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Parameterized fairness axioms on cycle-free graph games
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Abstract We study cooperative transferable utility games with a communication structure
represented by an undirected graph, i.e., a group of players can cooperate only if they are
connected on the graph. This type of games is called graph games and the best-known so-
lution for them is the Myerson value, which is characterized by the component efficiency
axiom and the fairness axiom. Recently the average tree solution has been proposed on
cycle-free graph games, and shown to be characterized by the component efficiency axiom
and the component fairness axiom. We propose ε-parameterized fairness axiom on cycle-
free graph games that incorporates the preceding fairness axioms, and show the existence
and the uniqueness of the solution. We then discuss a relationship between the existing and
our proposed solutions by a numerical example.

Keywords Cycle-free graph · TU-game · Communication structure · Fairness

1 Introduction

In many situations, a group of players obtains profits or saves costs by their cooperation. A
subgroup of the players is called a coalition and the total profit yielded when all the members
in the coalition agree to cooperate is called the worth of the coalition. The problem of how
much payoff should be allocated to each player then arises if we know the worth of all
possible coalitions. A classical set-valued solution is the core, being the set of payoffs at
which the worth of the whole set of players is distributed among all the players and no
coalition receives less than its worth. The best-known single-valued solution is the Shapley
value [9], which is the average of all marginal contributions over all permutations of the
player set. See, for example [3].
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In this paper we consider this problem with restricted cooperation structure. Friendship
could be an example of restricted cooperation. Complete strangers A and B might form a
friendship in the presence of their mutual friend C. We do not know the worth of the coali-
tion consisting of A and B, while that of A, B and C is conceivable. This restricted coopera-
tion structure is often represented by undirected graphs, and cooperative transferable utility
games with such structure are called graph games. Myerson [7] introduced the Myerson
value for the games and characterized it by component efficiency and fairness axioms. Ac-
cording to the result in Myerson [8], fairness can be replaced with balanced contribution in
the context of the graph games. The position value proposed by Borm and Tijs [2] is another
solution for the games. This value is characterized by component efficiency and balanced
link contribution, which shares an idea with balanced contribution, see also Slikker [11].
Both the Myerson value and the position value are based on the Shapley value. In Slikker
and van den Nouweland [10] the properties of these values are described in detail. Recently
Herings et al. [5] proposed the average tree solution on the class of cycle-free graph games
and characterized it by component efficiency and component fairness. They also showed
that the solution is in the core if the game exhibits super-additivity, while the Myerson value
or the position value may not. The average tree solution is the average of the tree solutions
introduced by Demange [4] (in the paper it is called the hierarchical outcomes). She showed
that the tree solutions yield extreme points of the core on a super-additive cycle-free graph
game. The condition of super-additivity was relaxed to a weaker one by Talman and Ya-
mamoto [12]. In Herings et al. [6] the average tree solution was generalized on the whole
class of graph games, however no characterization was given there.

Fairness axiom means that, when a link is deleted from the underlying graph, the two
players on the ends of the link will get the same loss or gain in payoff. Meanwhile, com-
ponent fairness requires that the average loss or gain per player in one of the detached
components is equal to that in the other. We introduce ε-parameterized fairness axiom that
incorporates these axioms of fairness, and show the existence and the uniqueness of a solu-
tion satisfying component efficiency and our axiom. We then discuss a relationship among
the existing solutions, our proposed solutions and the core by a numerical example.

The rest of the paper is organized as follows. Sect. 2 lays out graph games. In Sect. 3 we
review the Myerson value and the average tree solution along with the axioms characterizing
them, and the relationship between the solutions and the core. We propose a new fairness
axiom in Sect. 4 that incorporates the preceding two axioms on cycle-free graph games and
discuss the existence and the uniqueness of a solution satisfying our axiom. In Sect. 5, we
give an example of graph games of three players, and compare the existing solutions, our
proposed solutions and the core.

2 Preliminaries

A cooperative game with transferable utility or simply a TU-game is defined by a pair (N, v),
where N is a finite set of players, i.e., N = { 1, 2, . . . , n }, and v : 2N → R is a characteristic
function such that v(∅) = 0. The worth of a coalition S ∈ 2N is denoted by v(S ). We denote
the game (N, v) by v for short and the collection of all characteristic functions byV. A payoff
vector x ∈ Rn is an n-dimensional real vector, and we let x(S ) :=

∑
i∈S xi for each S ∈ 2N ,

where xi, the ith component of x, is player i’s payoff. The best-known Shapley value [9] is
represented by

ψ(v) :=
1
n!

