1	Title
2	Increase in silicon concentrations and release from suspended solids and bottom
3	sediments in Lake Kasumigaura, Japan
4	
5	Authors
6	Hiroyuki Arai • Takehiko Fukushima • Kazuhiro Komatsu
7	
8	Addresses
9	Hiroyuki Arai (🗷) • Takehiko Fukushima
10	Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba,
11	Ibaraki 305-8572, Japan
12	e-mail address: arai30312@ies.life.tsukuba.ac.jp
13	Tel.: +81 298 53 6883
14	fax: +81 298 53 7189
15	
16	Kazuhiro Komatsu
17	National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
18	

1 Abstract

Increasing trends of dissolved Si measured by a colorimetric method and ICP (DSicol $\mathbf{2}$ and DSi_{ICP}, respectively) and total Si concentrations were detected at the center of Lake 3 Kasumigaura during 1980–2006 (mean DSicol concentration in the 1980s and 2000s was 4 1.3 mg Γ^1 and 4.0 mg Γ^1 , respectively). The observation of such trends is rare; therefore, $\mathbf{5}$ the elucidation of the causes could be useful to understanding silicon dynamics in inland 6 waters. Based on statistical analysis, we found that the increases in DSi_{col} and lithogenic 7 Si accounted for most of the total Si increase (44% and 45%, respectively) and that 8 biogenic Si, consisting of diatom frustules, also increased with them. Increases in DSi_{ICP} 9 concentration were not detected near the mouth of the inflowing rivers, suggesting that 10 11 the increase was caused by in-lake processes. Because the increase in suspended solids (SS) caused by sediment resuspension had been observed in the lake for the same period, 1213we assumed that the Si release from SS containing diatom frustules contributed to the increase. The results of the laboratory experiments in which surface sediments were 14stirred in lake waters showed that the change in DSi_{col} concentration depended mainly 15on SS concentration, water temperature, and the elapsed time of diatom frustules 1617dissolution. An estimation of the released amount of Si from SS using the sediment resuspension model was $(1.0-2.7) \times 10^9$ g y⁻¹ in the 2000s, which was about 30–90% of 18the increase in the DSi_{col} outflow of $3.0\times10^9~g~y^{-1}$ from the 1980s to the 2000s. We 19also determined the Si release rates from bottom sediments through laboratory 20experiments. The Si amount released from bottom sediments in the lake in the 2000s 21was estimated to be 4.3×10^9 g y⁻¹, which was about 2–4 times higher than the 22estimated Si amount released from SS. These findings suggest that the sediment 2324resuspension might be the cause of the latest DSi increase.

1 Keywords

2 Silicon • Suspended solids • Sediment • Dissolution • Lake Kasumigaura

1 Introduction

 $\mathbf{2}$

Silicon (Si) is one of the most abundant elements in the biosphere, and essential 3 4 nutrients for siliceous phytoplankton, i.e. diatoms, playing an important role in the global primary production (Schelske 1999; Conley et al. 2000; Kristiansen and Hoell $\mathbf{5}$ 2002; Conley et al. 2006; Harashima et al. 2006). Some plants like paddy also need Si 6 (Derry et al. 2005). Therefore, changes in Si concentration in surface waters could affect 7 8 the phytoplankton dominance, food web and biogeochemical cycling (Humborg et al. 1997; Krivtsov et al. 2000; Harashima et al. 2007; Li et al. 2007; Koszelnik and 9 10 Tomaszek 2008).

The dissolved Si (DSi) load from land to coastal areas may be declining globally 11 12(Humborg et al. 1997; Duan et al. 2007; Li et al. 2007). Humborg et al. (1997) reported that decreases in the DSi load were observed in the Danube River-Black Sea system 13and impacts of dam constructions on Si depletion were indicated. Teodoru et al. (2006) 1415suggested that the large number of impoundments on the Danube and its tributaries 16 changed Si transport to the coastal Black Sea. In Japan, a possible decrease in DSi 17transport was also suggested. The Foundation of River & Watershed Environment 18 Management (2007) reported that the mean DSi concentration of 18 Japanese rivers in the 2000s was lower than that in the 1940s and 1950s, opposite to the trends of nitrogen 19and phosphorus. However, the scarcity of long-term Si monitoring data makes it 20difficult to elucidate the cause. Although few studies of long-term trends of Si 2122concentrations in inland waters around the world exist, Vesely et al. (2005) showed the 23increasing trends of DSi concentration in five glacial lakes in the Bohemian Forest over 24the last two decades. They concluded that the higher mobility of Si from the soil to surface waters resulted from a decrease in dissolved Al and faster dissolution of 25

biogenic Si (BSi). Several studies indicated that, as a consequence of diatom
sedimentation, Si was released back to the water column (Rippey 1983; Schelske et al.
1988; Szczepocka and Szulc 2006).

4 Annual DSi and BSi budgets for lakes were assessed and the importance of Si cycling $\mathbf{5}$ within a lake was indicated in several studies. Bailey-Watts (1976b) assessed the Si budget in the shallow, eutrophic Loch Leven based on the monitoring of DSi and BSi in 6 the water column and on laboratory experiments determining diatom cell sinking rates 7 8 and Si release rates from diatom frustules and sediments. The authors suggested that the 9 incorporation of diatom frustules into the sediments and the release of DSi from the 10 sediments were more important than the inflows and outflow in the lake. Cornwell and 11 Banahan (1992) calculated the Si budget in shallow, ultraoligotrophic Lake Toolik based 12on the monitoring of DSi concentrations in streams and the water column and on estimated Si burial and release rates; these estimations were obtained through analyzing 13pore water and BSi concentrations in ²¹⁰Pb-dated sediment, respectively. Although the 14internal cycling of DSi was about half of the flux through inflows, the study indicated 1516 that internal cycling can supply a significant part of the biologically utilized amount in 17the lake. Also, the budgets in other shallow lakes reported in previous studies suggested 18 that Si cycling within lakes played an important role in determining the available Si for diatoms (e.g., Gibson et al. 2000; Miretzky and Cirelli 2004). On the other hand, 19Hoffman et al. (2002) found that the main source and export of DSi in the North basin 20of Lake Lugano, permanently stratified below a 100-m depth, were river input and final 2122burial of diatom frustules in the bottom sediment, respectively, indicating that the North 23basin of Lake Lugano acted as an important permanent sink for Si. While a number of 24studies have assessed the annual Si budgets in shallow lakes, detailed studies analyzing 25the long-term Si dynamics are scarce.

In Lake Kasumigaura, various forms of Si have been monitored for the last 3 decades 1 $\mathbf{2}$ and several trends were detected. Understanding the dynamics of Si in a shallow eutrophic lake is extremely valuable. Considerable increases in turbidity and inorganic 3 content in suspended solids (SS), due mainly to the resuspension of bottom sediments, 4 were also observed in the lake from the mid 1990s to mid 2000s, which could cause the $\mathbf{5}$ decline in primary production and the increase in phosphorus concentration (Fukushima 6 et al. 2005; Seki et al. 2006). Si release rates from SS and its impact on long-term 7 8 change in DSi concentrations were not assessed in previous studies. The objectives of 9 the present paper are fourfold: (1) to detect the long-term trend of Si concentrations in 10 Lake Kasumigaura, (2) to discuss the factors influencing this trend, (3) to estimate the 11 Si release rates from SS and bottom sediments by laboratory experiments, and (4) to 12assess the contribution of these Si releases to the trend.

13

14 Study area

15

Lake Kasumigaura is the second largest shallow lake in Japan, located in the Ibaraki 16 Prefecture, approximately 50 km northeast of Tokyo. It has a surface area of 171.5 km². 1718 a mean depth of 4 m, and a maximum depth of 7.3 m. Mean water retention time is about 200 days. The lake is so shallow that vertical stratification is easily destroyed by a 19moderately strong wind. The lake has two large bays, Takahama-iri and Tsuchiura-iri. 20The Koise and Sakura rivers are the main rivers influent into Takahama-iri and 21Tsuchiura-iri, respectively. Water tends to flow through the lake from the northwest, 22where Takahama-iri and Tsuchiura-iri are located, to the southeast, to the effluent 23Hitachitone River. Its catchment area of 1426 km² consists of paddy fields, plowed 24fields for other row crops, orchards (51%), forest (30%), and urban, industrial, and 25

residential uses (12%). Major surface geology in the catchment is loam. The climate of the area is similar to other regions on the Pacific side of Japan with the annual average air temperature of about 14°C and an annual precipitation of 1250 mm. The lake was turned from a brackish into a freshwater lake 5 years after a floodgate to the Pacific Ocean was implemented in 1963.

