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Approach to pairing inversions without solving
Miller inversion
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Abstract—In the present paper, we show that the pairing
inversion problem of Atei pairing can be solved under the
assumption that we have a generic algorithm for solving “ex-
ponentiation inversion” problem. With such an algorithm, the
inversion problem of Atei pairing can be solved without solving
the Miller inversion. Thus, the pairing inversion problem of Atei
pairing is reduced to the exponentiation inversion problem.

Index Terms—Atei pairing, exponentiation inversion, Miller
inversion, pairing inversion, Tate pairing

I. I NTRODUCTION

A pairing er is a map fromG1 × G2 to GT , whereG1

and G2 are additive groups of orderr and GT is a
multiplicative group of orderr, which satisfies the following
properties:

er(P1 + P2, Q) = er(P1, Q)er(P2, Q),
er(P,Q1 +Q2) = er(P,Q1)er(P,Q2).

These are referred to collectively as bilinearity.
In the present paper, we consider the case in whichG1

and G2 are subgroups of points of orderr on an elliptic
curve E over a finite fieldFq, and GT is a subgroup of
the multiplicative group ofFqk , wherek is a positive integer
determined byq and r. We refer to pairings fromG1 × G2

to GT as pairings on elliptic curves. Pairings on elliptic
curves, first, attracted attention in cryptography to attack
elliptic curve cryptosystems based on the elliptic curve discrete
logarithm problem (ECDLP). We can reduce the ECDLP to
the discrete logarithm problem (DLP) onGT using pairings
on elliptic curves and attack elliptic curve cryptosystems in
sub-exponential time (see [17], [8]). Around 2000, Sakai et
al. [25] and Boneh et al. [4] independently proposed ID-based
cryptosystems using pairings on elliptic curves. Furthermore,
many excellent schemes based on pairing have been proposed,
including one-round DH key exchange for tripartite proposed
by Joux [15] and short signature proposed by Boneh et al. [5].
At present, pairing-based cryptography is a subject of great
interest in cryptography.

The security of most of pairing-based cryptosystems is
based on the difficulty in solving the ECDLP, the DLP, and the
pairing inversion problem. For cryptographic use, we consider
two pairings: Weil pairing and Tate pairing. Currently, Tate
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pairing is widely used, and numerous improved versions of
Tate pairing, such asηT pairing and Ate pairing, have been
proposed (see Section 2). In the present paper, we consider the
inversion problem of Tate pairing. The following is a natural
approach to the pairing inversion problem of Tate pairing:
Step 1: Find a qk−1

r -th root β of the inputα ∈ GT .
Step 2: For the solutionβ of Step 1, find a pointP ∈ E (or
Q ∈ E or the pair(P,Q)) with β = fS,P (Q) if such a point
or pair exists (see Section 2 for an explanation of the notation
fS,P (Q)).

At first glance, this approach would seem to be infeasible
because attackers need to tryStep 2for all q

k−1
r roots ofStep

1. However, as shown in [11], it suffices to choose a random
qk−1
r root to solve the inversion problem of the Tate pairing

e(P,Q).
Step 2 is referred to in [11] as the Miller inversion. The

difficulty of the Miller inversion is related to the degree of
the functionfS,P (X,Y ). Generally, the degree offS,P (X,Y )
is very large. So, the Miller inversion is generally a difficult
problem. Galbraith et al. [12] discuss the difficulty of Miller
inversion of pairings over small characteristic fields. Although
some examples of “easy” Miller inversion are shown in [11],
solving the Miller inversion does not need to be made difficult
to guarantee the difficulty of solving the pairing inversion
problem becauseStep 1, namely inverting the final exponen-
tiation, is generally difficult.