∑
π∈Π

mπ(v), (1)
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where mπ(v) ∈ Rn is called the marginal vector corresponding to a permutation π and Π is
the set of all permutations on N. The ith component mπ

i (v) of mπ(v) is defined as mπ
i (v) :=

v(πi ∪ {i}) − v(πi), where πi := { j ∈ N | π( j) < π(i) }, i.e., the set of players preceding i in
permutation π.

Next we give several notations for an undirected graph (N, L) with node set N and edge
set L. The collection of sets of edges is denoted by L. For K ∈ 2N , the graph (K, L(K)),
where L(K) := { {i, j} | i, j ∈ K, {i, j} ∈ L }, is called the subgraph of (N, L) on K. Two
nodes i, j ∈ N are connected in (N, L) if either i = j or there exists a sequence of edges
{i0, i1}, {i1, i2}, . . . , {il−1, il} such that i0 = i and il = j. A graph (N, L) or simply N is con-
nected if any two nodes i, j ∈ N are connected in (N, L). A subset K ⊆ N is said to be
a connected subset of N when the subgraph (K, L(K)) is connected. The collection of all
connected subsets of K in (K, L(K)) is denoted by C(K, L), i.e., C(K, L) := {H | H ⊆
K and H is a connected subset of K }. A subset K of N is a component of (N, L) if K is max-
imally connected, i.e., K is connected but K ∪ { j} is not for any j ∈ N \ K. The collec-
tion of all components of (K, L(K)) is denoted by Cm(K, L), i.e., Cm(K, L) := {H | H ⊆
K and H is a component of K }. A sequence of edges {i0, i1}, {i1, i2}, . . . , {il, il+1} is a cycle in
(N, L) if

(i) l ≥ 2,
(ii) il+1 = i0, and

(iii) {ih, ih+1} ∈ L for h = 0, . . . , l.

A graph (N, L) is cycle-free if it does not contain any cycle. Here we define the collection of
sets of edges forming a cycle-free graph asM.

A graph game is given by a triple (N, v, L) where N is a set of players, v is a characteristic
function and L is a set of edges of the graph (N, L). Omitting N, we denote the graph game
simply by (v, L), the collection of all graph games by V × L and that of cycle-free graph
games byV ×M. On graph games only connected subsets of the players are able to coop-
erate, hence the set of admissible coalitions is C(N, L). When the graph (N, L) is complete,
i.e., any two of its nodes are connected by an edge, graph game turns out to be an ordinary
TU-game. In this paper we assume that N is connected in (N, L), i.e., N ∈ C(N, L) 1. A
function f : V × L → Rn is called a solution for graph games and fi(v, L) is called player
i’s allocation by solution f . The core of the graph game is given by

C(v, L) := { x ∈ Rn | x(N) = v(N) and x(S ) ≥ v(S ) for all S ∈ C(N, L) }. (2)

The restricted game vL is defined by Myerson [7] as

vL(S ) :=
∑

T∈Cm(S ,L)

v(T ) for each S ∈ 2N . (3)

3 Existing Solutions

We introduce the Myerson value and the average tree solution, and then the axioms which
characterize each of them. In the followings we use the abbreviation L \ {i, j} to denote the
set difference of L and {{i, j}}.

1 Otherwise, we have only to discuss the problem on each component separately.
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Definition 1 On the class of all graph games, the Myerson value, denoted by µ(v, L), is the
Shapley value of the restricted game defined by (3), i.e.,

µ(v, L) := ψ(vL).

As will be stated in Theorem 1 below, the Myerson value is characterized by the following
two axioms.

Axiom 1 (component efficiency) For any (v, L) ∈ V × L it holds that∑
i∈N

fi(v, L) = v(N).

Axiom 2 (fairness) For any (v, L) ∈ V × L and {i, j} ∈ L, it holds that

fi(v, L) − fi(v, L \ {i, j}) = f j(v, L) − f j(v, L \ {i, j}).