6 The lake is well known for eutrophication. Mean (min.-max.) chlorophyll *a*, total 7 nitrogen (TN), and total phosphorus (TP) concentrations at the center of the lake during 8 April 1980 – March 2007 were 53 (3–140) μ g Γ^1 , 1.03 (0.52–1.99) mg Γ^1 , and 0.091 9 (0.021–0.203) mg Γ^1 , respectively. Nitrogen and phosphorus load from the basin to the 10 lake increased during the high economic growth period.

11

12 Materials and methods

13

14 Silicon concentrations and other water qualities in Lake Kasumigaura

15

16 The database of water quality used for this study was based on the investigation by two 17institutes during April 1980 - March 2007. The National Institute for Environmental 18 Studies (NIES) collected surface waters once a month at 10 sites (A1–A4, B1–B3, and C1-C3; Fig. 1). C1 is located at the center of the lake. Water filtered through 0.45-µm 19glass-fiber was analyzed by inductively-coupled plasma (ICP) to determine the 20concentrations of DSi (expressed as DSi_{ICP} in this article) and other elements (B, Ca, K, 21Mg, Na, and Sr). Diatom, SS, and chlorophyll *a* concentrations taken by a 2223column-sampler (upper 2 m) and data on basic water quality (e.g., water temperature, $\mathbf{24}$ pH, DO, transparency observed in the field) were also used for statistical analysis. Diatoms were counted on an inverted microscope and quantified as biovolume by 25

1 multiplying counted cell number by mean cell volume.

The Kasumigaura River Office (KRO) collected surface waters once a month at 3 $\mathbf{2}$ sites. They are relatively close to A2, B2, and C1; therefore, we call them by the same 3 4 names as the NIES stations for the sake of simplicity. The concentrations of DSi were measured by silicomolybdate yellow colorimetric method JIS K 0101 after filtering the $\mathbf{5}$ sampled water through a 0.45-µm membrane filter. In this article, "DSi_{col}" indicates the 6 Si determined by the colorimetric method. Total Si (TSi) concentrations were 7 8 determined by the same method as DSi_{col} after alkaline digestion of solids in water as 9 specified by method JIS K 0101.

10 Monthly precipitation data at Tsukuba meteorological weather station were obtained 11 from the web site (http://www.jma.go.jp/jma/) and used for analysis.

Particulate Si (PSi) concentrations were estimated through the subtraction of DSi_{col} from TSi at C1. PSi consists of biogenic and lithogenic one. In Lake Kasumigaura, BSi concentrations could be estimated from diatom concentrations and mean Si density of diatom frustules (1.1×10^{-10} mg µm⁻³), determined by averaging the values found in Bailey-Watts (1976a) and Sicko-Goad et al. (1984). Lithogenic Si (LSi) concentrations were estimated through the subtraction of BSi from PSi.

18

19 Silicon concentrations of the rivers inflowing Lake Kasumigaura

20

Si concentrations of the main rivers inflowing Lake Kasumigaura were used in this study. In 1994, DSi_{ICP} concentrations of 10 rivers (Sakura, Koise, Sonobe, Ono, Hanamuro, Seimei, Sannou, Amano, Shin, and Takahashi Rivers) were seasonally measured by NIES (N = 4). In 2007, DSi_{col} concentrations of 5 rivers (Sakura, Ono, Seimei, Tomoe, and Hokota Rivers) were measured almost monthly by KRO (N = 11).

Only 3 rivers (Sakura, Ono, and Seimei Rivers) were investigated by both institutions. 1 $\mathbf{2}$ In addition, we measured both DSi_{ICP} and DSi_{col} concentrations of 12 rivers (Sakura, Koise, Sonobe, Ono, Hanamuro, Seimei, Kajinashi, Ichinose, Hishigi, Shin, Tomoe, and 3 4 Hokota Rivers) by ICP and colorimetric method, respectively, in December 2009. There was no rainfall for 3 days before almost all samplings. $\mathbf{5}$ 6 7 Silicon release experiments in the laboratory 8 9 Sampling 10 We sampled the surface sediments with an Ekman-Birge type bottom sampler at the 11 12center of the lake (C1) in August 2008 and June and October 2009. Sediments at A3 and B3 were also sampled in August 2008. Lake waters were collected at A3, B3, C1, and 13C3 in August 2008, at B0 (located at Tsuchiura-Port) in November 2008, and at C1 in 14June and October 2009. Lake waters were filtered through 0.45-µm membrane filters. 15Filtrates and sediments were stored at 1°C under dark conditions before the incubation 1617experiments. BSi contents of sediments were determined by colorimetric method after

18 wet alkaline digestion according to DeMaster (1981).

19

20 Experiment design

21

Si release rates from SS were assessed in the laboratory (Table 1). The sediments were mixed with lake water or distilled water at various SS concentrations (about 50–500 mg Γ^{-1}) in a polycarbonate bottle (500 ml or 1 l) and stirred continuously by magnetic stirrer under dark conditions at room temperature (25°C). Two additional water temperature conditions, 1 and 15°C, were used, for which the samples were not stirred continuously but mixed once a day by hand. Aliquots of 3–10 ml were taken from the bottles at the beginning of the experiment, every day or every second day in the first week, and then every other week. pH, EC, and DO were measured to be 8.0–8.3, 290–330 μ S cm⁻¹, and 5–8 mg Γ^{-1} , respectively, for the experiments using lake waters.

Si release rates from bottom sediments were also assessed in the laboratory (Table 1). 6 Distilled or lake water was added to the sediments gradually in polyethylene bottles 7 8 under dark conditions. In the series of experiments on B1 and B2, three sediment-water volume ratios were used at 25°C. In the series of experiments on B3, various sediment 9 10 thicknesses and three water temperature conditions (1, 15, and 25°C) were used. Aliquots of 3–10 ml were taken from the bottles at the beginning of the experiment, 11 12every 2–7 days in the first month, and several times later. Before sampling, the water was stirred softly. In the experiments B3-2, -5, and -6, almost all of the water was 13siphoned, and the same volumes of new distilled water were replaced at Days 90 and 14104. pH, EC, and DO were measured to be 6.7–7.8, 290–410 μ S cm⁻¹, and 1–8 mg Γ^{-1} , 15respectively, for the experiments using lake water. 16

17

19

All aliquots were filtered through 0.45-µm membrane filters and kept at 1°C, under dark
 conditions. DSi concentrations were determined by silicomolybdate yellow or blue
 colorimetric method.

For checking the budget in the system, aliquots of 30 ml were taken at the start and end of experiments S4-3 and S5-4, respectively. Aliquots of 20 ml were filtered through 0.45-μm membrane filters for analyzing BSi by the method according to DeMaster

¹⁸ Analysis

(1981). Aliquots of 10 ml were used for analyzing TSi by silicomolybdate yellow
 colorimetric method after alkaline digestion according to JIS K 0101.

3

4 **Results**

 $\mathbf{5}$

6 Long-term trends of silicon concentrations in Lake Kasumigaura

7

Mean (min.-max.) of DSi_{col}, DSi_{ICP}, and TSi concentration were 2.4 (0.0-9.3), 3.1 8 (0.0-10.3), and 4.7 (0.1-22.2) mg l⁻¹, respectively, at C1 during April 1980 – March 9 10 2007. Although we cannot make a fair comparison because of the difference in the sampling date, about 80% of DSi_{ICP} concentrations were larger than DSi_{col} 11 12concentrations at C1, which might be caused by the difference in the method for analysis. The annual average DSi_{col} and TSi concentrations significantly increased (p < p130.001), along with DSi_{ICP} concentrations (p < 0.01), at C1 during this period (Table 2; 1415Fig. 2). The annual maximum of each Si concentration and the minimum of TSi also significantly increased (p < 0.001), except in 2006, when declines were observed. From 1617the 1980s to 2000s, the averages of DSi_{col}, DSi_{ICP}, and TSi concentrations at C1 changed from 1.3, 2.2, and 2.2 to 4.0, 4.8, and 8.4 mg l^{-1} , respectively, which represents 18 210, 120, and 290% increases, respectively. On the other hand, ratios of change for the 19other dissolved elements (B, Ca, K, Mg, Na, and Sr) were within ± 15% (data not 20shown). 21

Similar Si changes were also observed at A2 and B2 (Table 2). With the exception of DSi_{ICP} at A2, increasing trends of DSi_{col}, DSi_{ICP}, and TSi concentrations were detected; however, these increases (37–180%) were lower than those at C1. Increasing trends of DSi_{ICP} concentrations were seen around the center of the lake, such as at A4 and B3 1 (Table 2). In contrast, DSi_{ICP} concentrations decreased at A1, near the Koise River (p < 0.05), and a clear trend was not detected at B1, near the Sakura River. The temporal and 3 spatial variations of DSi_{ICP} concentrations in Fig. 3 represent the Si loads from 4 inflowing rivers and progressive decreases in Si as the flows approach the center of the 5 lake. The concentrations at C1 were transiently higher than those at the stations near the 6 inflowing rivers (A1 and B1) in every summer during the period of 2002–2005.

