the experimental data available

presently is obtained based on a simple formula similarly applied to lead chalcogenides

with NaCl structure as carried out by Oshcherin [81].

There is almost a dearth of theoretical data available; the reason for this lack is that

surface energy is very difficult to calculate. Calculation of surface energies are mainly

restricted to semi-empirical methods such as tight binding approach [82, 83] or use of

classical interaction potentials [84]. Surface energy values obtained from first-principles

calculations are only available for 1×1 and 2×1 reconstructions of diamond surfaces [87–

89] as well as for Si(111) and (100) surfaces [90–92].

Takai and coworkers calculated the surface energy of 3C-SiC(111) surface from empir-

ical potential in conjunction with Monte Carlo procedure [85]. From the first-principles

calculation view point, only Si(110) surface energy is reported [86] using planes basis set

and no report on 3C-SiC(111) surface energy. It is therefore imperative we calculate the

surface energies of Si- and C-termination of 3C-SiC and Si(110) surfaces to augment the

existing data for comparison with real-space formulation.

3.1.1 Si(110) and 3C-SiC(111) surface energy determination

In order to model the two dimensional surfaces, a study within primitive surface cell

of 1 × 1 translational symmetry should give the basic structural and electronic features

of such surfaces. We consider periodic arrangement of slabs along the surface normal

starting from 2-atomic layers and increase the slab thickness systematically to 20-atomic

layers of Si(110) and 24-atomic layers (12-bilayers) of 3C-SiC terminated surface. The

atomic layer is defined as a monoatomic layer of either (111) or (1̄1̄1̄) surface plane of Si-

or C-termination. The lattice constants are fixed to the theoretical equilibrium values of

Si and 3C-SiC crystals. In each supercell, the number of atoms in a layer is restricted to

the surface lateral cell. The slabs are separated by sufficiently thick vacuum regions. For

Si(110) surface, two surfaces of the slab are symmetrically equivalent as shown in Figure
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2.4(a) and allow for direct calculation of the surface energy. Another advantage is that

the same surface reconstruction n × m occurs at both sides of the surfaces. However, this

is completely different for the 3C-SiC terminated surfaces as indicated in Figure 2.4(b).

With regards to the surface energy of Si(110) n × m, we follow similar ideas used by

Stekolnikov and coworkers [86] where none of the two equivalent surfaces of Si(110) is

hydrogen passivated. Consider a given atomic geometry {Ri} in such a slab the surface

energy En×m
sur f can directly be inferred from the total energy of the slab Etot(N, {Ri}) with N

atoms by subtracting N times the bulk energy µS i(bulk) per atom as:

En×m
sur f =

1
2nm
{Etot(N, {Ri}) − µS i(bulk)NS i}. (3.1)

The presence of the chemical potential µS i(bulk) of the constituent atoms allows one to

compare surfaces with different numbers of atoms in the 2D surface unit cell, where

n × m in the case of reconstruction gives the number of 1 × 1 unit cells. The prefactor
1
2 in equation Eqs. (3.1) indicates that the two surfaces of the slab are involved in the

calculation. The surface energy per unit area is given by

γn×m =
En×m

sur f

A
, (3.2)

which immediately follows by dividing expression (3.1) with the surface area A of 1×1 su-

percell surface orientation. Physically, γn×m is the energy increase due to dangling bonds.

In principle, Eq. (3.1) and (3.2) gives the precise expressions applicable to arbitrary sur-

face translational symmetries and reconstruction.

Now let us consider the surface energy of an inequivalent 3C-SiC(111) surface with

lateral periodicity 1×1 which is equivalent to 3C-SiC(1̄1̄1̄). We define the surface energy

as:

γn×m =
1
A
{Etot(N, {Ri}) − µS iC(bulk)NS iC − µHNH}. (3.3)

Since the two surfaces are not equivalent, Eq. (3.3) is used to compute the surface energy.

As we pointed out in the last section of chapter 2, there are two methods often used to

calculate surface energy of inequivalent surfaces and unfortunately neither are accurate.

The first approach is, one has to artificially impose inversion symmetry of which each
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slab will actually consist of double slabs, the centre of which contains two planes of the

same kind of atoms [76]. The other approach due to Käckell and collaborators [75], one

of the two inequivalent surfaces is passivated with hydrogen leaving the other surface

clean for surface energy calculation. This is what we have adopted because the goal is the

convergence of the surface energy and not just a single calculation with sufficient thick

slab to determine the surface energy. It is computationally inexpensive compared with the

former. We find that the converged calculated results compare favorably well with other

empirical calculations.

What we have done is that, each broken sp3 bond at the bottom layer atom in either Si-

or C-terminated supercell is saturated with hydrogen and lowest bilayer atoms together

are kept fixed in order to hold the characteristics of a more realistic surface, while the

rest of the atoms in the supercell are allowed to relax during the geometry optimization

procedure. With all the model systems considered for 1×1 surfaces, we used 36 sampling

k points in the lateral plane, that is, xy-plane of the Brillouin zone (BZ) (20-k points in

the irreducible wedge by symmetry operation) are taken for the BZ integration. Only 1-k

is used in the z-direction. The k-points meshes used are tested and sufficient enough to

give accurate results after we performed k-point convergence test.

We determine the chemical potentials of µS i(bulk) and µS iC(bulk) pair from their corre-

sponding bulk systems of Si and 3C-SiC by filling the vacuum regions with atoms in bulk

positions and same slab orientation and size of the two-dimensional unit cells. We use 18-

atomic layers for Si and 3C-SiC bulk in the supercell to calculate the chemical potential

accordingly. In 3C-SiC(111) surface, H is attached to the C whereas it is attached to Si

in 3C-SiC(1̄1̄1̄) surface. Therefore, the correct H chemical potential must be determined

with respect to the corresponding environment. For this reason, we determine hydro-

gen chemical potential from SiH4 and CH4 by calculating their corresponding minimum

energy. We calculate the H chemical potentials as follows:

µHS i =
ES iH4 − µS i(bulk)

4
, (3.4)

and

µHC =
ECH4 − µC(bulk)

4
, (3.5)

where ES iH4 , ECH4 , are the total energy per SiH4 and CH4 molecules respectively.
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We calculate the chemical potential of C(µC(bulk)) with the same number of atomic layers

as Si and similar calculation condition. It should be noted that, C has several allotropes

and any one of them can be used in this work. There is no special reason for use of

diamond crystal to determine C chemical potential. Using hydrogen chemical potentials

calculated from Eq. (3.4) and Eq. (3.5), chemical potentials of Si, C and 3C-SiC crystals

and all substituted in Eq. (3.3) depending on the particular surface of interest, we can

evaluate the respective surface energies of Si- and C-terminated surfaces accordingly. In

the same fashion, substituting chemical potential of Si into equation (3.1), the surface

energy of Si(110) surface can be evaluated.

Figure 3.1 shows the dependence of surface energy as a function of slab thickness for

a constant vacuum width of 12Å. The convergence for an infinite limit of Si(110) sur-

face energy is quite rapid and smooth as indicated in Figure 3.1(a) but slight oscillation

exists at the Si- and C-terminated surfaces as illustrated in Figure 3.1[(b) and (c)] respec-

tively. It should be noted that the scale of Si(110) surface energy graph is quite different

from the Si- and C-terminated surfaces graphs and not withstanding that, we confirm that

Si(110) surface energy has no oscillation due to non-polarity of the surface. The 3C-SiC

terminated surfaces under consideration are polar due to the electronegativity difference

between Si and C atoms and therefore, charge transfer forces may be operational [85]

which can be responsible for the observed oscillations and absent on Si(110) surface.

While the Si-terminated surface energy monotonically decrease to convergence, that is

not the case for C-terminated surface which appear to oscillate around a mean value. It is

found that the surface energy per atom of the C-terminated surface is comparatively larger

than that of Si-terminated surface.