On the other hand, a very interesting approach to solve
pairing inversion was shown by Page and Vercauteren [24].
Their method, fault attack on pairings, does not require solving
Miller inversion. The basic approach of their attack is to
use the structure of Miller’s algorithm, which is currently a
standard algorithm for pairing computation. Letα := fs,P (Q)
be the target pairing for attackers, that is, attackers try
to find Q from P and α. If attackers are able to access
the valueα′ := fs+1,P (Q), they can obtain the value of
l[s−1]P,P (Q)/v[s]P (Q) from α and α′(see Section 2 for the
notation l and v). In [24], the authors considered several
types of pairing. Vercauteren [28] considered general cases
by introducing the hidden root problem.

The main result of the present paper provides another
approach to solve pairing inversion without solving Miller
inversion. Our method assumes that we have an efficient
algorithm for solvingexponentiation inversion(EI), which is
formulated in Section 2.

We consider pairing inversion of the Atei pairings proposed
in [27]. Atei pairings are variants of the Ate pairing proposed
by Hess et al. [14]. Atei pairings shorten the length of the
Miller loop by 1/φ(k) for certain types of pairing-friendly el-



liptic curves (whereφ(k) is the Euler function ofk). However,
the structure of Atei pairings is “too good” and provides some
information to attackers. In the present paper, we demonstrate
that the pairing inversion problems of Atei pairings can be
reduced to the EI using this information.

The results of the present study do not demonstrate that
pairing inversion is easy, because the EI is generally hard.
However, it is interesting that pairing inversion can be reduced
to such a simple (but not necessarilyeasy) problem.

The remainder of the present paper is organized as follows.
Section 2 presents a brief mathematical description of pairings
and the pairing inversion problem. Section 3 presents the so-
lution of the pairing inversion problem of Atei pairings, which
is the main result of the present study. Finally, conclusions are
presented in Section 4.

II. PRELIMINARIES

A. Pairings

Let Fq be a finite field of characteristicp, and letE:Y 2 +
a1XY + a3Y = X3 + a2X

2 + a4X + a6 be an elliptic curve
overFq. We denote the point at infinity ofE asO. LetE(Fqj )
(j ≥ 1) be the group ofFqj -rational points onE. The trace of
E is denoted ast. Then,#E(Fq) = q+1− t. Let r be a large
prime number withr|#E(Fq) and(r, q) = 1. The embedding
degreek with respect toq andr is the smallest positive integer
with r|(qk − 1). We assume thatr2 - (qk − 1).

1) Rational functions on curves:Before introducing pair-
ings, we briefly review divisors and rational functions on
curves. For details, see, e.g., [18].

A divisor onE is a formal sum of finite numbers of points
onE: D = ΣmP (P ),mP ∈ Z. Here,mP is referred to as the
order ofD on P , and we writeordP (D) = mP . The degree
of D, denoted bydegD, is defined asdegD := ΣP∈EmP .

When a rational functionh(X,Y ) on E has zerosPi of
ordermi and polesQi of orderni, the divisorD = Σmi(Pi)−
Σni(Qi) is referred to as the divisor ofh(X,Y ), and we write
D = div(h).

For a pointP ∈ E(Fqk) and an integers, we define a
rational function onE, denoted byfs,P (X,Y ) or simplyfs,P ,
overFqk as a function withdiv(fs,P ) = s(P )− ([s]P )− (s−
1)(O), where[s]P is thes-multiplication ofP . The function
fs,P is uniquely determined, up to non-zero scalar multiples,
from the ground field ofP = (xP , yP ).

To computefs,P , we use the following properties offs,P
(see, e.g., [21] and [22]).

• f−n,P = 1
fn,P ·v[n]P

for a positive integern,

• fa+b,P = fa,P · fb,P · l[a]P,[b]P

v[a+b]P
for integersa andb,

• fab,P = f ba,P · fb,[a]P = fab,P · fa,[b]P for integersa and
b,

where the line throughA,B ∈ E is denoted aslA,B , and the
vertical line throughA is denoted asvA. We definef0,P =
f1,P = 1.