Changes in the annual averages of DSi_{col} , BSi, and LSi concentrations at C1 are shown in Fig. 4. Increasing trends of DSi_{col} , BSi, and LSi concentrations were detected (p < 0.001). The increases in DSi_{col} , BSi, and LSi accounted for 44, 11, and 45%, respectively, of the TSi increase of 6.2 mg l⁻¹ from the 1980s to 2000s.

11

12 Silicon release rates from suspended solids

13

The BSi contents of sediments sampled at A3, B3, and C1 in August 2008 and at C1 in 14June and October 2009 were 23, 29, 38, 40, and 43 mg g^{-1} , respectively. Si release rates 1516 from the sediments sampled at A3 and B3 were within $\pm 20\%$ of the rate at C1 (Table 1, 17S1). C1 is representative of the center area of the lake; therefore, we applied the rates 18 obtained at C1 to the whole lake. DSi_{col} concentrations were approximately proportional to SS concentrations at the same condition in the experiment S2 and S3 ($r^2 = 0.90-1.00$, 19Fig. 5). This result means that Si release rates from SS were independent of SS 20concentrations in this experiment. Si release rates in lake water were higher than those 2122in distilled water (Fig. 5). Loucaides et al. (2008) suggested that such an enhancement 23of the Si release rate was due to the catalytic effect of seawater cations, which may 24cause the difference in the rates in this study. In addition, Si release rates strongly depended on water temperature (Table 1, S4). 25

Changes in DSi_{col} concentrations from Day 0 for various combinations of sediment 1 $\mathbf{2}$ and lake water are shown in Fig. 6. Concentration changes could be largely divided into two parts, until and after Day 1. Until Day 1, Si release rates were quite different among 3 used lake waters. DSicol concentrations increased in S3 using C1 lake water in June 4 2009 (1.10 \pm 0.16 mg g⁻¹ day⁻¹), remained almost constant in S5-4 using C1 lake water $\mathbf{5}$ in October 2009 ($-0.09 \text{ mg g}^{-1} \text{ dav}^{-1}$), and decreased in S5-1 using B0 lake water (-0.366 mg g^{-1} day⁻¹). On the other hand, after Day 1, Si release rates were not so different 7 among the waters, but gradually decreased with time. Si release rates of S3 during Days 8 0-1, 1-7, and 7-28 were 1.10 \pm 0.16, 0.29 \pm 0.04, and 0.24 \pm 0.03 mg g⁻¹ day⁻¹, 9 respectively. Loucaides et al. (2008) determined the Si release rates from fresh diatom 10 11 frustules and two diatomaceous lake sediments in freshwater at 25°C under stirred, flow-through conditions, which were 0.6, 0.9, and 1.6 mg $g^{-1} day^{-1}$, respectively. They 12used BSi-rich materials; therefore, our results were lower than those values but of the 1314same order.

15TSi concentrations of S4-3 and S5-4 were not so different between the start and end of the experiment ($\pm 10\%$, within the measurement error); therefore, the closed system 16was confirmed. The sum of DSicol and BSi concentrations was nearly the same between 17them (\pm 8%; for example, DSi_{col} and BSi concentrations in the experiment S5-4 were 18 4.3 and 10.2 mg l^{-1} at Day 0 and 5.3 and 8.5 mg l^{-1} at Day 28, respectively), suggesting 19that the main source of DSi was BSi, mostly consisting of diatom frustules. In addition, 20Si release rates from LSi are typically five orders of magnitude slower than those from 2122BSi (Hurd 1983), and as such, we expected a negligible influence of LSi on Si release. 23The estimated degradation ratios of BSi of S3 at Days 1, 7, and 28 were 2.7 ± 0.4 , $7.1 \pm$ 240.5, and 20.0 \pm 2.0%, respectively. The ratios of S5-1 at Day 32 and S5-4 at Day 28 were 7.3% and 6.5%, respectively, and they were lower than those of S3. The variability 25

may be affected by diatom frustules. Bailey-Watts (1976b) determined the degradation
ratio of BSi using dead diatom frustules at 20°C under dark conditions, which were 17%
after 38 days and 19% after 50 days, and our values at Day 28 were not far from those.

4

5 Silicon release rates from bottom sediments

6

Si release rates from bottom sediments were not significantly different between distilled 7 water and lake water (initial concentration was 0.1 mg-Si Γ^{1}), indicating that the 8 catalytic effect of cation was saturated by release from sediments in this experiment 9 10 (Table 1, B1 and B2). The release rates were also independent of sediment thickness in the range of this experiment (Table 1, B3). On the other hand, they largely depended on 11 12water volume (B1 and B2) and temperature (B3). The rates during Days 0-8 at 1, 15, and 25°C were 0.020 \pm 0.006, 0.051 \pm 0.001, and 0.084 \pm 0.002 g m⁻² day⁻¹, 13respectively. Also, they gradually decreased with time (Fig. 7a). In series B3, Si release 14rates at 25°C during Days 0–8, 8–15, and 15–25 were 0.084 ± 0.002 , 0.039 ± 0.002 , and 15 0.023 ± 0.001 g m⁻² day⁻¹, respectively. DSi_{col} concentrations gradually reached 16 17constant values, depending on water temperature. After replacing the old water with 18 distilled water in the experiments of B3-2, -5, and -6, Si release rates were much enhanced (Fig. 7b). This result suggests that the decrease in the rates with time was not 19caused by a change in sediment qualities, such as aging of diatom frustules, but caused 20by the change in overlying water qualities, such as DSi concentration. The variance of 2122the rates among the three water volumes in the experiments of B1 and B2 also supports this consideration because the rates were independent of sediment thickness. 2324Bailey-Watts (1976b) and Rippey (1983) measured Si release rates in laboratory cores sampled at shallow eutrophic lakes $(0.02-0.10 \text{ and } 0.05-0.39 \text{ g m}^{-2} \text{ day}^{-1}$, respectively), 25

- 1 and our results in the first week were within those values.
- $\mathbf{2}$

3 Discussion

- 4
- 5 Relationship between silicon concentrations and other water quality items
- 6

DSi_{col} concentration was positively correlated with DSi_{ICP} concentration (Table 3). DSi_{col}, DSi_{ICP}, and BSi concentrations were also related to LSi concentration. In addition, each Si concentration was significantly related to SS, inorganic content of SS, and transparency. These correlations indicate that the Si increases were related to sediment resuspension. In fact, the increase in LSi appears to be directly caused by it. In contrast, DSi, BSi, and LSi were insignificantly correlated with chlorophyll *a*, water temperature, DO, and precipitation.

14

15 Potential causes of the silicon increase around the center of Lake Kasumigaura

16

Contrary to the detected trends around the center of the lake, DSi_{ICP} concentrations near 1718 the inflowing rivers did not increase, suggesting that the loads from the inflowing rivers had not increased. Si loads through rivers were compared between different two years as 19follows. In 1994, the average (min.-max.) of annual mean DSi_{ICP} concentration of the 2010 NIES-monitored inflowing rivers was 12.7 (9.9–15.6) mg l^{-1} , with that of the 3 21"overlapping" rivers (i.e., the Sakura, Ono, and Seimei Rivers) being 12.2 (10.6–13.3) 22mg Γ^1 . In 2007, the average (min.-max.) of annual mean DSi_{col} concentrations of the 5 23KRO-monitored rivers was 9.4 (7.8–10.9) mg l^{-1} , with the 3 "overlapping" rivers being 248.8 (7.8–9.8) mg l^{-1} . In addition, our investigation showed that the ratio of DSi_{col} to 25

DSi_{ICP} concentration was 0.98 ($r^2 = 1.00$). These results suggest that DSi concentrations of inflowing rivers did not increase but rather decreased. The discharge of inflowing rivers also did not increase; therefore, Si loads through the rivers could not have caused the increase in DSi concentrations in the lake.

5 Changes in the rate of Si uptake by diatoms might cause the observed changes in Si 6 concentrations. However, no decrease in volume concentrations of diatoms at C1 was 7 detected. Bailey-Watts (1976a) and Sicko-Goad et al. (1984) suggested that the Si 8 contents in freshwater diatom cells are almost in the same order among species. These 9 considerations suggest that the diatom production could not have caused the increasing 10 trend.

