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SUMMARY  This paper presents the generator polynomial
matrices and the upper bound on the constraint length of punc-
tured convolutional codes (PCCs), respectively. By virtue of
these properties, we provide the puncturing realizations of the
good known nonsystematic and systematic high rate CCs.
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1. Introduction

Convolutional codes (CCs) are ones of the most pow-
erful forward error correcting (FEC) codes, which are
widely used in communication systems. Unfortunately,
the use of these codes is primarily restricted to the
low rate (n,1,K) CCs (the rate R = 1, K is con-
straint length) or high rate, short constraint length CCs
(K <7). But, in many applications, their transmission
rates must be high while each bandwidth is strictly lim-
ited, such as the wireless channel. For compromising
the power and bandwidth efficiency, the high rate CCs
are needed, whose decoding becomes complex.

The punctured CCs (PCCs) were suggested in 1979
[1] to make high rate codes from low rate ones simply.
The punctured high rate CCs (R = }ﬁi‘m‘) are produced
by being periodically (nl bits) punctured (m bits) from
R= % low rate CCs (called as the original code). Some
of PCCs were shown to be almost as good as the best
known regular codes. For example, puncturing the ini-
tial code reduces its free distance, however, this dis-
tance of R = nlim PCCs is as large as that can be
achieved with the ones of any R = - L — code. Thus,
in this case no loss in minimum distance is caused by
using a punctured code. Besides they have two other
advantages:

o Simplifying the Viterbi decoder for high rate CCs.
In the meantime, PCCs can be advantageously de-
coded by sequential decoding too [2].

e Being able to implement a multirate (or rate-
compatible) CC encoder/decoder [3], which is very
useful in multimedia communication systems.
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The basic steps being punctured from R = % CC are
shown in Fig.1. Firstly, by the good R = % CC en-

coder, the input data sequence is changed into the orig-
inal coded data sequence. Then, the original coded
data sequence is periodically (nl bits) punctured m bits,
according to the map of deleting bits which indicates
deleting bit positions.

From the point of minimum bit error probability,
Yasuda et al. [4] have shown a set of good PCCs with
different rates, which can be obtained from R = % en-
coder. Lee [5] found new rate R = HLl PCCs that
minimize the required signal-to-noise ratio for a target
BER of 107°. Kim [6] derived a group of good high
rate systematic PCCs by analyzing their weight spec-
tra and BEP simulation. However, though some alge-
braic properties have been found [2], [7],[8], no system-
atic construction method for good PCCs is known yet.
This limits the exhaustive search for good PCCs. To
give indications for guiding the search for good PCCs,
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Fig.1 The basic steps being punctured from R = % CC.
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this paper shows the polynomial generator matrix of
the PCCs in Sect. 2 and the constraint length of PCCs
in Sect.3. By virtue of these properties, we give the
puncturing realizations of good known nonsystematic
high rate (n,) CCs from nonsystematic (n,1) CCs and
good known systematic high rate CCs from (2,1) sys-
tematic CCs in Sect. 4.

2. The Polynomial Generator Matrix of the
Punctured CCs

The polynomial generator matrix is very important for
the construction of CCs. In this subsection, we put for-
ward Theorem 1 about the generator polynomial ma-
trix J(D) of the R = 4 CCs.

Theorem 1: Suppose the polynomial generator ma-
trix of R = % CC be:

G(D) = [G1(D),Ga(D), ..., Gu(D)], (1)
where D is the delay operator in the shift register.
Then, the polynomial generator matrix J(D) of R = %
CC can be expressed by:

Jia(D) J12(D) ... Jin(D)

J(D)= | J;1(D) Jj2(D) ... Jjn(D)

J11(D) Ji2(D) ... (D)
J1,i—1ynt1(D) 1 i—iyng2(D) - J1in(D)
Jii—1ynt1(D) Jji—1ynr2(D) - Jjin(D)
Ji-1n1(D) Jiii—yme2(D) .. Jiin(D)
J1=1yn+1(D) J1 —1yns2(D) .. J1in(D)
Jji=1m+1(D) Jj1=1yng2(D) .. Jjm(D)
Jia=1ynt1(D) Jia—1yns2(D) ... (D)

(2)
where, for 4,5 =1,2,...,[;

Jjti-nts(D) = DT Gy 1 (DY), (3)

and, forh=104+i—jmodl, s=1,2,...,n,
G »(D) is construction part of Gs(D), expressed by:
Gs0(D) +Gs1(D) + -+ + Gy 1(D)

o0

= Z (95,0 +9gsp1 D+ - +gs’g-1Dlil)Dtl.
t=0
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Proof: Refer to Appendix. |

The polynomial generator matrix Q(D) of the R =
= L — PCCs is derived by being punctured m columns
from J(D) in terms of the perforation matrix.