Component efficiency means that the sum of the players’ allocations in a component is
equal to the worth of the component. Note that this axiom is assumed to be satisfied by
all the solutions that we will introduce in this paper. Fairness means that the two players
connected by an edge obtain the same change of allocation if the edge is deleted. Myerson
gave the following theorem.

Theorem 1 (Myerson [7]) On the class of all graph games, the Myerson value µ is the
unique solution that satisfies Axiom 1 and Axiom 2.

The average tree solution is a solution which was first introduced by Herings et al. [5]
for cycle-free graph games. To describe the solution we give here some definitions on a
directed graph (N,D) following Berge [1], where D is a set of ordered pairs of nodes called
arcs. If (i, j) ∈ D, then we say that node j is a successor of i and we denote by S ′D(i) the set
of i’s successors. If ( j, i) ∈ D, then we say that node j is a predecessor of i and we denote by
P′D(i) the set of i’s predecessors. A sequence of arcs (i0, i1), (i1.i2), . . . , (il−1, il) is a directed
path from i0 to il in (N,D) if (ih, ih+1) ∈ D for h = 0, . . . l − 1 , while it is called a cycle if
(ih, ih+1) ∈ D for all h and i0 = il. A graph (N,D) is cycle-free if it does not contain any cycle.
In the cycle-free graph, we say that j is a subordinate of i when there is a directed path from
i to j. The set of subordinates of i is defined by S D(i) and we let S D(i) := S D(i)∪{i}. A node
r is called a root if all the nodes of N \ {r} can be reached by directed paths starting from
r and it is not a successor of any other node. A leaf is a node having no successor. Finally
we say that Dr is an arborescence or a rooted tree with respect to node r ∈ N when r is a
root and the other nodes have only one predecessor, i.e., |P′Dr (i)| = 1 for all i ∈ N \ {r} on the
graph (N,Dr).

Given a cycle-free graph game (v, L), we define a tree solution with respect to r ∈ N as
follows and denote it by xr : make an arborescence Dr with node r as the root by giving a
direction to all the edges in L. Note that Dr is uniquely determined for each r ∈ N since
the original undirected graph (N, L) is cycle-free and connected. For each node i ∈ N the ith
component of the tree solution xr is given by

xr
i := vL(S Dr (i)) − vL(S Dr (i)). (4)

There are n different tree solutions thus obtained and the average tree solution is defined as
follows.
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Definition 2 On the class of cycle-free graph games, the average tree solution AT (v, L) is
the average of all tree solutions, i.e.,

AT (v, L) :=
1
n

∑
r∈N

xr.

Herings et al. [5] replaced the fairness axiom by the component fairness axiom below to
provide a characterization of the average tree solution. Let f : V ×M → Rn be a solution
for cycle-free graph games. For a cycle-free undirected graph (N, L) and an edge {i, j} ∈ L
let Ki and K j be the components of (N, L \ {i, j}) containing node i and node j, respectively.

Axiom 3 (component fairness) For any (v, L) ∈ V ×M and {i, j} ∈ L, it holds that

1
|Ki|
∑
h∈Ki

(
fh(v, L) − fh(v, L \ {i, j})

)
=

1
|K j|
∑
h∈K j

(
fh(v, L) − fh(v, L \ {i, j})

)
.

Component fairness means that deleting the edge between two nodes yields the same average
loss in payoff between the divided two components.

Theorem 2 (Herings et al. [5]) On the class of cycle-free graph games, the average tree
solution AT is the unique solution that satisfies Axiom 1 and Axiom 3.

Herings et al. [5] also discuss the relationship between the average tree solution and the core
of graph games. A graph game is said to be super-additive if

v(S ∪ T ) ≥ v(S ) + v(T )

holds for all S ,T ∈ C(N, L) such that S ∩ T = ∅ and S ∪ T ∈ C(N, L). It is shown in
Demange [4] that tree solution xr is one of the extreme points of the core for any r on super-
additive cycle-free graph games. Hence the average tree solution is in the core of the graph
game, i.e., AT (v, L) ∈ C(v, L), while the Myerson value is not always in it.