2) Tate pairing : Let P ∈ E(Fqk)[r] := {P0 ∈ E(Fqk) :
[r]P0 = O} andQ ∈ E(Fqk). Choose a pointR ∈ E(Fqk)
such thatdiv(fr,P ) andD = (Q+R)−(R) are disjoint. Then,
the Tate pairing is defined by

〈·, ·〉r : E(Fqk)[r]× E(Fqk)/rE(Fqk)→ F×
qk
/(F×

qk
)r,

(P,Q) 7→ 〈P,Q〉r := fr,P (D).

It is shown that〈P,Q〉r is bilinear and non-degenerate.
In cryptographic applications, it is convenient to define

pairings in which the outputs are unique values rather than
equivalent classes. Therefore, we usually consider the reduced
Tate pairing defined by

e : E(Fqk)[r]× E(Fqk)/rE(Fqk)→ µr,

e(P,Q) = 〈P,Q〉(qk−1)/r
r ,

whereµr denotes the group ofr-th roots of unity. We refer
to the operationz 7→ z(qk−1)/r as the final exponentiation.
Numerous improved versions of Tate pairing have been pro-
posed. In 2004, Barreto et al. [1] proposed theηT pairing,
which is a generalization of a method proposed by Duursma
et al. [6] for supersingular curves. In 2006, Hess et al. [14]
proposed the Ate and twisted Ate pairing as generalizations
of the ηT pairing. These can be applied to both supersingular
curves and ordinary elliptic curves. In 2007, Zhao et al. [27]
proposed the Atei and twisted Atei pairings.

We review only the Atei pairing because we will consider
the inversion problem of Atei pairings.

3) Atei and twisted Atei pairings: The q-Frobenius endo-
morphism onE is denoted asπq, i.e., πq : (x, y) 7→ (xq, yq).
We consider the following two groups:G1 = E(Fq)[r] =
E[r] ∩Ker(πq − 1) andG2 = E[r] ∩Ker(πq − q).

Let Ti := qi mod r for i = 1, 2, · · · , k − 1. For eachi, we
define the following quantities in a manner similar to that for
Ate pairing. Letai be the smallest positive integer such that
T aii ≡ 1 (mod r). In addition,Ni := gcd(T aii − 1, qk − 1),
andLi is a positive integer such thatT aii − 1 = LiNi.

As with Ate pairing, Atei pairing has two versions: the
pairing defined onG2×G1 and the pairing onG1×G2. The
Atei pairing onG2×G1 is defined byαi(Q,P ) := fnorm

Ti,Q
(P )

(Q ∈ G2 andP ∈ G1), whereE may be either supersingular
or ordinary. Here,fnorm

Ti,Q
is the normalization offTi,Q. As

mentioned at the beginning of this section, the rational function
with div(fTi,Q) = Ti(Q)− ([Ti]Q)− (Ti− 1)(O) is uniquely
determined up to non-zero scalar multiples. When the point
Q is in E(Fqk), the multiples are inFqk and will not be
annihilated by final exponentiation. Therefore, we need to
consider the normalization. We can use the normalization
function fnorm

Ti,Q
= fTi,Q/γ, whereγ := (zTi−1fTi,Q)(O) and

z is called a uniformizer ofE on O (see, e.g., [18]).
OnG1×G2, we must consider whetherE is supersingular.

When E is supersingular, the Atei pairing is defined by
αi(P,Q) := fTi,P (Q) (P ∈ G1 andQ ∈ G2). If E is ordinary,
fTi,P (Q) does not have bilinearity onG1 × G2, the same as
for Ate pairings (see [14]). In this case, we must use the twist
of E.

Let E andE′ be ordinary elliptic curves overFq. We refer
to the curveE′ as a twist of degreed of E if there exists an
isomorphismψ : E′ → E defined overFqd andd is minimal
with this property. We hereafter considerFq with characteristic
p ≥ 5. Then, onlyd = 2, 3, 4, and6 are possible (see [14] for

2



explicit forms of twists of elliptic curves with characteristic
p ≥ 5).