For example, let the original code be (3,1,7) CC,
which has a generator polynomial matrix:
G(D)=[1+D+D*+D*+ D1+ D?+D?+ D* +
D® + DS 1+ D+ D3+ Df).

From Theorem 1, the polynomial generator matrix
J(D) of (9, 3) CC is as follows:

1+D 1+4D+D?*1+D 1

D+D?> D+D? D? 14D
D D? D D+ D?
D 1 1+D 1+D D
1+4D+D?*14+D 1 D 1
D+D?> D? 1+4D1+D+D?*1+D

Let the corresponding perforation matrix be:

100
p=[0o01],
110

then, the polynomial generator matrix Q(D) of (4, 3)
PCC is as follows:

1+D 14D 1 14D
D+D* D 14D D (@)
D D D? 14D+D?

In the most practical cases, the original (2, 1) CCs
are selected. Suppose the generator polynomial matrix
of R= % original CC is:

G(D) = [G1(D),Ga2(D)). (5)

By virtue of Theorem 1, the polynomial generator ma-
trix J(D) of R = EZZ CC can be expressed by:

J1,1(D)  J12(D) J1,2i-1(D)
S0y = | 5iD) LaD) . a(D)
(D) Jia(D) T (D)
J1,2:(D) Jra-1(D)  Jra(D)
(D) . iaa(D) (D) (6)
JZ,Z;(D) Juzl:l(D) Jz,m:(D)

where, for ¢,5 =1,2,...,;

Jj2i-1(D) = DT Gy (DY),
Jj0:(D) = DT Gy (D7),
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Table 1  The relationship between (2, 1) good original CCs and (4, 3) PCCs.
(2,1) good original CCs (4,3) PCCs P
Q11(D) Q12(D) Q13(D) @14(D)
K1 | Gi(D) Q21(D) Q22(D) Q23(D) Q24(D)
G2(D) Q31(D) Q32(D) Qs33(D) Q34(D)
1 1 1 1 101
3 | 1+D? D D i 0 110
1+ D+ D? 0 D D 1
1+D 1+D 1 1 110
4 | 1+D+D3 0 D 1+D 1 101
1+D+D?4+D3 D D 0 1+D
1+D 1 1+D 0 101
5 | 14+ D3+ D* 0 D 1 D 110
1+D+D?+D* D2 D+ D? D 1+D
1 1+D 1 1+D 100
6 | 1+D?4+D*4 Db D+ D? D+ D? 1+D 1 111
1+D+D?+ D3+ D° D2 D D+ D? 1+D
1+D+D? | 14+D+ D2 0 1 110
7 | 14+D2+ D3+ D%+ DS D+ D? D 1+D+D?% |1 101
1+ D+ D%+ D34+ DS 0 D D + D? 1+ D+ D?
1+D? 1+D D? 1 110
8 | 1+D24+ D34+ DSy D7 D + D? D 1+ D2 1+ D+ D? | 101
1+D+D?+ D34+ D*4+ D7 D3 D+D?4+D3 | D4+ D2 1+D
1+ D 1+D D 1+ D% 111
9 | 1+D%24+D3+D*+D8 D+ D3 D+D?4+D3 | 14D D 100
1+D+D?+D3+ D5+ D"+ D8 || D2 D+ D3 D+ D3 1+D

and h =10+1— j mod [.

Similarly, the corresponding polynomial generator
matrix Q(D) of R = EZ%% is derived by being punc-
tured m columns from J(D) in terms of the perfora-
tion matrix. For example, Table 1 gives the polynomial
generator matrices Q(D) of (4,3) PCCs, being punc-
tured by perforation matrices P from good (2,1, K1)
CC, where the constraint length K of original (2,1)
CC is from 3 to 9. The choosing of original codes and
perforation matrices are referred from [4].

3. The Constraint Length of the Punctured
CCs

The constraint length is a very important parameter of
CC. For a CC, the greater its constraint length is, the
better its performance is. From this point, we induce
Theorem 2.