11 In other studies, the Si release rates from lake sediments were enhanced by increases 12in water temperature and pH (Rippey 1983; Loucaides et al. 2008). In Lake Kasumigaura, however, the annual average water temperature and pH have not 13significantly increased during the last 3 decades. On the other hand, the turbidity 1415increase due to sediment resuspension observed in the lake from the mid 1990s caused 16 the increase in LSi concentration, and might provide the opportunity for increases in 17DSi concentration through regeneration of Si. DSi of sediment pore water might also be 18 released with resuspension. However, surface sediments less than 2 cm depth were affected by sediment resuspension (Seki et al. 2006), and DSi concentrations of those 19pore water were considered to be not so different from those in the water column; 20therefore, the Si release from pore water might be neglected. Fukushima et al. (2005) 2122roughly discussed the causes for the increased resuspension like the changes in 23meteorological condition, physical properties of sediments, benthic ecosystem, aquatic 24plants, and geomorphologic conditions. The plausible causes were suggested such as the changes in the organic content and water content of the sediments perhaps resulted from 25

the recovery of the lake from hyper-eutrophicated condition and/or the transition from blackish water to freshwater; however, the authors indicated that the further investigation was needed.

4

5 Factors influencing the silicon release rates

6

Our experimental conditions were aerobic, as was the field condition; therefore, no 7 8 anaerobic biodegradation of diatom frustules should have occurred. Si uptake by 9 diatoms (that might be alive in the sediments) can be neglected under dark conditions. 10 Therefore, inorganic processes are the focus of the following discussion. Experimental 11 results revealed that Si release rates from SS depended mainly on water temperature and used lake waters whose DSi_{col} concentrations had a large variability (0.1–11.4 mg l⁻¹). 12The latter was observed only at the beginning of the experiment, but the rates were 13nearly constant among lake waters after Day 1. Notably, the rate during Day 0–1 was 14negative in B0 lake water, whose DSi_{col} concentration was the highest. These results 15suggested that the DSi_{col} concentrations were not only affected by dissolution of diatom 1617frustules, but also by the transport of adsorbed Si on SS. The dissolution of LSi can be neglected (Hurd 1983). From these considerations, the change in DSi_{col} concentration in 18 the Si release experiment from SS can be expressed as follows: 19

$$20 \qquad \frac{\mathrm{d}C}{\mathrm{d}t} = -\frac{\mathrm{d}\alpha}{\mathrm{d}t}SS - \frac{\mathrm{d}B}{\mathrm{d}t} \qquad (1)$$

where *C* is the DSi_{col} concentration (mg Γ^{-1}), *t* is the time (day), α is the Si adsorbed on the surface of SS (mg g⁻¹), *SS* is the suspended solids concentration (g Γ^{-1}), and *B* is the BSi concentration (mg Γ^{-1}). α can be described as following equation:

$$24 \qquad \alpha = \alpha' X \qquad (2)$$

1 where α ' is the Si adsorbed on the carrier (mg mg⁻¹) and X is the carrier content of SS 2 (mg g⁻¹). X was assumed to be constant in this experiment. Therefore, when the Si 3 dissolved in water comes to equilibrium with the Si adsorbed on SS, α depends only on 4 the surrounding DSi_{col} concentration and can be expressed as following formula:

5
$$\alpha = \gamma C$$
 (3)

6 where γ is a constant (1 g⁻¹). Using Eq. 3, the change in *C* can be determined by the 7 following equation:

$$8 \qquad \frac{\mathrm{d}C}{\mathrm{d}t} = -\frac{1}{1+\gamma SS} \frac{\mathrm{d}B}{\mathrm{d}t} \qquad (4)$$

9 In the field, the adsorption equilibrium can be assumed. The constant γ and the change 10 in BSi concentraitons (d*B*/d*t*) are unknown and can be determined as described below.

Experimental results suggested that the Si dissolved in water and adsorbed on the surface of SS might not have been at equilibrium on Day 0, but had reached equilibrium by Day 1 at the latest. Therefore, we can assume that α was independent of *C* on Day 0 and dependent on it on Day 1 ($\alpha_1 = \gamma C_1$). Applying this assumption to Eq. 1, the following equation was obtained:

16
$$\frac{C_1 - C_0}{SS} = -(\alpha_1 - \alpha_0) - \frac{B_1 - B_0}{SS} = \alpha_0 - \frac{B_1 - B_0}{SS} - \gamma C_1$$
 (5)

17 where the subscripts indicate the days since the experiment started. The values of α_0 are 18 specific to the used sediments, and $B_1 - B_0$ is subject to the Si dissolution rate of diatom 19 frustules, which might be independent of *C*. Thus, the left part of Eq. 5 was linearly 20 correlated with C_1 ; as a result, γ was determined through a regression analysis to be 0.12 21 by assuming that the α_0 and $B_1 - B_0$ are not so different among the used sediments (Fig. 22 8).

Figure 9 shows the changes in the Si dissolution rates, $R \pmod{g^{-1} day^{-1}}$, calculated by

1 the following equation derived from Eq. 4:

2
$$R = -\frac{1}{SS}\frac{\mathrm{d}B}{\mathrm{d}t} = \frac{1+\gamma SS}{SS}\frac{\mathrm{d}C}{\mathrm{d}t} \qquad (6)$$

3 The rates decreased exponentially, which suggests that the following reaction rate 4 equations can be applied to the experimental results:

$$5 \qquad B = B_0 \mathrm{e}^{-kt} \qquad (7)$$

$$6 \qquad \frac{\mathrm{d}B}{\mathrm{d}t} = -kB_0\mathrm{e}^{-kt} \qquad (8)$$

where k is the dissolution rate constant (day^{-1}) and the subscript indicates the initial $\overline{7}$ value (t = 0). The rates decreased notably within about a first week, but were almost 8 constant after that (Fig. 9). It suggests the decrease in the BSi amount of comparatively 9 10 fresh diatom frustules which is dissolved more rapidly than old diatom frustules due to alternations of the bulk structure and surface chemistry (Van Cappellen et al. 2002; 11 Gendron-Badou et al. 2003). Now, we assumed that the BSi can be divided into two 1213parts, contained in fresh and old diatom frustules with same temperature dependence of dissolution, and the dissolution rates of old ones were approximately constant on the 14time scale of this experiment. Defining β as the BSi content of SS (= *B/SS*, mg g⁻¹), the 15dissolution rate can be described as following equation: 16

17
$$R = -\frac{\mathrm{d}\beta}{\mathrm{d}t} = k_{\mathrm{f}}\beta_{\mathrm{f}\,0}\mathrm{e}^{-k_{\mathrm{f}}t} + k_{\mathrm{o}}\beta_{\mathrm{o}\,0}\mathrm{e}^{-k_{\mathrm{o}}t} \approx k_{\mathrm{f}}\beta_{\mathrm{f}\,0}\mathrm{e}^{-k_{\mathrm{f}}t} + k_{\mathrm{o}}\beta_{\mathrm{o}\,0} \qquad (9)$$

18 where the subscripts f and o indicate the fresh and old diatom frustules, respectively (β 19 = $\beta_{\rm f} + \beta_{\rm o}$, $k_{\rm f} > k_{\rm o}$). The equation could fit well to the experimental results (Fig. 9). The 20 initial BSi content, β_0 was 40 mg g⁻¹ in the experiment S3 and 43 mg g⁻¹ in the 21 experiment S5-4; therefore, $\beta_{\rm f 0}$, $\beta_{\rm o 0}$, $k_{\rm f}$, and $k_{\rm o}$ were determined to be 1.2, 39, 1.2, and 22 6.2×10^{-3} in the experiment S3 and 0.8, 42, 1.3, and 3.8×10^{-3} in the experiment S5-4, respectively. It suggests that the dissolution rate constants, $k_{\rm f}$, and $k_{\rm o}$, were almost constant for the diatom frustules in the lake. In addition, the experimental period of about 30 days was sufficiently smaller than $1/k_{\rm o}$ of 160–260 days, suggesting that the assumption is reasonable. The mean values of $k_{\rm f}$ and $k_{\rm o}$ (1.3 and 5.0×10^{-3} , respectively) were used to the estimation for the field as described later. The dissolution rates also correlated positively with water temperature (Fig. 10). Finally, the rates and the change in DSi_{col} concentration can be expressed as follows:

8
$$R = \left(k_{\rm f}\beta_{\rm f\,0}{\rm e}^{-k_{\rm f}t} + k_{\rm o}\beta_{\rm o\,0}\right){\rm e}^{-\left(\frac{a}{T}-\frac{a}{T_{\rm a}}\right)}$$
(10)

9
$$\frac{dC}{dt} = \frac{SS}{1 + \gamma SS} R = \frac{SS}{1 + \gamma SS} \left(k_{\rm f} \beta_{\rm f \, 0} e^{-k_{\rm f} t} + k_{\rm o} \beta_{\rm o \, 0} \right) e^{-\left(\frac{a}{T} - \frac{a}{T_{\rm a}}\right)}$$
 (11)

where *T* is the water temperature (K), T_a is a constant (298.15 K), and *a* is a constant (K). The value of *a* was determined from the experiment of S4 to be (4.1–4.4) × 10³ (Fig. 10). We applied the mean value of *a* of 4.2×10^3 to the estimation for the field as described later.