As shown in Tables 3.1 and 3.2, the converged 1×1 surface energies of Si(110), Si-

and C-terminated surfaces are summarized. We perform one calculation to determine

the surface energies of the relaxed surfaces using 10-atomic layers for Si(110) surface

and 9-bilayers or 18-layers for Si- or C-terminated surfaces. We observe in general that,

quantitatively, the empirical calculations values are in better agreement with experiment

than with first principles calculations. However, the present results are consistent with

other ab initio calculations for Si(110) surface, but no available data exists for Si- and C-

terminated surfaces for comparison.
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Figure 3.1: Variation of surface energy per atom as a function of slab atomic (layer for
Si or bilayer for 3C-SiC) thickness of 1 × 1 cell (a) Si(110) (b) 3C-SiC(111) and (c)
3C-SiC(1̄1̄1̄) surface energies respectively.
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Table 3.1: Calculated converged Si(110) surface energy per atom in eV or per area in mJ
are indicated for 1 × 1 surface

Type of species: Si(110) (mJm−2)
Method of calculation Unrelaxed Relaxed
Empirical potential(MD) 1573a −

Semi-empirical (TB bond order) 1721b 1573b

DFT(LDA) 2040c 1700c

RSDFT (LDA) 2100 1745
RSDFT (LDA) eV/atom (1.334) (1.111)
Experiment 1430d

a Reference [83]
b Reference [82]
c Reference [86]
d Reference [80]

Table 3.2: Calculated converged Si- and C-terminated surface energy per atom in eV or
per area in mJ for 1 × 1 surfaces

Type of species: 3C-SiC(111) mJm−2 3C-SiC(1̄1̄1̄) mJm−2

Method of calculation Unrelaxed Relaxed Unrelaxed Relaxed
Empirical potential 2525e − − −

Semi-Empirical 2446 f 718.4 f 2584 f 1767 f

DFT (GGA-PW91) 2700g − − −

RSDFT (LDA) 2856 1830 3065 2720
RSDFT (LDA) eV/atom (0.951) (0.910) (1.438) (1.272)
Experiment − 2180h − −

e Reference [84]
f Reference [85]
g Reference [93]
h Reference [81]

3.2 Surface Relaxation

In this section, we present and discuss the results of atomic structure relaxation of non-

polar Si(110) surface, polar (111) Si-terminated and C-terminated surfaces calculation

using 10-atomic layers of Si(110) surface and 9-bilayers of the 3C-SiC terminated sur-

faces. Since atoms at surfaces are ideally truncated, they are under-coordinated, the sur-

face atoms experience nonzero forces until they relax to new equilibrium positions. This

is the process of surface relaxation. All atoms are allowed to relax completely in Si(110)

surface while the bottom layer of Si- and C-terminated surfaces are fixed at their equilib-

rium positions. We find that relaxation of Si(110) surface involves both vertical and lateral
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Table 3.3: Summary of cartesian coordinates of surface atom displacements from ideal
position after atomic structure relaxation of Si(110)-i (where i=1, 2 represents the two
equivalent surfaces ), Si- and C-terminated surfaces. dE is the energy gain due to surface
atomic relaxation per atom, and dHn is the atom displacement from the ideal position in
the lateral cell relative to the surface (where n=1, 2, 19, 20 indicates the surface atom
of interest). Negative (or positive) sign represents inward (or outward) movement of a
surface atom toward (or away from) the bulk position.
Surface atomic relaxation :
Si(110) −1 atoms :
Displacement : ∆x[Å] ∆y[Å] ∆z[Å] magnitude[Å]
dH1 0.0841 -0.0019 0.2175 0.2332
dH2 0.3753 -0.0034 -0.5432 0.6602
Si(110) −2 atoms :
dH19 0.1216 0.0002 - 0.2056 0.2389
dH20 0.4079 -0.0009 0.5593 0.6922
dE[eV/surface atom] 0.219(0.220a)
3C-SiC(111) :
dH1 -0.0019 0.0025 - 0.1027 0.1027
dE[eV/surface atom] 0.094(0.090b)
3C-SiC(1̄1̄1̄) :
dH1 -0.0452 0.0106 - 0.1550 0.1618
dE[eV/surface atom] 0.343(0.300b)

aRefeference [98]
bRefeference [95]

displacement whereas the Si- and C- terminated (111) surface involves only vertical dis-

placements due to the hexagonal symmetry of the lattice. In Table 3.3, we summarize the

results of energy gain and atom displacements during the atomic structure relaxation.

Clearly, the two equivalent Si(110) surfaces show characteristic surface atomic relax-

ation feature of outward (away from bulk atoms) and inward motions of the two atoms

in the 2D surface unit cell. These outward and inward atomic motions due to relaxations

were first pointed out by Chadi [84,94]. With the two equivalent surfaces, the magnitudes

of the relative outward displacements are almost identical. In the vertical direction, the

two atoms move in the opposite direction which confirms the equivalence of the surfaces

hence the energy gain by surface relaxation is halved per each surface.

For the (111) surface atomic relaxations, the C-terminated surface atoms exhibit rela-

tively larger inward displacement and gain more energy over three times larger per atom

than the Si-terminated surface atoms, and this is related to the difference in bond-bending

and angular forces at the second-layer C or Si atoms from the surface. These results are
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in very good agreement with Pollmann and coworkers who studied the relaxation of 6H-

SiC(0001)1×1 surface atomic relaxation [95]. We compare these two surfaces because

the first 4-bilayers of 6H-SiC(0001) is geometrically equivalent to the cubic structure.

In an unrelaxed surface atomic position, the Si(110) surface atoms each have a back

bond in the sp3 configuration. However after the surface relaxation, the new atomic re-

arrangements are such that the inwardly displaced atom has three bonds which are almost

co-planar. For the (111) surfaces, each surface Si(C) atom is coordinated to three C(Si)

in the layer underneath. The downward displacement suggest planar configuration rather

than tetrahedral. As suggested by Lee and Joannopoulos, it is energetically favorable

for an atom with s2 p2 valence electronic configuration having three bonds to have a pla-

nar structure (sp2 hybridization) and single electron in the p-state perpendicular to the

plane. The (111) surface Si (or C) atoms, are therefore expected to undergo downward

displacement toward a planar configuration with the next layer below atoms. Since the

second-layer atoms are restricted by the bulk lattice, the surface atoms will not be able to

assume an exactly planar geometry. Nevertheless, there will be an optimal vertical relax-

ation of the top layer, and the influence of the surface is expected to extend more than one

layer into the bulk, with rapidly decreasing vertical displacements [96, 97].

We examine the surface relaxations of Si(110), Si- and C-terminated surfaces with re-

spect to the average local potentials and the ideal surfaces. Perhaps if there is a significant

departure of the average potentials from the bulk-like behavior due to the surface trunca-

tion or not. The average local potentials of these ideal and relaxed surfaces structures are

shown in Figure 3.2. Where the vacuum levels are set to zero, V̄S i and V̄S iC correspond to

the bulk Si and 3C-SiC local potential average values respectively. The local potential is

averaged parallel to the surface normal as a function of the distance z-direction. The ver-

tical lines as shown in the case of Si(110) surface graph indicate two equivalent surfaces,

whereas for the C- and Si-terminated surfaces graphs, each of the vertical lines indicate

the bottom most layer which is fixed. In all the surfaces considered, the vacuum levels are

set to zero of energy. As one can observe, each of the Si(110) equivalent surfaces expe-

riences same relaxation pattern as shown in Figure 3.2(a) on both sides. This is reflected

in an equal amount of potential change due to the relaxation of the surface atoms. The

maximum amount of atomic displacement of Si(110) surface atom is ∼0.70Å. From the

second layers of both sides of the surfaces away into the bulk, the potential assumes the
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form of the bulk. Even though all atoms are allowed to move during the relaxation, the

bulk behavior is clearly visible.

As Figures 3.2 [(b) and (c)] show, the C- and Si-terminated surfaces average potential

variation respectively. We observe that relaxation occurs slightly up to the third bilay-

ers that is, the atoms in these layers slightly move from their equilibrium positions, but

they remain relatively prominent in the first layers. The change is attributed to the polar

behavior of these two distinctive surfaces. The potentials of 3C-SiC terminated surfaces

already show bulk-like character in the deeper layers. However they reach the same value

in the vacuum region for both relaxed and unrelaxed surfaces. The results indicate that

the vacuum region is large enough to permit the full decay of the electron density.

3.3 Band dispersions of the surfaces

The different structural geometries influence the band dispersion of the surface structures.