Theorem 2: The constraint length of high rate CC
(nl — m, 1) punctured from low rate (n,1) CC is :

K <[(Ky—1/l]+1, (7)

where K is the constraint length of (n,1) CC, and [z]
indicates the minimal integer which is larger than or
equal to z.

Proof: Let M; and M; be the highest dimension of
the G4(D)(s = 1,2,---,n) and J;(D)(j =1,...,Li =
1,...,nl), respectively, so M; = K; — 1 and M; =
K -1

If My =tl, then, t = %

If M1 =tl+ ll(l S ll S [— 1), then,

t= Mzl = Mty = [Af /1] - 1.

From Theorem 1, according to the generality of en-
suring M, as large as possible, we have the following
conclusions:
If My =tl, then, M =% =t =20,
If My # tl, then,
My =17 4 B - Gy = [ 1)
That is to say: M; = [M,/I].
In general, we have the conclusion as follows:
K, <[(Ky-1)/1] +1. 0
From Theorem 2, we have the upper bound of con-
straint length of high rate PCC (nl —m, 1), which is re-
lated to the constraint length K of original (n,1) CC
and the periodical length [, but no relationship with n
and m.
For example, the constraint length of (4,3) high
rate CC punctured from low rate (3,1,7) CC is :

K3=[(7-1)/3]+1=3, (8)

which is in good agreement with (4).

4. The Puncturing Realization of Good Known
High Rate CCs

Up to now, many good PCCs are obtained [4]-[6] on
the basis of one general constructing method, which
includes two steps as follows:
Step 1 Selecting the best known (n,1) CCs of a given
constraint length as an original code.
Step 2 Determining the perforation matrices that will
yield the best PCCs for different coding rates.

But, by this method, all good PCCs may not al-
ways correspond with the best high rate CCs. In order
to produce the same PCCs as the good known high rate
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Table 2 (4, 1) Original codes that yield the good known (4, 3) CCs.
(4,1) Original CCs (4,3) PCCs, i.e. good known (4,3) CCs
G1(D) Q11(D) Q21(D) Q31(D)
Ky | G2(D) Q12(D) Q22(D) Qs2(D)
Gs(D) Q3(D) Q23(D) Qs3(D)
Ga(D) Q14(D) Q24(D) Q34(D)
1 1 0 0
7 {1+D+D?2+D3 1 14D D
14 D2+ D%+ DS 1 D 1+ D?
1+ D+ D24+ D6 1 1 14+ D?
1+ D+D?+ D%+ D° 1+D D+ D? D
9 | 1+D24+ D54 D7 D? 1 D+ D?
14 D3+ DS 4+ D7 0 D2 14+ D+ D2
14D+ D2+ D44 D%+ D8 1+D+D? | 1+D 1
1+D3+D°+ D8+ D"+D¥ || 1+D+D? | D24+ D3 D3
11 | 1+ D*+ D%+ DS 4+ D7 D+ D? 1+ D? D?
1+ D+ D3+ D%+ DS 4+ D9 D 1 1+D+D?+ D3
14+ D+ D?4+ D74 D0 1 1+D?24+D3 | 1

CCs, we need select available original CCs and perfo-
ration matrices. In this section, we give the polyno-
mial generator matrices of systematic and nonsystem-
atic original CCs, which can produce the good known
high rate CCs by the available perforation matrices.

4.1 The Puncturing Realization of Good Known Non-
systematic CCs

Suppose that the orthogonal perforation matrix [7] is
used, where only one entry “1” is in each row, the punc-
turing bits m = nl—n, and the R = % PCC is obtained.
Then, the corresponding polynomial generator matrix
Q(D) can be expressed by:

811(8) 812(3% Ql,nED)
1 (D
D) = 2,:( ) 2,2:( Qz,: )

Qui(D)  Qi2(D) Qin(D)

From Theorem 1, @Q;s (D) is one of n entries:
Jj7(s—1)n+1(D)a Jj,(s—l)n+2(D)7 BN Jj,sn(D)a which is
only related to G4(D), fors=1,...,nand j=1,...,1.
This makes all the original code (i.e., different genera-
tors polynomial) to be used fully. On the other hand,
this makes it to be possible to yield original codes from
the known good high rate codes by some orthogonal
perforation matrix.