Our results of Si release experiment from bottom sediments fit well to the equation 1415described in Fig. 7 (a). DSi_{col} concentrations reached constant values, which could be 16regarded as the equilibrium concentration, $C_{\rm e}$. $C_{\rm e}$ was correlated with water temperature (11.7, 14.9, and 25.3 mg l^{-1} at 1, 15, and 25°C, respectively), and fit to the equation in 17Fig. 11 ($r^2 = 0.86$). Assuming that the concentration close to the surface of the sediments 18 was equal to $C_{\rm e}$, and that the concentration adequately far from the sediments was equal 1920to the observed concentration (C), Si diffusion can be limited by the concentration difference, that is, the subtraction of C from C_{e} . Figure 12 shows that the rates were 2122linearly correlated with this difference, suggesting that the above assumptions could be applied. Si release rates from bottom sediments, $J (g m^{-2} da y^{-1})$ and the change in DSi_{col} 23

1 concentration can be written as follows:

$$2 \qquad J = K(C_{\rm e} - C) \qquad (12)$$

$$3 \qquad \frac{\mathrm{d}C}{\mathrm{d}t} = \frac{J}{h} \qquad (13)$$

where *K* is the rate constant (m day⁻¹) and *h* is the water depth (m). In this experiment, a temperature dependence of *K* was not clearly seen, but it was determined to be 4.9×10^{-3} ($r^2 = 0.73$, Fig. 12). We applied this equation to the estimation for the field as described later.

8

9 Estimation of silicon release rate in Lake Kasumigaura

10

11 The annual amount of Si released from SS in Lake Kasumigaura in 2004 was estimated by assuming that: (1) the particle size distribution of SS in this experiment is the same 12as that of the entire lake, (2) X is constant, (3) the influence of variance in the 13concentrations of cations in lake water can be neglected, (4) SS concentrations 14contributing to the Si release are subject to sediment resuspension driven by a critical 1516wind, and (5) background SS remaining constantly in the water column (mainly 17consisting of clay minerals) does not affect the Si release. Using Eq. 11, the annual amount of Si released from SS, $Y(g y^{-1})$, can be estimated by following equation: 18

19
$$Y = V \int \frac{dC}{dt} dt = V \int \frac{SS}{1 + \gamma SS} \left(k_{\rm f} \beta_{\rm f \, 0} e^{-k_{\rm f} \tau} + k_{\rm o} \beta_{\rm o \, 0} \right) e^{-\left(\frac{a}{T} - \frac{a}{T_{\rm a}}\right)} dt \qquad (14)$$

where *V* is the water volume of the lake (m³) and τ is the time (day). The hourly concentrations of SS derived from sediment resuspension at C1 in 2004 were simulated in the range of 10–299 mg Γ^1 by a numerical model with wind speed and sediment parameters such as the critical bottom shear stress (Seki et al. 2006). A minimum value

1 of simulated concentrations could be regarded as background SS. The difference between simulated concentrations and background concentrations was applied to SS in $\mathbf{2}$ the Eq. 14. The hourly water temperature at C1 measured by KRO was also used in Eq. 3 4 14. Y was estimated by two methods. The first method assumes that the initial BSi contents of SS were constant to be experimentally determined as the average of $\mathbf{5}$ experiment S3 and S5-4, that is, $\beta_{f,0} = 1.0$ and $\beta_{0,0} = 40$. The time since the latest 6 resuspension event (wind speed of above 12 m s⁻¹) was applied to τ at each t in Eq. 14. 7 This estimated value was regarded as a maximum one. The second method assumes that 8 the dissolution of BSi is only of old diatom frustules, that is, $\beta_{f0} = 0$ and $\beta_{o0} = 40$. This 9 estimated value was regarded as a minimum one. As a result, the minimum and 10 maximum values of Y were 1.0×10^9 and 2.7×10^9 g y⁻¹, respectively. 11

The annual amount of Si released from bottom sediments at C1 in 2004 was also estimated from Eq. 12 and 13. DSi_{col} concentrations at C1 observed monthly by KRO were interpolated to hourly values and used in the estimation. As a result, the annual amount of Si released from bottom sediments was estimated to be 4.3×10^9 g y⁻¹. These results suggest that the Si released from SS accounted for about 20–40% of the Si recycling in the lake in 2004.

18

19 Budgetary analysis

20

Table 4 summarizes the DSi and BSi budgets in Lake Kasumigaura. The DSi load through inflows was estimated using the mean DSi concentration of rivers in 1994 and 2007, which might be overestimated because the dilution effect on the concentration by rainfall was not considered (Muraoka and Hirata 1988; Neal et al. 2005). Inflows of BSi were not observed, but considered to be negligible. The amount of Si released from SS

1 and bottom sediments in 2004 were assumed to be representative of those in the 2000s. The amount of Si released from SS in the 1980s was assumed to be zero because mean $\mathbf{2}$ concentration of SS derived from sediment resuspension in the1980s was estimated to 3 be 5.5 mg Γ^1 by the method of Seki et al. (2006), about half of the background 4 concentration of it in 2004. The DSi input through atmospheric precipitation was also $\mathbf{5}$ 6 estimated using the annual mean precipitation and the DSi concentration of precipitation in Tsukuba, as averaged over 4 years by Hirata and Muraoka (1991). It was 2.2×10^7 g 7 y^{-1} , two orders of magnitude lower than other fluxes; therefore, it could be neglected. 8 Table 4 suggests that the primary source of DSi in the lake is river inflow, but Si 9 recycling plays a significant role. The main export is diatom sedimentation. The 10increases in DSi load over the last 3 decades were estimated to be 3.0×10^9 g y⁻¹, based 11 12on the change in the outflow loads. The Si release from SS could account for about 1330–90% of the increases in DSi load through outflow.

14

15 Conclusions

16

17Significant increases in DSicol, DSiICP, and TSi concentrations were observed at the center of the lake over the last 3 decades. DSi_{ICP} concentrations did not increase near the 18 19mouth of the inflowing rivers, suggesting that the Si increase was caused by in-lake processes. We assumed the contribution of Si release from SS, which had increased in 20the lake lately, to be the cause of this Si increase. Our laboratory experiments, 2122suspending the sediments in filtered lake water, provided the formula of change in DSi 23concentration as a function of SS concentration, water temperature, and the elapsed time 24of dissolution of diatom frustules. The annual amount of Si released from SS in the 2000s accounted for 30-90% of the increase in DSi load through outflow over the last 3 25

decades, as well as 20–40% of the total recycling of Si in the lake. These findings suggest that the sediment resuspension might be the cause of the latest DSi increase. Si budgets in the lake were estimated; however, we have to analyze dated sediment core and estimate the sedimentation rate of BSi in the past and present to determine the Si retention more quantitatively.

 $\mathbf{6}$

7 Acknowledgments

8 The authors wish to thank the National Institute for Environmental Studies and the 9 Kasumigaura River Office for providing valuable data. This work was funded by the 10 Foundation of River & Watershed Environment Management and Grant-In-Aids for 11 Scientific Research No.21241001 to T. Fukushima. The authors also thank two 12 anonymous reviewers for the constructive remarks.