4 Parameterized Fairness Axiom and Existence of Solution

This section presents a new axiom of fairness for cycle-free graph games that incorporates
the preceding ones, and shows the existence and the uniqueness of the solution satisfying
component efficiency and our fairness axiom. We focus on the difference between Axiom 2
and Axiom 3 in the coefficients of fh(v, L) for h ∈ N. Fairness requires the loss of player i be
equal to that of player j when it is caused by the deletion of edge {i, j}. On the other hand,
component fairness requires the average loss per player in one component be equal to that in
the other component. It seems, however, unreasonable that a player away from the deleted
edge is assigned the same loss coefficient as a player close to the edge. Therefore we pro-
pose a new fairness axiom under which the coefficient varies according to the distance from
the deleted edge by introducing a nonnegative parameter ε. We name it ε-parameterized
fairness.
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Axiom 4 (ε-parameterized fairness) For any (v, L) ∈ V×M, ε ≥ 0 and {i, j} ∈ L, it holds
that

1∑
h∈Ki

ετ
i(h)

∑
h∈Ki

ετ
i(h)
(

fh(v, L) − fh(v, L \ {i, j})
)

=
1∑

h∈K j

ετ
j(h)

∑
h∈K j

ετ
j(h)
(

fh(v, L) − fh(v, L \ {i, j})
)
,

where τi(h) is defined as follows: for component Ki make an arborescence Di with node i as
the root and set

τi(h) :=
{

0 if P′Di (h) = ∅,
1 + τi(k) with {k} = P′Di (h) otherwise.

The function τi(h) is the depth of node h in the arborescence Di with i as the root, and the
loss coefficient of a node is ε times that of his predecessor. Hence for ε < 1 the coefficient
of a player close to the deleted edge is relatively high, while that of a player away from the
deleted edge is low. The coefficients are normalized so that the sum of the coefficients in
the same component is equal to one. If we set ε either to 0 or to 1 we obtain the preceding
axioms.

Corollary 1 In Axiom 4, if we set ε = 0 then we obtain Axiom 2 2 and if we set ε = 1 then
we obtain Axiom 3.

The following theorem shows the existence and the uniqueness of the solution satisfying
component efficiency and ε-parameterized fairness.

Theorem 3 On the class of cycle-free graph games, for any ε ≥ 0 there exists a unique
solution that satisfies Axiom 1 and Axiom 4.

Given a cycle-free graph (N, L), we create, from the n − 1 equations in Axiom 4 and the
equation in Axiom 1, the following linear equality system

A f (v, L) = b,

where the matrix A ∈ Rn×n consists of the coefficients of fh(v, L), h ∈ N, and the right hand
side vector b ∈ Rn consists of v(N) and the terms of fh(v, L \ {i, j}) for {i, j} ∈ L and h ∈ N.
For example, for the graph of N = {1, 2, 3} and L = {{1, 2}, {2, 3}} we have the following
three equations :

f1(v, L) − f1(v, L \ {1, 2}) = 1
1 + ε

(
f2(v, L) − f2(v, L \ {1, 2})

)
+

ε

1 + ε

(
f3(v, L) − f3(v, L \ {1, 2})

)
,

f3(v, L) − f3(v, L \ {2, 3}) = ε

1 + ε

(
f1(v, L) − f1(v, L \ {2, 3})

)
+

1
1 + ε

(
f2(v, L) − f2(v, L \ {2, 3})

)
,

f1(v, L) + f2(v, L) + f3(v, L) = v(N).

2 We regard 00 as 1.
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By transposition of terms, we have

f1(v, L) − 1
1 + ε

f2(v, L) − ε

1 + ε
f3(v, L)

= f1(v, L \ {1, 2}) − 1
1 + ε

f2(v, L \ {1, 2}) − ε

1 + ε
f3(v, L \ {1, 2}),

ε

1 + ε
f1(v, L) +

1
1 + ε

f2(v, L) − f3(v, L)

=
ε

1 + ε
f1(v, L \ {2, 3}) + 1

1 + ε
f2(v, L \ {2, 3}) − f3(v, L \ {2, 3}),

f1(v, L) + f2(v, L) + f3(v, L) = v(N).