By virtue of these conclusions, we have obtained
the low-rate (4, 1) original codes corresponding to good
(4, 3) CCs [9], as listed in Table 2. It is worth noting
that Table 2 is identical to the conclusions in [7], which
are based on the general PCCs constructing method, as
we mentioned at the beginning of this section. However,
Table 2 is induced by different method, which is based
on how the polynomial generator matrices of original
low rate convolutional code are constructed from best
high rate convolutional code.

For Table 2, K; is the constraint length of (4, 1)

CC and m =4 x 3 — 4 = 8, the orthogonal perforation
matrix is:

jen s Blanil o
oo = O
_— 0 O

Using this method, any good known (n,l) high rate
CCs can be constructed by one original (n,1) CCs and
one orthogonal perforation matrix.

4.2 The Puncturing Realization of Good Known Sys-
tematic CCs

Since there is a large body of research devoted to the
class of (2,1) CCs, the constructing of PCCs from (2, 1)
original CCs is very useful. The determinate generator
polynomial matrix of original (2,1) CCs can not be
obtained from the polynomial generator matrix of (3, 2)
and (4, 3) PCCs as in the previous subsection. But we
can find the good systematic PCCs [10] from systematic
(2,1) original CCs for their determinate relationship as
follows.

Suppose the polynomial generator matrix of sys-
tematic R = 1 be:

G(D) = [1,G2(D)]. )

If the polynomial generator matrix of systematic (3, 2)
CCs is:

(49 &oon).

from Theorem 1, its determinate relationship with

G(D) is:
Ga(D) = Qa3(D?) + DQ13(D?).

If the polynomial generator matrix of systematic (4, 3)

CCs is:

(10)
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Table 3 Systematic original codes that yield the good known systematic (3, 2) CCs.
Systematic original (2, 1) CCs ] Systematic punctured (3,2) CCs
Ga(D) Ky | Qi3(D) Q23(D)
1+D+ D3 2 1+ D 1
1+D+ D34 D% 3 14+ D 1+ D?
1+ D+ D%+ D*+ D 4 1+D 1+ D?+ D3
1+ D+ D3+ D*+ Db+ D8 4+ DY 5 1+ D+ D? 1+D?+ D%+ D*
1+D+D3+D*+ D+ D¥+ D%+ DIV 4 DI 6 I1+D+D*+DP 1+D?2+ D3+ DY+ D>
1+D+D3+D*+ D+ D¥+ D+ DV + DI+ DB 7 [ 1+D+D"+ D+ D% | 1+ D2+ D+ D*+ D°

Table 4

Systematic original codes that yield the good known systematic (4, 3) CCs.

Systematic original (2,1) CCs

Systematic punctured (4,3) CCs

G2(D)

Q14(D)
Q24(D)
Q34(D)

K3

1+D+D?4+ D34+ D%+ D64 D7

1+D
3 1+ D?
1+ D+ D?

1+D+D?+ D3+ D54 D6+ D7+ DY 4+ D10 4 pi!

1+ D+ D3
4 1+ D% 4 D3
1+ D+D?+ D3

1+D+D3+D*%

1-|—D—|—D2+D3+D5+D6+D7+D9+D10+D11+D13-|—D14 5 1+D2+D3+D4
1+D+D?+ D?
1+ D+ D3+ D%
1+D—|—D2+D3+D5+D6+D7+D9+D10+Du+D13+D14+D19 7 1+D2+D3+D4+D6

1+ D+ D?+ D3

1-|—1)+D2+D3+D5+D6+D7+D9+D10+D11+D13+D14+D19+D21 8

14+ D+ D3+ D4
1+ D? 4+ D® + D*+ DS
1+D+ D24+ D34+ D7

1 0 0 QuD)
0 1 0 QD)
0 0 1 QD)

from Theorem 1, its determinate relationship with
G(D) is:

G2(D) = Q3a(D%) + DQ2a(D?) + D*Qua(D?).(11)
Therefore, Tables 3 and 4 give the systematic original
codes that yield the good systematic (3, 2) and (4, 3)
CCs. For Table 3, K5 is the constraint length of (3, 2)
CCs, m=1, the corresponding perforation matrix is:

11
p= ( o ) |

For Table 4, K3 is the constraint length of (4,3) CCs,
m=2, the corresponding perforation matrix is:

P=(5 1)

0 01

This paper derives the polynomial generator matrices
and upper bound on the constraint length of punctured
convolutional codes. These are useful for constructing
good PCCs, which are same as those good known non-
systematic and systematic high rate CCs. As the good
high rate CCs are found more and more, our method
contributes for the puncturing realization of their good
CCs, and is quite useful for the communication area.