Their occupied parts give an explanation of the energetics discussed previously. The most

important feature of Si(110) relaxation is the outward and inward motions of the two

atoms in the surface unit cell. Occupied surface states near the valence-band maximum

are associated with the outwardly relaxed atoms. In the same way, the empty surface states

near the conduction band minimum arise from the inwardly relaxed atoms. Usually, the

group IV semiconductors which show this kind of feature of raising and lowering atoms

are referred to as anions and cations even though the same atomic species are involved

[94]. Figure 3.3(a) represents the band dispersion of the clean relaxed Si(110)1×1 two

equivalent surface with solid lines representing the bulk bands and the remaining lines

showing dangling bonds bands. There are two dangling bonds per surface unit cell which

leads to four bands in total located in the fundamental gap region for the two equivalent

surfaces. We define DS 1 and DS 2 to represent two bands for each respective surface. Each

dangling bond is half occupied because there are two atoms per surface unit cell. Clearly,

we find that two pairs of bands are degenerate along the XM and MX
′

directions and

split at ΓX′ and ΓX. One remarkable feature is that, two dangling bonds are almost fully

occupied and the other two almost empty re-enforceing the argument that the occupied

states are related to the outwardly relaxed atoms while the inwardly relaxed atoms are

related to the empty surface states. The Si(110) surface is a metal as expected.
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Table 3.4: Dangling bond energy positions

Relaxed (1×1) C-terminated Si-terminated Relative position
DC[eV] DS i [eV] [eV]

3C-SiC(111) 0.288 1.418 1.130
6H-SiC(0001) - - 1.500a

aRefeference [95]

Similarly, Figure 3.3[(b) and (c)] indicates the surface band dispersions of the relaxed

C- and Si- terminated surfaces. The relaxed C- and Si-terminated surfaces each has one

dangling bond with corresponding band located in the band gap region. These dangling

bonds bands are indicated as DC and DS i and originate from the localized C or Si top

layer atom respectively. Each dangling bond band is partially occupied since there is

only one top layer atom per 1×1 unit cell in both surfaces. The resulting band structures

are thus metallic. Comparing the energetic positions of DC and DS i located at 0.29 and

1.42 eV respectively, it is evident that DC occurs approximately 1.13 eV lower in energy

than DS i which is due to the stronger C potential, as compared to that of Si potential

first suggested by Pollman and coworkers when they calculated the surface states of α −

6H(0001) [95]. This suggests that, 3C-SiC(111) and α−6H(0001) hexagonal surfaces are

symmetrically identical but electronically different due to the difference in dangling bonds

energy positions. The dispersion of this dangling bond band DS i is more pronounced than

that of DC, because DS i is laterally more extended. Obviously, the dangling bonds are

predominately localized at the top layer atoms and oriented perpendicularly to the surface

making both surfaces metallic.

3.4 Summary

In conclusion of this chapter, we performed total-enegy electronic structure calculations

based on real space density functional theory that provides firm theoretical foundation

to discuss the surface energies of Si(110), 3C-SiC(111) and 3C-SiC(1̄1̄1̄) terminated sur-

faces respectively. We systematically converged the surface energy of Si(110) surface and

find it to be 1.334 eV/atom (2100 mJm−2) for unrelaxed and 1.111 eV/atom (1745 mJm−2)

for relaxed surfaces. We find that the results are in excellent agreement with other first
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principle calculations. However, when the relaxed surface energy value is compared with

experiment we find an overestimation of about 22%. Similarly, we calculated for the

first time the relaxed surface energies of C- and Si-terminated polar surfaces of 3C-SiC

using density functional theory. The calculated values are 1.272 eV/atom (2720 mJm−2)

and 0.910 eV/atom (1830 mJm−2) respectively for C- and Si -terminated surfaces, the

disagreement in these calculations compared with experiment are 24% and -16% accord-

ingly. The ideal converged surface energies for both surfaces are also calculated. It has

been remarked elsewhere that charge transfer can be operative for C- and Si-terminated

surfaces owing to their polar character. However Si(110) surface is not polar and there-

fore the exact cause of the large differences in the calculated surface energies compared

with experiment is not understood yet. Therefore, caution should be taken in the interpre-

tation of these values. The relaxation pattern of the 3C-SiC(111) surface is similar to the

α − 6H(0001) owing to the same symmetry similarity between the two surfaces.

We find that owing to the presence of dangling bonds, all the surfaces investigated in this

work exhibit metallic behavior. Of much interest is the dangling bond positions of the Si-

and C-terminated surfaces. We find that the relative energy positions of DS i with respect to

DC is about 1.13eV making it different from α−6H(0001) surface as reported by Pollman

and collaborators as 1.5eV [95]. This further indicates that indeed, electronic structures

of the alpha and cubic silicon carbide terminated hexagonal surfaces are symmetrically

identical, but they are not the same electronically owning to the difference in the relative

dangling bonds positions.
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Chapter 4

Atomic and Electronic Structures of

Si(110) on 3C-SiC(111) Surface

In this chapter, we shall explain the calculation method of 3C-SiC(111) on Si(110) sur-

face. We report total-energy electronic structure calculation results based on real-space

density functional theory scheme which elucidates new atomic and geometric properties

of the interface systems. We shall give detailed analysis of the relaxed interface struc-

tures, energetics and electronic properties. We conclude with the result of pre-relaxed

3C-Si(111) surface and Si(110) surface put together to form interface geometry and then

perform atomic structure calculation for comparison.

4.1 Interface structural models

As already been explained in Chapter 1, there is significant lattice mismatch between

3C-SiC and Si as large as 20% making it impossible for epitaxial growth to take place be-

tween the two crystals. However, Nishiguchi and collaborators [34] discovered a special

crystallographic orientation such that the two crystals can match for epitaxial growth to

occur but this matching is fake. They found that at certain periodicity, the crystal plane of

3C-SiC(111) surface could grow on the substrate of Si(110) crystal plane with minimal

lattice match. They deduced that separation of Si atoms along the Si[001] direction on

the Si(110) surface agrees with the separations along the direction [1̄1̄2] on 3C- SiC(111)

plane with a deviation of 1.6%. That is, along the Si[1̄10] direction 4-time periodicity
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Table 4.1: Lattice vectors of the supercell of the fake lattice matched geometry of Si(110)
on 3C-SiC(111) surface. All values are in angstrom.

vector direction[Si][3C-SiC] norm x y z
a1 [001][1̄1̄2] 5.372 5.372 0.000 0.000
a2 [1̄10][1̄10] 15.195 0.000 15.192 0.000
a3 [110][111] 33.983 0.000 0.000 33.983

agrees with 5-time periodicity of 3C-SiC[1̄10] direction on the 3C-SiC(111) plane to be-

come 0.2% mismatch.

We then assume lateral unit cells of Si(110) and 3C-SiC(111) surfaces as shown in Fig-

ure 4.1[(a) and (b)] with surface perpendicular into the paper. To construct the interface

model of 3C-SiC(111) on Si(110), the two surfaces must commensurate to reduce undue

stress on the crystals and to avoid artifact relaxation. We choose vectors a1 and a2 in

the lateral plane and the additional vector a3 perpendicular to this plane. We indicate in

Table 4.1 the vectors with the directions of Si and 3C-SiC terminated surfaces used to

construct the supercell. The interface structure of 3C-SiC(111) on Si(110) is simulated

by repeating interface slab model in which an atomic slab consisting of atomic layers is

arranged periodically in the direction perpendicular to the layers with 8Å vacuum thick-

ness (chosen after test) between interface slabs as illustrated in Figure 2.5(a). For visual

understanding of the two types of interfaces considered, Figure 4.2 shows the unrelaxed

stick and balls construction of 8L/8L 3C-SiC(111) on Si(110) surface models of Si-C

and Si-Si interfaces. In all interface calculations, the outer surfaces of the supercell are

hydrogen passivated.