We define Atei pairing onG1 × G2 for ordinary elliptic
curves. Letm := gcd(k, d), and lete := k/m for an ordinary
elliptic curveE with embedding degreek. PutSe,i := T ei mod
r = qie mod r. Then, the Atei pairing onG1 × G2, referred
to as the twisted Atei pairing, is defined byαtwist

i (P,Q) :=
fSe,i,P (Q) (P ∈ G1 andQ ∈ G2). Note that normalization is
not required in this case becauseP is in E(Fq) and constants
of fTi,P or fSe,i,P are inFq.

The Tate and the Atei (and also twisted Atei) pairings are
connected by a power relationship, i.e., one pairing is a power
function of the other. This relationship makes the Atei and
twisted Atei pairings bilinear and non-degenerate. (TheηT
and Ate pairings also have similar relations.) In the present
paper, we refer to this type of relationship as anexponential
relationship.

Let

ci :=





∑m−1
j=0 T

e(m−1−j)
i q(ei)j ≡ mqm−1 (mod Ni)

(G1 ×G2, E : ordinary),∑k−1
j=0 T

k−1−j
i qj ≡ kqk−1 (mod Ni)

(otherwise).

Then,

e(Q,P )Li = αi(Q,P )ci(q
k−1)/Ni ,

e(P,Q)Li =





αi(P,Q)ci(q
k−1)/Ni

(E: supersingular),
αtwist
i (P,Q)ci(q

k−1)/Ni

(E: ordinary).

Thus, the Atei and twisted Atei pairings are non-degenerate
if and only if (r, Li) = 1.

The reduced Atei and twisted Atei pairings are denoted as
α̂i(Q,P ) (or α̂i(P,Q)) and α̂i

twist(P,Q):

α̂i(Q,P ) := αi(Q,P )
qk−1
r ,

α̂i(P,Q) := αi(P,Q)
qk−1
r ,

α̂i
twist(P,Q) := αtwist

i (P,Q)
qk−1
r .

In Section 3, we use the exponential relationship between
the reduced Atei pairing α̂i(Q,P ) and the Tate pairing
e(Q,P ) :

α̂i(Q,P )ci = αi(Q,P )ci
qk−1
Ni

Ni
r = e(Q,P )

LiNi
r .

Note that the exponentLiNir is prime tor becauser2 - (qk−1).

Improvements to Atei pairing have been proposed. For
example, the R-Ate pairing has been proposed by Lee et al.
[20], optimal pairing has been proposed by Vercauteren [29],
and a generalization of optimal pairing has been proposed by
Hess [13]. However, we do not present further information
on these pairings in the present paper because the present
approach is applied herein only to Atei and twisted Atei
pairings.

B. Pairing inversion problem

As mentioned in Section 1, the pairing inversion problem
consists of finding a point (or a pair of points) on an elliptic
curve from the value of a pairing function.

Galbraith et al. [11] and Satoh [26] have already consid-
ered the pairing inversion problem theoretically. Satoh [26]
discussed the difficulty of the pairing inversion and related
problems(e.g., the Weak Diffie-Hellman problem). Galbraith
et al. [11] gave a detailed discussion of inverting a final
exponentiation and inverting a Miller computation.

In the present paper, we formulate the pairing inversion
problem according to [11]. In this subsection,G1 andG2 are
additive groups of orderr. Later, we will consider the case
(G1, G2) = (G1,G2) or (G2,G1), whereG1 andG2 are the
groups introduced in Section 2.1. The group ofr-th roots of
unity is denoted asµr, and the pairing functioner is assumed
to be given.