13

14 **References**

15

Bailey-Watts AE (1976a) Planktonic diatoms and some diatom-silica relations in a shallow eutrophic Scottish loch. Freshw Biol 6:69–80

Bailey-Watts AE (1976b) Planktonic diatoms and silica in Loch Leven, Kinross,
Scotland: a one month silica budget. Freshw Biol 6:203–213

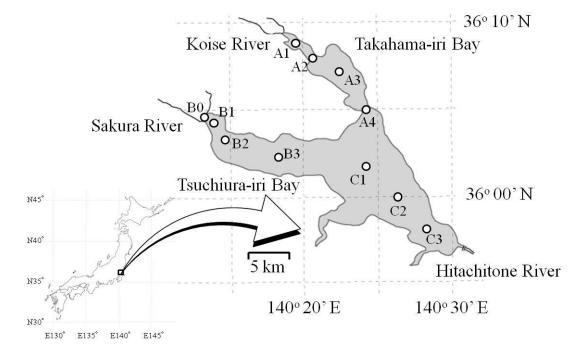
- Conley DJ, Stalnacke P, Pitkanen H, Wilander A (2000) The transport and retention of
 dissolved silicate by rivers in Sweden and Finland. Limnol Oceanogr
 45:1850–1853
- Conley DJ, Sommer M, Meunier JD, Kaczorek D, Saccone L (2006) Silicon in the
 terrestrial biogeosphere. In: Ittekkot V, Unger D, Humborg C, Tac An N (eds) The
 Silicon Cycle: Human Perturbations and Impacts on Aquatic Systems. Island,

Washington DC, pp 13–28

2	Cornwell JC, Banahan S (1992) A silicon budget for an Alaskan arctic lake	э.
3	Hydrobiologia 240:37–44	
4	DeMaster DJ (1981) The supply and accumulation of silica in the marine environmen	t.

- 5 Geochim Cosmochim Acta 45:1715–1732
- 6 Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial
 7 silica cycling and export fluxes to watersheds. Nature 433:728–731
- Buan S, Xu F, Wang LJ (2007) Long-term changes in nutrient concentrations of the
 Changjiang River and principal tributaries. Biogeochemistry 85:215–234
- 10 Foundation of River & Watershed Environment Management (2007) Research of the
- Runoff Mechanism for Silicate and Other Dissolved Inorganic Matters in River (in
 Japanese)
- Fukushima T, Kawamura S, Seki T, Onda Y, Imai A, Matsushige K (2005) Why has
 Lake Kasumigaura become turbid? Verh Internat Verein Limnol 29 (2):732–737
- Gendron-Badou A, Coradin T, Maquet J, Frohlich F, Livage J (2003) Spectroscopic
 characterization of biogenic silica. J Non-Cryst Solids 316:331–337
- Gibson CE, Wang G, Foy RH (2000) Silica and diatom growth in Lough Neagh: the
 importance of internal recycling. Freshw Biol 45:285–293
- Harashima A, Kimoto T, Wakabayashi T, Toshiyasu T (2006) Verification of the silica
 deficiency hypothesis based on biogeochemical trends in the aquatic continuum of
 Lake Biwa Yodo River Seto Inland Sea, Japan. Ambio 35:36–42
- 22 Harashima A, Iseki K, Tarutani K (2007) Possibility of the deterioration of Coastal and
- Shelf Ecosystem due to the Change in the Nutrient Input Ratio (in Japanese with
 English abstract). Umi To Sora 82:61–71
- 25 Hirata T, Muraoka K (1991) Seasonal change of soilwater and streamwater chemistries

1	in the Tsukuba experimental forest basin (in Japanese with English abstract). Mizu
2	Kougaku Ronbunshuu 35:105–110
3	Hoffman A, Roussy D, Filella M (2002) Dissolved silica budget in the North basin of
4	Lake Lugano. Chem Geol 182:35–55
5	Humborg C, Ittekkot V, Cociasu A, Bodungen B (1997) Effect of Danube river dam on
6	Black sea biogeochemistry and ecosystem structure. Nature 386:385-388
7	Hurd DC (1983) Physical and chemical properties of siliceous skeletons. In: Aston SR
8	(eds) Silicon Geochemistry and Biogeochemistry. Academic, London, pp 187-244
9	Koszelnik P, Tomaszek JA (2008) Dissolved silica retention and its impact on
10	eutrophication in a complex of mountain reservoirs. Water Air Soil Pollut
11	189:189–198
12	Kristiansen S, Hoell EE (2002) The importance of silicon for marine production.
13	Hydrobiologia 484:21–31
14	Krivtsov V, Bellinger E, Sigee D, Corliss J (2000) Interrelations between Si and P
15	biogeochemical cycles - a new approach to the solution of the eutrophication
16	problem. Hydrol Process 14:283–295
17	Li M, Xu K, Watanabe M, Chen Z (2007) Long-term variations in dissolved silicate,
18	nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and
19	impacts on estuarine ecosystem. Estuar Coast Shelf Sci 71:3-12
20	Loucaides S, Van Cappellen P, Behrends T (2008) Dissolution of biogenic silica from
21	land to ocean: Role of salinity and pH. Limnol Oceanogr 53:1614-1621
22	Miretzky P, Cirelli AF (2004) Silica dynamics in a pamean lake (Lake Chascomus,
23	Argentina). Chem Geol 203:109–122
24	Muraoka K, Hirata T (1988) Streamwater chemistry during rainfall events in a forested
25	basin. J Hydrol 102:235–253


1	Neal C, Neal M, Reynolds B, Maberly SC, May L, Ferrier RC, Smith J, Parker JE
2	(2005) Silicon concentrations in UK surface waters. J Hydrol 304:75-93
3	Rippey B (1983) A laboratory study of the silicon release process from a lake sediment
4	(Lough Neagh, Northern Ireand). Arch Hydrobiology 96:417-433
5	Schelske CL (1999) Diatoms as mediators of biogeochemical silica depletion in the
6	Laurentian Great Lakes. In: Stoermer EF, Smol JP (eds) The diatoms: Applications
7	for the environmental and earth science. Cambridge University, Cambridge, pp
8	73–84
9	Schelske CL, Robbins JA, Gardner WS, Conley DJ, Bourbonnier RA (1988) Sediment
10	record of biogeochemical responses to anthropogenic perturbations of nutrient
11	cycles in Lake Ontario. Can J Fish Aquat Sci 45:1291–1303
12	Seki T, Fukushima T, Imai A, Matsushige K (2006) Turbidity increase and sediment
13	resuspension in Lake Kasumigaura (in Japanese with English abstract). Doboku
14	Gakkai Ronbunshuu G 62:122–134
15	Sicko-Goad L, Schelske CL, Stoermer EF (1984) Estimation of intracellular carbon and
16	silica content of diatoms from natural assemblages using morphometric techniques.
17	Limnol Oceanogr 29:1170–1178
18	Szczepocka E, Szulc B (2006) Benthic diatoms in the central section of the Pilica River
19	and Sulejow Reservoir. Oceanol Hydrobiol Stud 35:171-178
20	Teodoru C, Dimopoulos A, Wehrli B (2006) Biogenic silica accumulation in the
21	sediments of Iron Gate I Reservoir on the Danube River. Aquat Sci 68:469-481
22	Van Cappellen P, Dixit S, Van Beusekom J (2002) Biogenic silica dissolution in the
23	oceans: Reconciling experimental and field-based dissolution rates. Glob
24	Biogeochem Cycles 16:1075
25	Vesely J, Majer V, Kopacek J, Safanda J, Norton SA (2005) Increasing silicon

1 concentrations in Bohemian Forest lakes. Hydrol Earth Syst Sci 9:699–706

 $\mathbf{2}$

1 Figures and Tables

 $\mathbf{2}$

3

4 **Fig. 1** Sampling points in Lake Kasumigaura

 $\mathbf{5}$

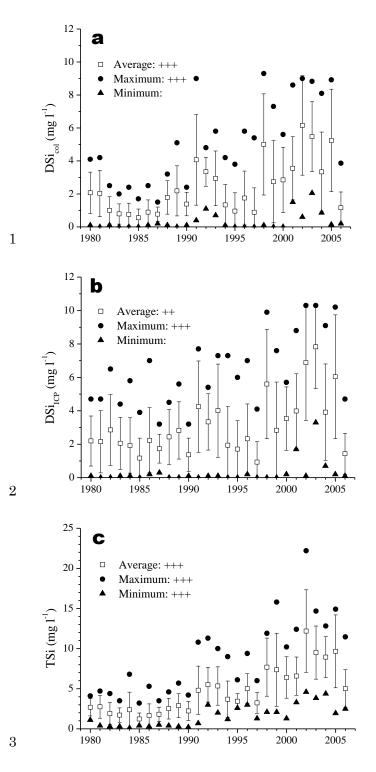
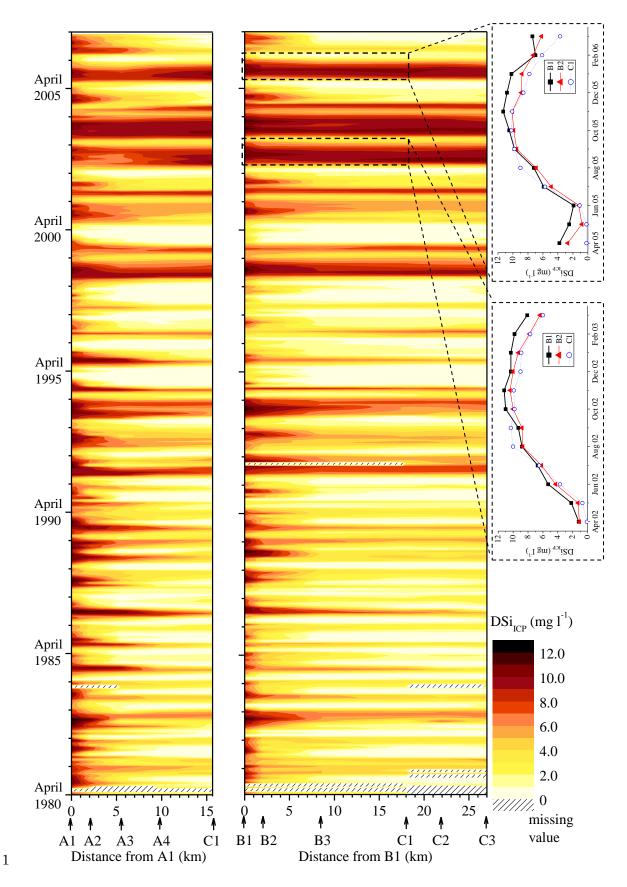