For detailed calculations, first is the determination of relative atom positions in the lat-

eral plane of 3C-SiC(111) on Si(110) substrate. It is a very hard task to determine the

stable structures of many degrees of freedom. In this regard, the strategy we adopted is

to introduce grid on the surface primitive cell (this contains all space) of Si(110) surface

as shown in Figure 4.1(c) and choose at least nine geometries (actually each site atom

on a grid point is associated with several equivalent site atoms when viewed from the

3C-SiC(111) surface) with top and bottom surface dangling bonds saturated with hydro-

gen. We prepare 4-atomic layers of each 3C-SiC(111) on Si(110) surface to construct the

4L/4L supercell as prototype interface. The calculation model is schematically shown in

Figure 4.3(a). The purpose of this calculation is to obtain the optimized interspacing dis-

tance between 3C-SiC(111) on Si(110) surface for realistic interface calculation when the
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Figure 4.1: The schematic atomic projections of {(a) [110] Si and (b) [111] 3C-SiC}
with label numbers indicating the very topmost surface atoms and (c) enlarged primitive
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(a) (b)

(c) (d)Side view

Top View

Figure 4.2: 3C-SiC(111) on Si(110) surface with 8L/8L atomic layers prepared using
stick and balls to illustrate the interface atomic configurations. The figures show top and
side views of Si-C [(a) and (c)] and Si-Si [(b) and (d)] interfaces. Interface distances
are set based on ideal bond length. In this figure and all other interface related figures
cyan, purple and white spheres which indicates respectively silicon, carbon and hydrogen
atoms.
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atomic layers are increased. For this reason, we set the initial distance of 3C-SiC(111) on

Si(110) surface depending on the type of interface, according to the theoretical bond dis-

tance of either Si or 3C-SiC bulk crystal for Si-Si or Si-C interfaces respectively. Finally,

the determination of the relative atomic positions yielded two most stable geometries

which are bistable. We called them type I and type II interfaces. In all, four geometries

are found two for each Si-Si interface and Si-C interface accordingly.

We then increased the number of atomic layers to 6L/6L and performed two different

types of calculations as shown in Figure 4.3(b) starting from the initial position of 4L/4L

structure that gives the minimum energy. For the first calculation, the bottom layer of

Si(110) including attached hydrogens are kept fixed to simulate the semi-infinite bulk

region whilst the other remaining atoms in the supercell are optimized completely. In

the second calculation, we allow every atom to relax just like the case of 4L/4L calcula-

tion. The aim of this two 6L/6L calculations is to compare the relaxation pattern and the

interface distance between the 3C-SiC(111) on Si(110) and those of the 4L/4L if signif-

icant difference exists. We find that the two calculations performed for 6L/6L relaxation

patterns are not significantly different near the interface as well as the interface distance.

Following that, we increased the system size to 8L/8L starting from the same initial atoms

positions as 4L/4L system. In these calculations, we fix the top and bottom layers as well

as the attached hydrogen as indicated in Figure 4.3(c) and relax the remaining atoms.

With regards to the interface distance for this calculation, we find that using the ideal

bond distance values or the optimized interface distance of 6L/6L system for the 8L/8L

supercell calculation, the relaxation patterns near the interface remain unchanged. This is

because the observed interface distance differs by less than ∼0.03Å.

After careful testing, we find that 2k-points for the Brillouin zone (BZ) integration are

sufficient to assure a reliable calculation. One k-point is located at the centre and the

other at the edge of the (BZ). The optimized geometries obtained for all calculations are

shown in Figures 4.4 for type I interface geometries and Figure 4.5 for type II interface

geometries appropriately. As we have pointed out before, converged atomic layers are

the only important quantity to discuss a realistic system. We perform careful convergence

test with these three slabs models and reach a conclusion that 8L/8L slab is appropriate

enough to describe the real interface structure using equation (2.147). The final results

are shown in Figure 4.6 which indicates the mean displacement of the relaxed atoms
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Figure 4.3: Schematic representation of 3C-SiC(111) on Si(110) surface calculation mod-
els (a) 4L/4L as prototype (b) 6L/6L (c) 8L/8L for Si-C interface (when the layers are
reversed Si-Si interface is obtained). These two set calculation models are carried out
separately. ’Free’ here means all atoms in supercell are allowed to move whereas ’Fixed’
indicates the bottom atomic layer is restricted including the attached hydrogen. Small thin
and large continuous lines represent Si atomic layers in Si(110) and 3C-SiC(111) region
and hatched lines indicate C atomic layers in 3C-SiC(111).
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4L/4L 6L/6L 8L/8L

Si-C Interface

Si-Si Interface

Type I(a)

(b)

Figure 4.4: All relaxed geometries of type I interfaces (a) Si-Si interface (b) Si-C interface
of 3C-SiC(111)/Si(110) respectively.
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Type II

4L/4L 6L/6L 8L/8L

Si-Si Interface

Si-C Interface

(a)

(b)

Figure 4.5: All relaxed geometries of type II interfaces (a) Si-Si interface (b) Si-C inter-
face of 3C-SiC(111)/Si(110) respectively.
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from the ideal atoms positions as a function of the atomic layers of the two separate

crystals. One can see from the displacements graphs that, the very first layer near interface

experiences the most displacements and decreases as the atomic layers increase. The 7th

layer displacements in Si(110) and the 6th layer displacements in 3C-SiC(111) surfaces

from the ideal positions are small less than 0.1Å. This displacement value is small enough

to discuss the convergence of each individual bulk structures in 8L/8L system since LDA

cannot provide accuracy better than this. It is important to recognize that, the 8th layer

of Si(110) surface and the 4th bilayer of 3C-SiC(111) surface are held fixed, therefore

atomic displacements in these layers are zero.

4.2 Effects of interfacial relaxation

We have performed extensive first principles calculations to search for the relative stable

atomic positions of the heterostructure configuration of 3C-SiC(111) on Si(110) surface.

We explored several candidate geometries and reached two distinctive types called type I

and type II after atomic geometry optimizations and find that they are bistable as depicted

in Figure 4.4 and Figure 4.5 for the respective interface geometries with corresponding

energy differences listed in Table 4.2 of the various interface layers considered. As one

can see, the energy differences varies depending on the thickness of the interface layers.

We find that near the interface, atom bond distances and interface pair connecting

atom distances are in the range of (1.80∼2.08)Å on the 3C-SiC(111) surface side and

(2.29∼2.38)Å on the Si(110) surface side. The bond distances in these ranges are charac-

teristically found almost within 4-atomic layers. For the deeper layers, the bond distances

are very much similar to the respective equilibrium bulks. In general, the number of

3C-SiC (111) or 3C-SiC(1̄1̄1̄) terminated surface atoms concentration at the interface are

dense compared with those of Si(110) surface atoms which are sparse. For this reason,

Table 4.2: List of energy differences between the bistable type I and type II geometries of
Si-C and Si-Si interfaces respectively. The values are in eV per supercell.

Si-C interface Si-Si interface
4L/4L 0.1079 0.1252
6L/6L 0.0057 0.1251
8L/8L 0.4372 0.3229
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Figure 4.6: The convergence test for minimum atomic layers needed to perform realistic
interface calculation. The mean displacement of atom coordinates from the ideal posi-
tions as dependence of atomic layers of 3C-Si(111) on Si(110) surface after relaxation (a)
Si(110)-side and (b) 3C-SiC-side. Note, only the Si-Si interface supercell calculation is
indicated.
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one of the most striking observable effects resulting from the first-principles calculation is

the pronounced undulation as an intrinsic feature near the interface. The noticeable undu-

lation effect can be observed about 4-atomic layers of the constituent slabs. This suggests

that, probably the interface is not flat at the atom level since the experiment [34] can not

probe into such thin layer structures. An important pronounced effect is the breaking of

exactly one Si(110) surface atom nearest neighbor (NN) bond in this model.

The reason for this effect can be explained that there is large difference in angular forces

occurring at the interface constituent atoms when the tetrahedral bonds to their nearest

neighbour become bent upon interface relaxation and this might be the case in the present

work. The force is much larger at 3C-SiC(111) surface compared with the Si(110) surface

atoms so that structural changes at the interface tetrahedral configuration around C atoms

involve a much larger contribution of strain during the relaxation than around Si atoms at

the respective junction. That is, the Si-Si bond bending is more flexible compared with

Si-C at the interface. In general, 3C-SiC crystal is a very strong material compared with

Si crystal. This is because the bulk modulus of 3C-SiC is about 2.3 times larger than Si.

Therefore, matching these two materials will result in bond bending and the overall effect

is what appears as the undulation near the flexible Si(110) side.

To confirm the bond breaking at the interface, Figure 4.7 depicts the optimized inter-

face structures and the isosurface of the total electron density of the interface structures

under consideration. From the spatial distribution of the electron density, we find that

the electron densities symmetrically distribute between the neighboring atomic bonds as

usually seen in a typical sp3 hybridized materials. However the electron densities around

the broken bond area at the interface varnishes compared with the other atomic bonds. It

is interesting that the bond breaking creates a hole perpendicular to the interface around

which spatial distribution of electrons occurs. This new bonding re-arrangement of elec-

trons results in an energy gain. We believe the bond breaking is necessary and that it

might relate to the effect of lattice mismatch. We speculate that the combined effects of

the observed undulation and bond breaking near the interface are likely to be one of the

factors responsible for the reported stacking faults and twinning during the carbonization

process of the growth, which depends on the flow rate of the source gas [34].