Thus the matrix A reduces to 1 − 1
1+ε −

ε
1+ε

ε
1+ε

1
1+ε −1

1 1 1

 , (5)

each column corresponding to a node and each row corresponding to an edge to be deleted
in Axiom 4 except for the last row that comes from the component efficiency. For inductive
proof we assume that fh(v, L \ {i, j}) exists and accordingly b is a constant vector3. We show
that the system has a unique solution by proving that

Ac = 0

holds only if c = 0.
Let us choose an arbitrary node as the root and make an arborescence D as we did in

defining the tree solution in Sect. 3. Then we obtain the following two lemmas.

Lemma 1 Let j1 and j2 be successors of i, i.e., {i} = P′D( j1) = P′D( j2). If cp = c j1 for all
p ∈ S D( j1) and cq = c j2 for all q ∈ S D( j2), then c j1 = c j2 .

Proof Let H = N \ (S D( j1) ∪ S D( j2)). The corresponding equation for row { j1, i} in Ac = 0
is

1 × c j1 −

∑
h∈H

ετ
i(h)ch +

∑
q∈S D( j2)

ετ
i(q)c j2∑

h∈H
ετ

i(h) +
∑

q∈S D( j2)

ετ
i(q)

= 0,

from K j1 = S D( j1), Ki = H ∪ S D( j2) and our assumption. This is equivalent to∑
h∈H

ετ
i(h) +

∑
q∈S D( j2)

ετ
i(q)

 c j1 −
∑
h∈H

ετ
i(h)ch −

∑
q∈S D( j2)

ετ
i(q)c j2 = 0. (6)

For row { j2, i} we analogously have∑
h∈H

ετ
i(h) +

∑
p∈S D( j1)

ετ
i(p)

 c j2 −
∑
h∈H

ετ
i(h)ch −

∑
p∈S D( j1)

ετ
i(p)c j1 = 0. (7)

3 For fh(v, L̃) with |L̃| = 1 it clearly holds that fh(v,∅) = v(h).
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By subtracting (7) from (6) we obtain∑
h∈H

ετ
i(h) +

∑
q∈S D( j2)

ετ
i(q) +

∑
p∈S D( j1)

ετ
i(p)

 c j1

−

∑
h∈H

ετ
i(h) +

∑
p∈S D( j1)

ετ
i(p) +

∑
q∈S D( j2)

ετ
i(q)

 c j2 = 0

and see that c j1 = c j2 .

Lemma 2 Let i be a node which has a successor j, i.e., j ∈ S ′D(i). If c j = ck for all k ∈ S D(i),
then ci = c j.

Proof When i is the root, the values of the nodes other than i are all c j by the assumption.
The equation for row { j, i} is then

1 × c j −
1

ε0 +
∑

h∈Ki\{i}
ετ

i(h)

ε0ci +
∑

h∈Ki\{i}
ετ

i(h)c j

 = 0

and it immediately holds that ci = c j.
When i is not the root node, let G = N \ S D(i) and the equation for row { j, i} is, from

K j = S D( j) and Ki = {i} ∪ (S D(i) \ S D( j)) ∪G,

1 × c j −

ε0ci +
∑

h∈S D(i)\S D( j)

ετ
i(h)c j +

∑
g∈G

ετ
i(g)cg

ε0 +
∑

h∈S D(i)\S D( j)

ετ
i(h) +

∑
g∈G

ετ
i(g)

= 0,

which is equivalent toε0 +
∑
g∈G

ετ
i(g)

 c j − ε0ci −
∑
g∈G

ετ
i(g)cg = 0. (8)

Next let m be the predecessor of i and consider the equation for row {i,m}. Since Ki =

{i} ∪ S D(i) and Km = G in this case, we see that

ε0ci +
∑

h∈S D(i)

ετ
i(h)c j

ε0 +
∑

h∈S D(i)

ετ
i(h)

−

∑
g∈G

ετ
m(g)cg∑

g∈G
ετ

m(g)
= 0.