Fig. 2 Changes in DSi_{col} (a), DSi_{ICP} (b), and TSi (c) concentrations at C1 during
1980–2006. Bars indicate standard deviations. Legends (+, ++, +++, -, - -, and - - -)
are the same as in Table 2

 $\mathbf{7}$

2 Fig. 3 Temporal and spatial variation of DSi_{ICP} concentrations in Lake Kasumigaura

1 during April 1980 – March 2007

 $\mathbf{2}$

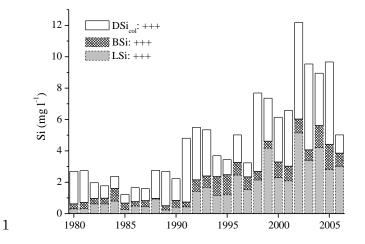


Fig. 4 Changes in annual averages of DSi_{col} concentration (observed) and BSi and LSi
concentrations (estimated) at C1 during 1980–2006. Legends (+, ++, +++, -, -, -, and --) are the same as in Table 2

- $\mathbf{5}$
- 6

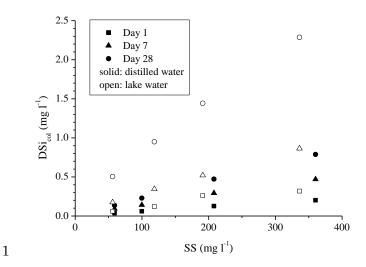
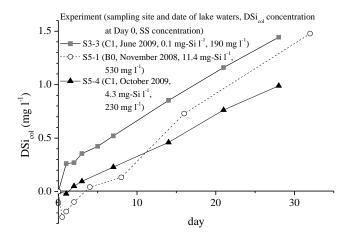
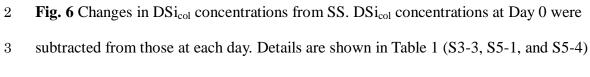




Fig. 5 Relationship between SS concentrations and DSi_{col} concentrations using the
sediments sampled at C1 in June 2009. Distilled water and lake water sampled at C1 in
June 2009 were used. DSi_{col} concentrations at Day 0 were subtracted from those at each
day. Details are shown in Table 1 (S2 and S3)

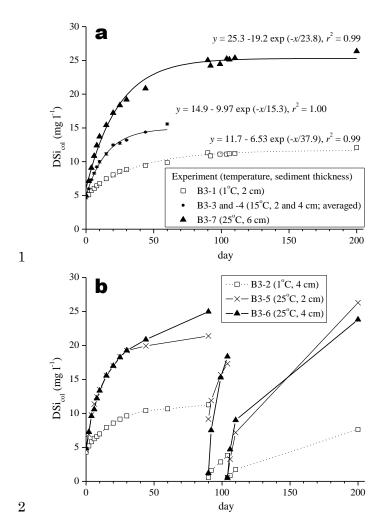
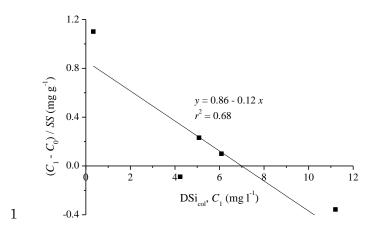
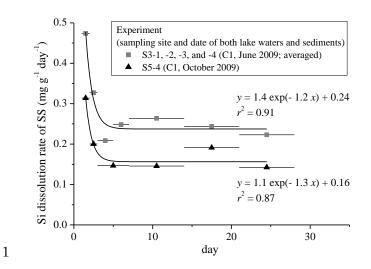
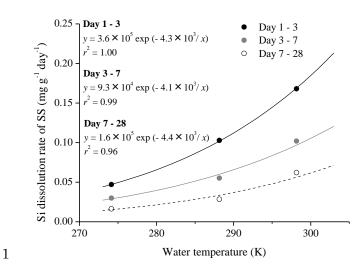
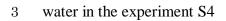


Fig. 7 DSi_{col} concentrations in the series of the experiment B3 with no water
replacement (a) and with replacing the overlying water by distilled water at Days 90 and
104 (b)


Fig. 8 Relationship between DSi_{col} concentrations (C_1) and (C_1-C_0) / SS in the experiment S3 (averaged), S5-1, -2, -3, and -4


2 Fig. 9 Change in Si dissolution rate of SS at 25°C in the experiment S3 (averaged) and

3 S5-4

4

2 Fig. 10 Relationship between water temperature and Si dissolution rate of SS in distilled

2 Fig. 11 Relationship between water temperature and the equilibrium concentration of

- 3 $DSi_{col}(C_e)$ in the experiment B3
- 4

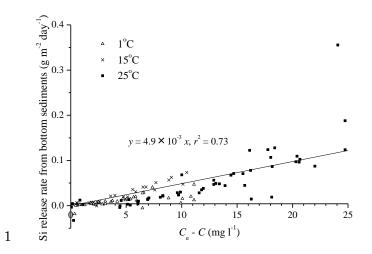


Fig. 12 Relationship between the difference between DSi_{col} and equilibrium concentrations (C_e -C) and Si release rate in the experiment B3

 $\mathbf{5}$

Table 1 Summary of experimental design and results of Si release experiments from SS 1