SiC is a group-IV semiconductor compound and ionic, the ionicity of 3C-SiC amounts

to g=0.475 compared with Si on Garcia-Cohen scale [99]. The ionic character of the
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(a)

(c)(b)

(d)

Figure 4.7: The optimized atomic structures of 8L/8L 3C-SiC(111) on Si(110) surface
and the corresponding isosurface of total electron charge density of [(a) Si-C and (b) Si-
Si] of type I and [(c) Si-C and (d) Si-Si] of type II interfaces respectively. The absence
of charge density near and around the broken sp3 bond of Si(110) side nearest neighbor
atom creates defect hole. The contour value is 25% of the maximum.
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SiC bond stems from the different strengths of C and Si potentials which result in very

different covalent radii. Also, the electronegativity of C (eC=2.5) is considerably larger

than that of Si (eS i=1.7). The stronger C potential as compared with that of Si leads in SiC

to a charge transfer from Si to C so that the electronic charge density distribution along

the SiC bond is asymmetric [95]. The Si atoms act as cations while C atoms act as anion

in 3C-SiC in the crystal. In this regard it is expected that, the heterojunction of Si-C or

Si-Si interfacial charge distribution should not significantly differ from the bulk 3C-SiC

or Si. Clearly, the charge distribution on the 3C-SiC side is not like the characteristic sp3

type hybridization compared with the Si side. This might relate to the ionic character of

the 3C-SiC(111) surface.

For the model interface systems, it should be noted that both Si- or C-terminated surface

each has ten atoms and same number of dangling bonds (DB) directed perpendicular to

the surface in the same fashion as that of H passivated surface region as shown in Figure

4.2. Similarly the Si(110) surface has eight atoms with same number of DBs, four of the

DBs are directed away from the remaining four. When the 3C-SiC(111) surface is put on

top of the Si(110) substrate, the effective DBs at the interface when the bonds are con-

nected after relaxation are always two coming from the 3C-SiC(111) surface side in this

model. Because DBs coming from different slabs are directed differently, implies during

relaxation, interface atoms which try to connect to form a bond experience different resid-

ual angular force with Si-C interface being the least flexible because silicon carbide bonds

are much difficult to bend than silicon bonds. This could be one of the plausible reason

why the Si-Si interface energy is always minimum compared with the Si-C interface.

4.3 Interface Relaxation mechanism

As we noted in section 4.2, Figure [4.4 and 4.5] shows the relaxed structures of Si-C

and Si-Si interfaces of both type I and type II relative atom positions. In both interface

structures, we observe that near the heterojunction undulation persists and is basically due

to the difference in the number of 3C-SiC(111) surface dense atoms and Si(110) surface

sparse atoms. It is established that for (111) and (110) interfaces, strains reduce the crystal

symmetry in such a way that the separation of the two atoms in the bulk primitive unit

cell of diamond or zincblend structures is not uniquely determined from macroscopic
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Figure 4.8: Schematic diagram showing the gradual bond stretching directions leading to
the bond break at the heterojunction and indicated values are in Å. Full and open circles
represent Si atoms at topmost layer and layers below. Hatched lines represent atomic
bonds and full lines to aid eyes.

strains. When materials are distorted along these directions, internal displacements of

atoms occur [3, 107] as a consequence of elongation or contraction.

By applying the above mechanism, we find that starting roughly from the fourth atomic

layer of Si(110) side, the atomic bonds gradually elongate by reducing the crystal symme-

try until the strain reaches the topmost layer at the heterojunction and then snaps as shown

in Figure 4.8, that is, one of the topmost nearest neighbor atoms sp3 bond completely

breaks. The bending of the Si(110) surface affects the 3C-SiC(111) surface making the

interface not flat. The distance between the atoms with broken bonds are tabulated in Ta-

ble 4.3 below with the corresponding coordination numbers. The broken bond distances

are believed to compensate for stress-release at the interface. The resulting effect is that,
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Table 4.3: Nearest neighbor atoms with broken bond distance and the atoms coordination
number.

Si-C interface Si-Si interface
Type I [Å] 3.43 2.65
Type II [Å] 3.57 2.78

Coordination number (5, 4 and 3)-fold 3-fold

for Si-C interface, one of the broken Si atom bond from the 3C-SiC(111) surface becomes

5-fold coordinated whiles two Si-atoms from the Si(110) surface becoming (those with

broken bonds) 4-fold and 3-fold coordinated respectively. The orientations of the atomic

bonds with these coordination numbers are different in both type I and type II geometries.

We note that, these orientations are not mirror symmetric. In the same way for Si-Si inter-

face, we find that the atoms with the broken bonds remain 3-fold coordinated. The conse-

quence effect is that bond breaking creates a hole which is a defect and perpendicular to

the interface. As a fair comparison, Giancarlo et al, investigated 3C-SiC(100)/Si(100) in-

terface by means of combined classical and ab initio molecular dynamics and concluded

that misfit dislocation network pinned at the interface is the efficient mechanism for strain

relief [106].

As a rough comparison let us consider the following examples; for Ge/Si(100) interface,

Fujimoto et al proposed five-and seven-membered Ge rings of 90◦-dislocation core [41]

or pairing distortions around a vacancy [101] as the main mechanisms to account for

the strain relaxed Ge film grown on Si substrate. Similarly for InAs/GaAs(110) inter-

face, Oyama et al concluded that core confined at the interface is five-fold coordinated

In atoms and confirmed by Choudhury and collaborators as the mechanism of epitaxial

growth of InAs on GaAs(110). This further suggests that defect at the interface plays a

vital role in strain relief. Based on the previous stress relief examples of interfaces as

against the present 3C-SiC(111) on Si(110) surface, we propose that atomic bond break-

ing create a defect at the interface which is a key mechanism of the relaxation and re-

construction. We confirm that the interface bonds are still traditional sp3 but are distorted

and oriented in such a way that the supercell is energetically stable due to the new atomic

re-arrangements.
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4.4 Interface energy

To discuss the energetics of the interface, we introduce the interface energy as a quantity

to compare the stability of the interface system under equal footing due to the difference in

the bulk terminations. By definition, the interface energy IE is the energy cost to form the

interface system from the respective 3C-SiC and Si crystal phases. As we already know,

there are two possible interface systems and therefore the respective interface energies are

defined as follows:

1. For Si-Si interface, the 3C-SiC(1̄1̄1̄) is the terminated surface which is fixed. The

interface energy calculated is defined as:

IE = Eopt − µS i(bulk)NS i − µCNC − {µHS iNHS i + µHC NHC }. (4.1)

2. For Si-C interface, the 3C-SiC(111) is the terminated surface which is equally fixed.

The interface energy is defined as:

IE = Eopt − µS i(bulk)NS i − µCNC − µHS iNHS i . (4.2)

where Eopt, is the total energy of the interface system, µS i(bulk), µC, µHC , µHS i , NS i, NC,

NHC ,NHS i are the chemical potentials of Si, C, H and corresponding number of atoms in the

supercell. The hydrogen chemical potentials are prepared depending on the environment

to be used, that is either fixed to Si or C accordingly. These parameters are discussed in

detail in section 3.1.1.

The interface energy per interface area of the supercell is given by:

γ =
IE

A
, (4.3)

where A is the area of the interface system.

The true carbon chemical potential µC in the interface structure is determined from the

equation:

µC = µS iC(bulk) − µS i(bulk). (4.4)
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Table 4.4: Summary of the evaluated 8L/8L 3C-SiC(111) on Si(110) interface energy per
supercell in eV and also per interface area γ.

Type : type I type II
Si- Si Si- C Si-Si Si- C

IE [eV/cell] 9.571 10.406 9.890 10.840
γ [eV/Å2] 0.117 0.127 0.121 0.133

Again, notice that equations (4.1) and (4.2) differ by the carbon-passivated surface. The

interface energy must take into consideration this hydrogen chemical potential attached

to the C for equal treatment. Using the above equations, we evaluate the interface energy

of the interface system. The interface energy per area are summarized in Table 4.4 for

8L/8L 3C-SiC(111) on Si(110) surface.