Since ετ
m(g) = ετ

i(g)−1 for g ∈ G, it is equivalent to∑
g∈G

ετ
i(g)−1


ε0ci +

∑
h∈S D(i)

ετ
i(h)c j

 −
ε0 +

∑
h∈S D(i)

ετ
i(h)


∑
g∈G

ετ
i(g)−1cg

 = 0. (9)
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By row operation (ε0 +
∑

h∈S D(i) ε
τi(h)) × (8) − ε × (9), we haveε0 +

∑
h∈S D(i)

ετ
i(h)


(ε0 +

∑
g∈G

ετ
i(g))c j − ε0ci

 −
∑
g∈G

ετ
i(g)


ε0ci +

∑
h∈S D(i)

ετ
i(h)c j


=

ε0 +
∑

h∈S D(i)

ετ
i(h) +

∑
g∈G

ετ
i(g)

 c j −
ε0 +

∑
h∈S D(i)

ετ
i(h) +

∑
g∈G

ετ
i(g)

 ci = 0

and hence ci = c j.

Proof (Proof of Theorem 3) By applying Lemma 1 and Lemma 2 alternately from the leaves
to the root of the arborescence, we see that ci = c j for all i, j ∈ N. Since the system Ac = 0
includes the equation

∑
i∈N ci = 0 corresponding to Axiom 1, we have c = 0 and conclude

the proof.

The whole set of ε-parameterized solutions incorporates the Myerson value and the aver-
age tree solution by Corollary 1. The Myerson value is the centroid of the marginal vectors
in the restricted games, and the average tree solution is the centroid of the tree solutions.
However we do not know whether the ε-parameterized solution is the centroid or the like
of any known solution vectors, and we cannot provide a closed form of the ε-parameterized
solution.

5 Example

We will give an example of graph games and compare the three different solutions. The
graph consists of N = {1, 2, 3} and L = {{1, 2}, {2, 3}} as shown in Fig. 1. The worths of
connected sets are given by

v({1}) = v({2}) = v({3}) = 0, v({1, 2}) = 0.8, v({2, 3}) = 0.9 and v({1, 2, 3}) = 1.

Note that this example satisfies super-additivity. The core of this game is given by

x1, x2, x3 ≥ 0, x1 + x2 ≥ 0.8, x2 + x3 ≥ 0.9 and x1 + x2 + x3 = 1.

The tree solutions xr for r = 1, 2 and 3, the Myerson value µ and the average tree solution
AT are displayed in Table 1. We also plot these solutions on the triangular graph in Fig. 2.

� � �

Fig. 1 Graph (N, L) = ({1, 2, 3}, {{1, 2}, {2, 3}}).

Table 1 Tree solutions, Myerson value and average tree solution.

tree solution
x1 x2 x3 µ AT

node 1 0.100 0.000 0.000 0.167 0.033
node 2 0.900 1.000 0.800 0.617 0.900
node 3 0.000 0.000 0.200 0.217 0.067
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Fig. 2 Core and existing solutions. Fig. 3 ε-parameterized solutions.

Table 2 ε-parameterized solutions.

ε 0.0 0.3 0.515 0.6 0.842 1.0 1.239 1.4
node 1 0.167 0.129 0.100 0.088 0.055 0.033 0.000 -0.022
node 2 0.617 0.702 0.763 0.787 0.855 0.900 0.968 1.013
node 3 0.217 0.169 0.137 0.125 0.009 0.067 0.032 0.009

We observe that the tree solutions are extreme points of the core and the average tree solution
is in it, while the Myerson value is out of it.

Fig. 3 and Table 2 show the ε-parameterized solutions for several values of ε. They form
a continuous path connecting the Myerson value and the average tree solution, each of which
corresponds to ε = 0 and ε = 1, respectively. In fact the ε-parameterized solution is obtained
explicitly as

x1 =
−17ε2 + 13ε + 10

60(1 + 2ε)
, x2 =

17ε + 37
60

, x3 =
−17ε2 + 16ε + 13

60(1 + 2ε)
.

The payoff vector is in the core as long as ε remains in the interval between (1+
√

237)/34 ≈
0.515 and (13+

√
849)/34 ≈ 1.239. The average tree solution is in the convex hull of the tree

solutions by its nature. In contrast the ε-parameterized solutions can be out of this convex
hull but lie in the left half of the core when (1+

√
237)/34 ≤ ε ≤ (3+8

√
2)/17 ≈ 0.842. Note

that ε-parameterized solutions do not lie on the straight line connecting the Myerson value
and the average tree solution. The solution for ε = 0.5 is not the midpoint of the Myerson
value and the average tree solution, either.
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