(A) and bottom sediments (B) $\mathbf{2}$

(A) F	rom sus	pended s	olids											
Sediment		SS conc.	onc. Water			Sampling	$DSi_{col} (mg l^{-1})$				Si release rate (mg g ⁻¹ day ⁻¹)			
Label	Site	$(mg l^{-1})$	Type ^d	Site	Temp.	day	Day 0	Day 1	Day 7 (or 8)	Day 28 (or 32)	Days 0–1	Days 1–7 (or 8)	Days 7 (or 8)- 28 (or 32)	
S1-1	A3 ^a	500	DW		25 [°] C		0.11	0.43	0.81	1.59	0.64	0.11	0.06	
S1-2	B3 ^a	500	DW		25°C	Day 0, 0.5, 1, 3, 8, 16, 32	0.06	0.38	0.84	1.55	0.63	0.13	0.06	
S1-3	C1 ^a	500	DW		25°C	5, 8, 10, 52	0.09	0.35	0.80	1.47	0.53	0.13	0.06	
S2-1	C1 ^b	59	DW		25°C		0.01	0.05	0.11	0.15	0.61	0.16	0.03	
S2-2	C1 ^b	100	DW		25°C	Day 0, 1, 2, 3,	0.02	0.08	0.16	0.25	0.61	0.13	0.04	
S2-3	C1 ^b	210	DW		25°C	5,7,14,21,28	0.03	0.16	0.32	0.50	0.61	0.13	0.04	
S2-4	C1 ^b	360	DW		$25^{\circ}C$		0.05	0.25	0.52	0.84	0.56	0.12	0.04	
S3-1	C1 ^b	56	LW	C1 ^b	25°C		0.12	0.18	0.30	0.63	1.07	0.34	0.28	
S3-2	C1 ^b	120	LW	$C1^{b}$	25 [°] C	Day 0, 1, 2, 3,	0.14	0.26	0.48	1.09	1.01	0.32	0.24	
S3-3	C1 ^b	190	LW	$C1^{b}$	25°C	5,7,14,21,28	0.14	0.40	0.66	1.58	1.37	0.23	0.23	
S3-4	C1 ^b	340	LW	$C1^{b}$	25 [°] C		0.19	0.51	1.05	2.47	0.95	0.27	0.20	
S4-1	C1 ^c	260	DW		1°C		0.03	0.07	0.12	0.21	0.15	0.03	0.02	
S4-2	C1 ^c	240	DW		15 [°] C	Day 0, 1, 2, 3, 5, 7, 14, 21, 28	0.03	0.11	0.21	0.35	0.34	0.07	0.03	
S4-3	C1 ^c	240	DW		25°C	5,7,11,21,20	0.03	0.17	0.34	0.64	0.58	0.12	0.06	
S5-1	C1 ^a	530	LW	B0 ^g	25°C	Day 0, 0.5, 1, 2, 4, 8, 16, 32	11.40	11.21	11.53	12.87	-0.36	0.09	0.11	
S5-2	C1 ^a	1600	LW^e		25°C		4.71	5.08	-	-	0.23	-	-	
S5-3	C1 ^a	820	$\mathbf{L}\mathbf{W}^{\mathrm{f}}$		25°C	Day 0, 1	6.01	6.09	-	-	0.10	-	-	
S5-4	C1 ^c	230	LW	C1 ^c	25°C	Day 0, 1, 2, 3, 7, 14, 21, 28	4.26	4.24	4.49	5.25	-0.09	0.18	0.16	
(B) F	rom bot	tom sedir	nents											
Label	See	Sediment		Water		Sampling		$DSi_{col} (mg l^{-1})$			Si release rate (g m ⁻² day ⁻¹)			
Label	Site	Thickness	Volume	Site	Temp.	day	Day 0	Day 7	Day 14	Day 28	Days 0–7	Days 7–14	Days 14-28	
B1-1	C1 ^b	3.3 cm	750 ml	$\mathbf{D}\mathbf{W}^{\mathrm{d}}$	25°C		0.5	6.9	11.6	15.9	0.089	0.064	0.030	
B1-2	C1 ^b	6.6 cm	500 ml	$\mathbf{D}\mathbf{W}^{d}$	25°C	Day 0, 7, 14, 21, 28, 35, 42	0.8	10.1	14.1	17.8	0.090	0.038	0.017	
B1-3	C1 ^b	9.9 cm	250 ml	$\mathbf{D}\mathbf{W}^{d}$	25°C		1.6	16.6	17.7	19.5	0.070	0.005	0.004	
B2-1	C1 ^b	3.3 cm	750 ml	C1 ^b	25°C		0.5	6.9	9.9	14.2	0.099	0.047	0.033	
B2-2	C1 ^b	6.6 cm	500 ml	C1 ^b	25°C	Day 0, 7, 14, 21, 28, 35, 42	0.8	9.5	13.3	16.9	0.081	0.035	0.017	
B2-3	C1 ^b	9.9 cm	250 ml	C1 ^b	25°C		1.6	17.4	18.1	19.2	0.074	0.003	0.003	
		-					Day 0	Day 8	Day 104	Day 110	Days 0-8	Days 8–15	Days 104-110	
B3-1	C1 ^c	2 cm	700 ml	C1 ^c	1°C		5.2	6.4	11.1	11.2	0.014	0.013	0.001	
B3-2	C1 ^c	4 cm	700 ml	C1 ^c	1°C	Day 0, 2, 4, 6,	4.3	6.6	$0.6^{\rm h}$	1.7^{h}	0.026	0.016	0.018^{h}	
B3-3	C1 ^c	2 cm	700 ml	C1 ^c	15°C	8, 10, 15, 20,	4.8	9.3	-	-	0.051	0.024	-	
B3-4	C1 ^c	4 cm	700 ml	C1 ^c	15°C	25, 30, 44, 60	4.5	9.1	-	-	0.052	0.023	-	

 $2 \mathrm{~cm}$

 $4~\mathrm{cm}$

6 cm

700 ml

700 ml

700 ml

 $C1^{\,c}$

 $C1^{c}$

 $C1^{c}$

 $25^{\circ}C$

 $25^{\circ}C$

 $25^{\circ}C$

^a August 7th, 2008, ^b June 10th, 2009, ^c October 7th, 2009, ^d DW and LW indicate distilled water and lake water, respectively, ^e Mixture of lake waters sampled at A3, B3, C1, and C3 on August 7th, 2008, ^f Mixture of lake waters sampled at A3 on August 7th and at B0 on November 13th, 2008, ^g November 13th, 2008, ^h After replacing the overlying water by distilled water

(,90,92,99,

104, 106, 110,

200)

4.6

4.9

5.0

12.4

12.2

12.4

 0.6^{h}

 $0.6^{\rm h}$

25.2

 7.2^{h}

9.0^h

25.4

0.086

0.083

0.082

0.038

0.041

0.036

 0.099^{h}

 0.127^{h}

0.002

B3-5

B3-6

B3-7

 $C1^{c}$

 $C1^{\,c}$

C1^c

4

³

1 **Table 2** Mean Si concentrations in the 1980s/1990s/2000s and yearly trends detected by

2 t-test

Site	Mean concentra	tions in the 1980s/1	990s/2000s (mg l ⁻¹)
Sile	DSi _{col}	DSi _{ICP}	TSi
A1		8.1/ 7.1/ 7.1	
A2	3.0/ 4.0/ 5.1 +++	5.4/ 4.9/ 5.8	4.8/ 7.2/ 9.4 +++
A3		3.4/ 3.6 /5.0 ++	
A4		2.6/ 3.0/ 4.9 ++	
B1		7.2/ 6.0/ 7.3	
B2	2.1/ 3.1/ 4.6 +++	4.5/ 4.5/ 6.2 +	3.7/ 6.9/ 10.4 +++
B3		2.7/ 3.1/ 4.9 +	
C1	1.3/ 2.4/ 4.0 +++	2.2/ 2.8/ 4.8 ++	2.2/ 4.8/ 8.4 +++
C2		2.2/ 2.9/ 4.9 ++	
C3		2.2/ 3.0/ 5.0 ++	

+, increase; -, decrease

3 + or -, p < 0.05; ++ or --, p < 0.01; +++ or ---, p < 0.001

4

Table 3 Correlation coefficient matrix of annual mean water quality items at the center of Lake Kasumiguara and annual precipitation at Tsukuba meteorological weather

3 station during 1980–2006. N = 27 for all relationships except pH versus others (N = 24).

4 Legends (+, ++, +++, -, --, and ---) are the same as in Table 2

	DSi _{col}	DSi _{ICP}	BSi	LSi	SS	ISS	Chl-a	WT	pН	DO	Transp	РТ
DSi _{col}		0.95	0.30	0.64	0.61	0.64	-0.27	-0.03	-0.55	-0.35	-0.61	0.27
DSi _{ICP}	+++		0.27	0.60	0.61	0.63	-0.26	-0.09	-0.46	-0.35	-0.56	0.23
BSi				0.53	0.64	0.61	-0.05	0.04	0.16	-0.07	-0.59	-0.22
LSi	+++	+++	++		0.88	0.88	-0.24	0.08	-0.21	-0.37	-0.75	0.01
SS	+++	+++	+++	+++		0.97	-0.15	0.10	-0.22	-0.29	-0.87	0.13
ISS	+++	+++	+++	+++	+++		-0.38	0.15	-0.26	-0.37	-0.78	0.08
Chl-a								-0.17	0.33	0.32	-0.13	0.20
WT									0.16	-0.40	-0.08	0.20
pН		-								0.22	0.11	-0.21
DO								-			0.08	-0.21
Transp												-0.22
РТ												

ISS, inorganic suspended solids estimated by Seki et al. (2006); *Chl-a*, chlorophyll *a*; *WT*, *pH* and *DO*, water temperature, pH and dissolved oxygen at 0.5 m depth; *Transp*, transparency; *PT*, precipitation

5 6

1 **Table 4** DSi and BSi budgets in Lake Kasumigaura

Processes	Si fluxes (× 10^9 g y ⁻¹)					
	1980s	2000s				
Inputs						
Inflows ^{ab}	11.3	11.3				
Release						
from bottom sediments ^c	4.3	4.3				
from SS ^c	0?	1.0-2.7				
Atmospheric precipitation ^d	0.0	0.0				
Outputs						
Outflow						
DSi ^{b e}	1.4	4.4				
BSi ^{b e}	0.4	1.2				
Diatom sedimentation ^f	13.8	11.0-12.7				

^a Estimated using the mean DSi concentratioon of inflowing rivers in 1994 and 2007, ^b Flow rate was estimated using lake area, mean water depth, annual mean precipitation or evaporation, and mean water residence time, ^c Experimental estimation in this study, ^d Muraoka and Hirata (1991), ^e Estimated using DSi_{col} and BSi concentrations at C1, ^fEstimated by residual analysis

 $\frac{2}{3}$