The calculated interface energies reveal that the Si-Si interface is energetically favorable

compared with the Si-C with the interface energies being 0.117eV/Å2 and 0.127eV/Å2 per

supercell accordingly irrespective of the bistability. The interface energies are sensitive to

the overall hydrogen chemical potential and the calculation conditions.

We discussed in the last paragraph of section 4.2 that, the origin of the stability of Si-Si

interface can be understood that, the bonding character at the interface still remains sp3 as

shown in Figure 4.7 and that the bond strength of Si-Si bond is small compared with Si-C

bond. As a comparison of the bond strengths between Si-Si and Si-C bonds, consider

the elastic coefficients, zone-center transverse-optical phonon-frequency all are related to

angular restoring forces. It is known that the phonon frequency and elastic coefficients

of 3C-SiC are large compared with Si at any arbitrary crystallographic direction [94,

102–105]. As a consequence during the interface relaxation, angular forces due to bent

tetrahedral bonds of Si-C experience large strain than Si-Si bonds. Hence this can be the

potential reason why the Si-Si interface is energetically stabler compared with the Si-C

interface.

4.5 Band dispersions of the interfaces

The electronic properties of the interface systems are determined by the interface area

atomic structures. In particular, the presence of two effective dangling bonds which orig-

inate from the 3C-SiC(111) surface side in the ideal interface are partially occupied. It is
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Table 4.5: Summary of relaxed 8L/8L 3C-SiC(111) on Si(110) surface energy band gap
values.

8L/8L Si-C interface [Egap] Si-Si interface [Egap]
Type I [eV] 0.53 0.33
Type II [eV] 0.54 0.07

expected that, these partially occupied DBs will influence the interface states. As shown

in Figure 4.9, the band dispersions of the ideal and relaxed 4L/4L 3C-SiC(111) on Si(110)

prototype interface type I are along the high symmetry points ΓX-XK-KX′-X′Γ directions

of the rectangular brillouin zone. With the Si-C interface, the two effective dangling

bonds are localized on carbon DC as depicted in Figure 4.9(a) compared with Si-Si inter-

face which are localized on silicon DS i as indicated in Figure 4.9(c).

After the atomic structure optimization, we find that the two effective DBs which are

partially occupied in the ideal interface are now unoccupied. But this is not a simple DB

disappearance; instead a consequence of an interesting interface relaxation. The resulting

effect is the opening of band gaps as shown in Figures 4.9[(b) and (d)] accordingly with

band gaps values of 0.69 and 0.31 eV. It should be noted that LDA do not give accurate

values of the band gaps, however, it prescribes accurately the topology of bands and can

also predict the nature of electronic structure property of materials.

For fair comparison of 4L/4L 3C-SiC(111) on Si(110), we calculate the electronic dis-

persions of the relaxed 8L/8L 3C-SiC(111) on Si(110) for both type I and II interface sys-

tems as indicated in Figure 4.10, since 4L/4L interface atomic layers are not converged

to discuss accurate interface electronic properties. We find that the electronic structures

of all the four 8L/8L relaxed interfaces systems have indirect band gaps just like the re-

laxed 4L/4L interface system. The corresponding energy band gaps are summarized in

Table 4.5 with Si-Si interface having the least energy band gap value in the two types of

interface geometries.

The occupied valence band maximum and unoccupied conduction band minimum are

located at the high symmetry K and Γ points for type I interface structures and the same

symmetry points are observed for Si-C interface of type II. As for Si-Si interface of type

II, they are located at X and X′ respectively. The character of the valence band maximum

and conduction band minimum are mixed overlapped π- and π∗-like in nature. Careful ob-

servation shows that, the relaxed Si-C interface band structures of either 4L/4L or 8L/8L
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Figure 4.9: Type I interface of 4L/4L 3C-SiC(111) on Si(110) band dispersion diagrams
[(a) Ideal (b) relaxed] Si-C interface and [(c) Ideal and (d) relaxed] Si-Si interface.
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are qualitatively similar in appearance in contrast with the Si-Si interface. An important

observation we find is that the valence band tops of all the band structures considered

show strong dispersion character suggesting that the interface states can be arranged pe-

riodically and perpendicularly at the interface.

The occupied floating bond states which are extended around the defect hole may give

an explanation to the energetics of the interface system. The origin of the interface states

comes from the broken adjacent Si-Si nearest neighbor bond discussed in section 4.3 and

the two effective DBs coming from the 3C-Si(111). These DBs vanish after the geometry

optimization leading to interface atomic rebonding. It is known that, bond breaking costs

energy, but we now find that this is not true always from the present calculation. The

model system considered indicates that Si(110) surface breaking one of its surface atom

bond is the key mechanism of interface energy minimization. Since there is energy gain

due to DBs rebonding result in the formation of extended floating bonds at the interface

which create a defect hole. The mixture of extended floating bonds states around the

defect hole creates partial induced polarization due to the electronegativity difference be-

tween the two crystals. By this complicated rebonding arrangements at the interface, the

overall electronic property of the interfaces systems remains semiconducting. In Figure

4.11, we illustrate the schematic representation of the rebonding mechanism which leads

to the disappearance of the two effective DBs coming from the 3C-SiC(111) surface side,

though several interface atoms are involved in a complicated way especially the broken

Si-Si nearest neighbor bond atoms.

To support this understanding, we located the doubly occupied interface floating bonds

states around a defect hole which are mixed pz-like character wavefunction near the va-

lence band region as shown in Figures 4.12 for both type I and II interfaces. These ex-

tended floating interface states show bonding character with corresponding relative energy

position indicated in Table 4.6. The type I occupied interface states have lower energy

than the type II interface. In the Si-C interface states, the wavefunction extends more than

the Si-Si interface. Figure 4.13[(a) and (b)] indicates the 90◦ rotation of Figures 4.12[(a)

Si-C and (c) Si-Si] interface with decreased isovalue to show the extended floating bonds

states around the defect hole.

Similarly we also located the unoccupied bonding σ∗ character wavefunction of the

interface floating bond states which are mixed pz-like character wavefunction in the con-
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Figure 4.11: The electronic mechanism of charge redistribution at the 3C-SiC(111) on
Si(110) surface showing (a) one of the expanded ideal sp3 bonds of the topmost Si(110)
surface atoms and the effective partially occupied two dangling bonds coming from 3C-
SiC(111) side. (b) the relaxed broken sp3 bond of Si(110) forming the extended rebonding
with 3C-SiC(111) which are doubly occupied leading to the disappearance of dangling
bonds at 3C-SiC(111) side in a complicated fashion. The empty circles represent atoms
from 3C-SiC(111) side and full circle represent the Si(110) interface atoms. The labels
show the positions of the interface atoms and red dot represent an electron.
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Table 4.6: Summary of energy position of floating bond states which are occupied and
originates mainly from the varnished DBs due to new rebonding arrangements. The en-
ergy position are relative to the valence band maximum and the corresponding wavefunc-
tions are indicated in Figure 4.12.

Doubly occupied interface states Si-C interface Si-Si interface
Type I [eV] - 0.5193 -0.6102
Type II [eV] -0.4485 -0.4698

duction band as shown in Figures 4.14. The corresponding relative energy position are

summarized in Table 4.7. The energy positions are calculated relative to the valence band

top and conduction band minimum respectively for type I and type II at the gamma point.

Table 4.7: Summary of energy position of floating bond states which are unoccupied and
located in the conduction band originates from the varnished DBs due to new atomic
rebonding arrangements and show bonding character. The energy positions are relative
to the conduction band minimum and the corresponding wavefunctions are indicated in
Figure 4.14.

Unoccupied interface states Si-C interface Si-Si interface
Type I [eV] 0.3847 0.5218
Type II [eV] 0.0000 0.0000

4.6 Pre-relaxed Interface

In this section, we present the results of a pre-relaxed interface calculation. This is in-

tended to collaborate with the interface relaxation pattern. It should be emphasised that,

there are several possibilities of n × m 3C-SiC(111) on n
′

× m
′

Si(110) surfaces recon-

structions. Therefore, this can be out of scope as a result we concentrate only on the

reconstruction of the present system.