5. Conclusion
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Appendix: Proof of Theorem 1

We prove Theorem 1 at Sect.2 in the following three
steps:

Stepl. (The relationship of inputs of two encoders)
Let inputs of the R = ;1; CCs and R = 7% CCs be
X(D) and X*(D) = [X}(D), X3(D),- -, X} (D)), re-
spectively. When same input sequences are encoded by
these CCs, the successive [ information bits of R =

CCs are equal to one information byte of R = l CCS

So, we have:
X(D)
= X; (DY 4+ DX; (DY) 4 --- + D'LX; (DY,

Step2.(The relationship of outputs of two encoders)
Let outputs of the R = % CCs and R = 75—1 CCs be
Y(D) = [Y1(D), Y2(D),- -+, Yu(D)], and,

Y*(D)
= [Yl*(D)7Y2*(D)7 o ‘,Y*(D),

n
Y:+1<D)?Y;+2(D)v te '7Y22(D)>

ce

}/(7—-1)7)/4-1([))7 Y'(Xl(—l)'rL-l-Q('D)? T ;l(D)]'

respectively, then the successive | encoded information
bytes of R = % CCs are equal to one encoded informa-

tion byte of R = # CCs. So, we have:

n(D)
= Y{(D) + DY,y (D) + -+
+ lelyv(hlk—l)n%—l(pl))
Y3(D)
= Y5 (DY) + DY (DY) + -+
+ Dl_le();—l)n—{—Q(Dl% e
Y.(D)
=Y, /(D') + DY, (D) +
Step3. (The relationship of G(D) and J(D))
Since V(D) = X(D)G(D), we immediately have
YD) = X(D)Gy(D) for R = 1 CCs and s =
1,2,---,n. Since Y*(D) = X*(D ) (D), we have
Y (D) = X{(D)J1(D)+- - -+X/(D)J; (D) for R = 5

i

+ DY (D),

CCs and i=1,2,...,nl.

1437

Therefore, Y1(D) can be ex-

pressed by:

(X5(D" + DX3 (D" +- +D’_1Xl*(D‘))G1(D)
=Yy (D)+DY* (D )
+ DYy (D)
= X{(D")11(D") + X5(D") 2,1 (D)
+ 4+ X7 (DN (DY)
+ DX{(D")J1nia(D)
+ DX5(D") Ja i (D)
+ "+DX1*(DZ)Jz,n+1(Dl)+-'-
+ DX (DY Ty - 1yngr (DY)
+ D X3(DY) S - 1yns (DY)
+ DX (DY) - 1yngr (DY),

Obviously,

So,

Therefore, we have: Jy 1(D)

G1(D)
= Ji1(D") + DJy g1 (DY) + - -
+ Dl_1J1,(1~1)n+1(Dl)-,
DGy(D)
= o1 (DY) + DJoyia (DY) + -+
+ D"y o1y (DY),

D'71G(D)
= J[J(D
+ D

Y4+ DJppii (DY +
" =11 (D).

G10(D)+G11(D)+ -+ G1,-1(D)
= Ji1(DY + DJy iy (DY + -
+ DM -1y (DY),
D[G1,0(D) + G11(D) + -+ + G1,-1(D)]
= Jo1 (DY) + DJg i1 (DY) + -
+ Dlﬁ1J2,(l—1)n+1(Dl)’

D' Gy o(D) + Gra(D) + -+ + G y—1(D))
= Jj1 (DY) 4+ DJj g1 (DY) + -+
+ D" -1y (DY).

= G10(D1),

Jl nt1(D) = —%Gl,l(D%)a

Jl (a-nnt1(D) = D=7 Gy (DY),
Jo1(D) = DiGry1 (1 T),
Jont1(D) = G1,0(D1),
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That is to say,

Ji1(D)

I nf ormati on,

1~-2

Jin1(D) = DTGI,Q(D%)a

Jia-1m+1(D) = Gl,O(D%)

For i,j = 1,---,l and h = [ + 14— j mod [, then the
above equations can be expressed generally by:
Jii-1yn41(D) = DT Gy (D).

By the same process, we have:

T (i—tyns2(D) = DT Gy p(D1),

J;in(D) = DT Gy (D).

J—i

Jj’(iil)ﬂ*s (D) = DTGS,}L(D%—))
where s =1,2,---,n. .
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