In Chapter 3, we discussed the Si-terminated, C-terminated and Si(110) (1 × 1) sur-

faces relaxation pattern and electronic structures of two atoms on lateral surface. To

confirm the reliability of the interface calculations, we separately relax the Si-terminated,

C-terminated and Si(110) slabs following the recipe of computations outlined in section

2.5 Figure 2.4 (a). The only significant difference is the size of the supercell, which is

similar to the one used for the interface geometries as in Figure 2.5 (a). The same number

of k points and cutoff energy are employed. The initial geometries are those which yield

the relaxed stable geometry of type I interface system. We have manually removed those
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Si-C Interface

Si-Si Interface

(a)

(c)

(b)
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Figure 4.12: The relaxed 8L/8L 3C-SiC(111) on Si(110) surface geometries showing
isosurface at Γ-point of Kohn-Sham wavefunctions which have large amplitudes and ap-
pear to localize mainly around the defect hole and mixed with side-bonds coming from
Si(110). These floating states are doubly occupied and originates from the varnished DBs
due to new rebonding arrangements. The mixed pz-like character is obvious. [(a) Si-C
and (c) Si-Si] of type I and [(b) Si-C and (d) Si-Si] of type II interfaces respectively with
the isovalue 0.03a−3

0 . The energy positions of these states are indicated in Table 4.6.
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Si-C Interface Si-Si Interface

(a) (b)

Extended floating 
bond states

Figure 4.13: The 90◦ rotated side view of relaxed 8L/8L 3C-SiC(111) on Si(110) surface
geometries and isosurface at Γ-point of Kohn-Sham wavefunctions which have large am-
plitudes and showing the extended doubly occupied floating bonds states around the de-
fect hole (a) Si-C and (b) Si-Si interfaces respectively with reduced isovalue of 0.018a−3

0 .

96



Type IIType I

Si-C Interface

Si-Si Interface

(a)

(c)

(b)

(d)

Figure 4.14: The relaxed 8L/8L 3C-SiC(111) on Si(110) surface geometries showing iso-
surface at Γ-point of Kohn-Sham wavefunctions which have large amplitudes and appear
to localize around the defect hole. These states are completely empty, originate mainly
from the floating bond states and show σ∗-bonding character. [(a) Si-C and (c) Si-Si] of
type I and [(b) Si-C and (d) Si-Si] of type II interfaces respectively with the isovalue of
0.03a−3

0 . The corresponding energy positions of these states are indicated in Table 4.7.
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atoms which do not apply appropriately and carried out the atomic structure optimization.

Figure 4.15[(a), (b) and (c)] shows the relaxed Si-terminated, C-terminated and Si(110)

surfaces respectively. Clearly, the individual slabs do not show any sign of undulations,

however, a close look at Figure 4.17 (b) which is Si-terminated surface indicates slight

vertical and lateral atomic displacements at the topmost bilayer consistent with the case

of primitive lateral surface relaxation.

Afterwards, we match the relaxed slabs together to constitute the interface geometry

and perform again atomic structure optimization. As already indicated in Figure 4.15

(d) and (e), the final relaxed interface geometries are marked by undulations when 4-

atomic layers near the interface are viewed. The breaking of Si(110) surface one nearest

neighbor atomic bond is obvious and relates to the lattice mismatch as well as dense

and sparse nature of the two surfaces. Structurally, these pre-relaxed geometries are very

similar to those indicated in Figure 4.4 suggesting that, irrespective of the manner of

relaxation, relaxation patterns are the same. We find that the energy difference between

these interface geometries and those of type I are 0.9 meV for Si-Si interface and 0.45

eV for Si-C interface. Again, the Si-Si interface is energetically stabler compared with

Si-C interface. Also the electronic structure calculations show semiconducting behavior

consistent with the previous results.
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topmost bilayer displacement

Figure 4.15: pre-relaxed 8-layers of : (a) 3C-SiC(1̄1̄1̄) (b) 3C-SiC(111) (c) Si(110) slabs.
The interface geometries after silicon carbide slabs have been put on Si(110) surface to
form 3C-SiC(111) on Si(110) interface slabe (d) Si-Si and (e) (Si-C interface.
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Chapter 5

Concluding Remarks

In conclusion, we perform a very reliable total-enegy electronic structure calculation

based on real space density functional theory that provides sound theoretical founda-

tion to discuss and clarify the interface atomic and electronic structures, interface re-

laxation mechanism, interface energetics and interface electronic structure properties of

3C-Si(111) on Si(110) surfaces.

To augment the existing knowledge of surface energies, we study the surface energies of

Si(110) 1×1, 3C-SiC(111) and 3C-SiC(1̄1̄1̄) 1×1 surfaces. The surface energy of Si(110)

is found to be 1.334 eV/atom (2100 mJm−2) for unrelaxed and 1.111 eV/atom (1745

mJm−2) for relaxed surfaces. We find that these values are in close agreement with other

first principle calculations, however when compared with experiments these calculated

values are overestimated by about 22%.

Similarly, we calculate for the first time relaxed and unrelaxed surface energies of C-

and Si-terminated surfaces of 3C-SiC based on first principles calculations. In the relaxed

C- and Si-terminated surfaces, the calculated surface energy values are 1.272 (2720) and

0.910 eV/atom (1830 mJm−2) whereas for the unrelaxed surface, the calculated surface

energies are 1.438 (3065) and 0.951 eV/atom (2856 mJm−2), respectively. For the pur-

pose of comparing the calculated results with the experiment, knowledge for the experi-

mental surface energy values of C- and Si-terminated surfaces are crucial. However, the

only known report on the experimental surface energy is that of the Si-terminated surface

and the value is 2180 mJm−2. If we compare this experimental value with the calcu-

lated relaxed surface energy, we find that Si-terminated surface energy is underestimated
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by -16%. Arguably, Si(110) surface is not a polar surface compared with Si-terminated

surface of 3C-SiC, therefore the exact reason why there is significant difference in the

calculated surface energy values compared with the experimental values is not clearly un-

derstood. With regards to the dangling bond positions located on Si- and C- terminated

surfaces, we find that the relative energy position of Si dangling bond DS i is located 1.13

eV higher than the C dangling bond DC, making it different from that of the α−6H(0001)

terminated surface as reported by Pollman and collaborators as 1.5eV [95]. We conclude

that, despite the fact that the surface symmetry of 3C-SiC and α − 6H(0001) terminated

surfaces are both hexagonal, they are electronically not the same because their dangling

bond positions are different.

In order to investigate the stability of 3C-SiC(111) on Si(110) surface and the corre-

sponding electronic structure properties, it is necessary to obtain the minimum interface

atomic layers of each of the two semiconductor materials that is sufficient to discuss inter-

face system. To obtain the necessary atomic layers of the interface structure, we initially

use 4-atomic layers of each material and examine several interface geometries and then

perform atomic structure calculations for the interface system until we find the most stable

interface geometry.

Starting from the initial atomic positions of this most stable interface geometry, we

systematically increase the interface atomic layers in the supercell and optimize each

geometry until the calculated mean atom displacement from the ideal position per atomic

layer is converged. By this procedure, we find that 8-atomic layers of 3C-SiC(111) on

Si(110) (8L/8L) is considered converged interface layers and sufficient to discuss realistic

interface systems. We find that there are only two possible interface heterojunctions, if

silicon faces meet, we have Si-Si interface and if silicon and carbon faces meet, we have

Si-C interface (are considered in this thesis).

We explore several candidate interface geometries and reach two distinctive types. We

call them type I and type II after the atomic geometry optimizations. We find that these

structures are bistable which implies there are four different geometries in total. After

the geometry optimization, the most striking observable effect which results from the re-

construction and relaxation near the interface is marked undulations as an intrinsic prop-

erty. The undulation effect is characteristically seen always within 4-atomic layers at the

Si(110) surface side indicating that the interface is not very flat at the atomic level. We
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find that the interface relaxation is associated with the breaking of exactly one Si(110)

surface atom nearest neighbor bond in the supercell. The exactly one Si(110) surface

atom nearest neighbor bond breaking in the supercell can be considered as a key mech-

anism to release the interface stress between Si(110) and 3C-SiC(111) interface system

which might relate to the lattice mismatch. The combined effects of the observed undula-

tion and bond breaking near the interface are likely to be the mechanism of the interface

relaxation.

To discuss the energetics of the interface, we introduce the interface energy as a quantity

to compare the stability of interface systems. The calculation reveals that the Si-Si inter-

face structure is energetically favorable compared with the Si-C interface structure. The

reason for the Si-Si interface energetic stability is that, after atomic structure relaxation

the Si-Si interface connecting bonds become more flexible and can easily bend compared

with the Si-C interface connecting bonds which are not flexible and difficult to bend. This

is because the Si-Si interface bonds act like the bulk Si and the Si-C interface acts like

3C-SiC bulk. The 3C-SiC bonds are not flexible compared with the Si bonds. As a re-

sult the angular forces, due to bent tetrahedral bonds of Si-C interface, experience greater

strain than Si-Si interface.

We find that, the interface electronic structure calculation predicts semiconducting be-

havior regardless of the type of interface system. The band gap of the Si-C interface is

comparatively larger than Si-Si interface system. The mechanism of the semiconduct-

ing behavior of the interface system is attributed to the bond breaking of Si(110) surface

one nearest neighbor atom bond. This break causes the disappearance of the two effective

dangling bonds coming from 3C-SiC(111) surface by forming new extended bonds which

then creates a defect hole perpendicular to the interface. By this process, all partially oc-

cupied dangling bonds disappear from the interface area leaving the interface system to

remain semiconducting. Finally, to corroborate the results, we prepare pre-relaxed slabs

of 8-atomic layers of each 3C-SiC(111) and Si(110) surfaces accordingly. We then match

the two slabs to form the interface and relaxed it. The relaxed atomic structures show that

Si-Si interface is still stabler than Si-C interface with energy difference 0.9 meV and 0.45

eV respectively, compared with the previous results of type I interface structures. In this

calculation, the observation of undulation again near the interface re-enforces the asser-

tion that, 3C-SiC(111) surface atoms are dense compared with the sparse flexible Si(110)
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surface which tend to warp around the 3C-SiC.

103



Bibliography

[1] A. Franciosi, C. G. Van de Walle, Surf. Sci. Reports 25, 1 (1996).

[2] C. G. Osbourn, J. Appl. Phys. 53, 1586 (1982).

[3] C. G. Van de Walle, R. M. Martin, Phys. Rev. B 34, 5621 (1986).

[4] D. J Eaglesham and M. Cerullo Phys. Rev. Lett. 64, 1943 (1990).

[5] J. J. Berzelius, Ann. Phys. Lpz. 1, 169 (1824).

[6] A. R. Verma and P. Krishna, Polymorphism and Polytipism in Crystals (Wiley, New

York, 1966).

[7] L. Patrick, Phys. Rev. 127, 1878 (1962).

[8] L. U. Ogbuji, Phys. stat. sol b (72), 455 (1982).

[9] W. E. Nelson, F. A. Halden and A. Rosengreen, Appl. Phys. 37, 333 (1966).

[10] M. Bhatnagar and J. Baliga, IEEE Trans Electron Devices 40, 645 (1993).

[11] E. Pettenpaul, W. v. Münch and G. Ziegler, Silicon carbid devices Inst. Phys. Conf.

Ser. 53, 21 (1980).

[12] D. K. Ferry, Phys. Rev. B 12, 2361 (1975).

[13] F. Yun, S. Chevtchenko, Y-Y. Moon, H. Morkoc, T. J. Fawcett and J. T. Wolan, Appl.

Phys. Lett. 87, 073507 (2005).

[14] D. M. Jackson and P.W. Howards. Trans. Met. Soc. AIME 223, 488 (1965).

[15] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov

and A. K. Geim, Proc. Natl Acad. Sci. USA 102, 10451 (2005), K. S. Novoselov, A.

104



K. Geim, S.V. Morozov, M. I. Katsnelson, I. V. Grigoriev, S. V. Dubonos and A. A.

Firsov, Nature Letters 438, 197 (2005), A. K. Geim, A. H. MacDonald, Phys. Today,

35 (2007).

[16] A. K. Geim and K. S. Novoselov, Nature materials Vol. 6, 183 (2007).

[17] G. Brumfiel, Nature458, 390 (2009).

[18] S. Roy, C. Jacob, and S. Basu, Sensors Actuators. B 94, 17 (2003).

[19] Z. C. Feng, Microelecton. Eng. 83, 164 (2006).

[20] S. Nishino, H. Suhara, H. Ono, H. Matsunami, Appl. Phys. Lett. 61, 15 (1987).

[21] A. Addamiano and J. A. Sprague, Appl. Phys. Lett. 44, 5 (1984).

[22] C. S. Chang, N. J Zheng, and I. S. T. Tsong, Y. C. Wang and R. F. Davis, J. Vac. Sci.

Technol. B 9, 2 (1991).

[23] S. Nishino, J. A. Powell and H. A. Will, Appl. Phys. Lett. 42, 5 (1983).

[24] K. Yasui, J. Eto, Y. Narita, M. Takata and T. Akahane, Jpn. J. Appl. Phys. 44, 1361

(2005).

[25] H. Nagasawa, T. Kawahara and K. Yagi, Mater. Sci, Forum 389-393, 319 (2002).

[26] H. Nakazawa and M. Suemetsu, J. Appl. Phys. 93, 5282 (2003).

[27] Z. C. Feng, W. J. Choyke, J. A. Powell, J. Appl. Phys. 64, 12 (1988).

[28] T. Nishiguchi, Y. Mukai, S. Ohshima and S. Nishino, Phys. stat. sol c 0 No.7, 2585

(2003).

[29] K. Shibahara, S. Nishino and H. Matsunami, Appl. Phys. Lett. 50, 1888 (1987)

[30] K. Shibahara, S. Nishino and H. Matsunami, J. Cryst. Growth 78, 538 (1986).

[31] Y. Ishida, T. Takahashi, H. Okumura, T. Sekigawa and S. Yoshida, Jpn. J. Appl.

Phys. Part I 38, 3470 (1999).

[32] H. Matsunami, S. Nishino and H. Ono, IEEE Trans. Electron Devices 28, 1235

(1981).

105



[33] S. Veprek, T. Kustmann, D. Volm and B. K. Meyer, J. Vac. Sci. Technol. A 15 10

(1997).

[34] T. Nishiguch, M. Nakamura, K. Nishio, T. Isshiki, and S. Nishino, Appl. Phys. Lett.

84, 3082 (2004).

[35] H. Mukaida, H. Okumura, J. H. Lee, H. Daimon, E. Sakuma, S. Misawa, K. Endo

and S. Yoshida, J. Appl. Phys. 62 254 (1987).

[36] A. Severino, G. D’Arrigo, C. Bongiorno, S. Scalese, F. La Via, D. Foti, J. Appl.

Phys. 102023518 (2007).

[37] Y. Ishida, T. Takahashi, H. Okumura, Jnp. J. Appl. Phys. 36, 6633 (1997).

[38] N. Oyama, E. Ohta, K. Takeda, K. Shiraishi, H. Yamaguchi, J. Cryst. Growth, 433,

900 (1999); Surf. Sci. 201/202, 256 (1999).

[39] K. Shiraishi, N. Oyama, K. Okajima, N. Miyagishima, K. Takeda, H. Yamaguchi, T.

Ito, T. Ohno, J. Cryst. Growth, 237, 206 (2002).

[40] R. Choudhury, D. R. Bowler and M. J. Gillan, J. Phys. Condens. Matter 20 235227

(2008).

[41] Y. Fujimoto and A. Oshiyama, Phys. Rev. B 81, 205309 (2010).

[42] C. G. Van de Walle, Phy. Rev. B 39, 1871 (1989).

[43] S. Y. Ren and J. D. Dow, Appl. Phys. Lett. 69, 251(1996).

[44] A. Ouerghi, R. Belkhou, M. Marangolo, M. G. Silly, S. El Moussaoui, M. Eddrief,

L. Largeau, M. Portail and F. Sirotti, Appl. Phys. Lett. 97, 3082 (2010).

[45] M. Suemitsu, Y. Miyamoto, H. Handa, and A. Konno, e-J. Surf. Sci. Nanotech. 7,

311 (2009).

[46] M. Suemitsu, H. Fukidome, J. Phys. D: Appl. Phys. 43, 374012 (2010).

[47] Y. Miyamoto, H. Handa, E. Saito, A. Konno, Y. Narita, M. Suemitsu, H. Fukidome,

T. Ito, K. Yasui, H. Nakazawa, T. Endoh, e-J. Surf. Sci. Nanotech. 7, 107 (2009).

106



[48] V. Yu Aristov, G. Urbanik, K. Kummer, D. V. Vyalikh, O. V. Molodtsova, A. B.

Preobrajenski, A. A. Zakharov, C. Hess, T. Hänke, B. Büchner, I Vobornik, J. Fujii,
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