Definition 1: (FAPI-1, FAPI-2 and GPI)
Fixed Argument Pairing Inversion 1 (FAPI-1): Given a pairing
er, P ∈ G1 such thater(P,G2) = µr and z ∈ µr, compute
Q ∈ G2 such thater(P,Q) = z.
Fixed Argument Pairing Inversion 2 (FAPI-2): Given a pairing
er, Q ∈ G2 such thater(G1, Q) = µr and z ∈ µr, compute
P ∈ G1 such thater(P,Q) = z.
Generalized Pairing Inversion (GPI): Given a pairinger and
a valuez ∈ µr, find (P,Q) ∈ G1 ×G2 with er(P,Q) = z.

As in [26], we consider the FAPI-1 problem in the present
paper.

When er(P,Q) is a (reduced) Tate pairing, or a variant
thereof (e.g.,ηT or Ate), it is natural to attempt to invert

the pairing er(P,Q) = fs,P (Q)
qk−1
r by first inverting the

final exponentiation (i.e., by takingq
k−1
r -th roots in the finite

field) and then inverting the pairing function (Miller inversion).
Here, we formulate the Miller inversion.

Definition 2: Miller inversion (MI): LetD1 be fixed, and
let S be a set of divisors. Letz ∈ F∗qk . Compute a divisor
D2 ∈ S such thatz = fs,D1(D2), or, if no such divisor exists,
then output “no solution”.

III. I NVERSION OFATEi PAIRING

In this section, we explain the main result of the present
paper. First, we give the definition of EI:

Definition 3: (Exponentiation Inversion, EI) For an un-
known elementβ ∈ F∗qk , assume that an integern and the
value ofw := βn ∈ F∗qk are known. Then, the EI, or(n,w)-
EI, is the problem of findingβ from the instance(n,w).

When w is a value of a reduced pairing andn = qk−1
r ,

(n,w)-EI corresponds to inverting the final exponentiation.
However, we will deal with(n,w)-EI for generaln in the
present paper.

We demonstrate that the pairing inversion problem of Atei

pairings for many cases is reduced to the EI. The basic concept
of our approach is to use cyclotomic polynomialΦk(X) for
embedding degreek. As in Proposition 2.4 in [9],Φk(q) ≡
0 (mod r) is equivalent to that the embedding degree isk.
Therefore, we obtain a relationship among the Tate pairing
and a number of Atei pairings usingΦk(X).
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A. FAPI-1 onG2 ×G1

Here, we consider FAPI-1 onG2×G1 (Input: z ∈ µr ⊂ F∗qk
and Q ∈ G2, Output: P ∈ G1 such thatz = er(Q,P )),
although the basic strategy does not depend on whether
pairings are defined onG2 ×G1 or G1 ×G2.

We first explain the case for which the embedding degree
is k = 12. The proposed approach can be described very
simply for k = 12, which is currently the most popular
embedding degree for implementation (see e.g., [7], [23])
because good parameterized curves, so-called BN-curves [3],
can be obtained withk = 12.

1) Thek = 12 case: The cyclotomic polynomialΦ12(X)
is X4 −X2 + 1. Therefore,r dividesΦ12(q) = q4 − q2 + 1,
that is,Ti := qi mod r satisfies the following:

T4 − T2 + 1 ≡ 0 (mod r).

We write T4 − T2 + 1 = rU , whereU ∈ Z. Therefore, we
obtain

fT4−T2,Q = f−1+rU,Q. (1)

The right-hand side of (1) can be expressed

f−1+rU,Q = frU,Qf−1,Q

l[rU ]Q,−Q
v[rU−1]Q

= fUr,QfU,rQ ·
1
vQ

= fUr,Q ·
1
vQ
.

The left-hand side of (1) can be expressed

fT4−T2,Q = fT4,Qf−T2,Q

l[T4]Q,[−T2]Q

v[T4−T2]Q

= fT4,Q
1

fT2,Q · v[T2]Q
· l[T4]Q,[−T2]Q

v−Q

=
fT4,Q

fT2,Q
· l[T4]Q,[−T2]Q

v[T2]Q
· 1
vQ
.

Therefore, by comparing the left- and right-hand sides, we
have

fT4,Q

fT2,Qf
U
r,Q

=
v[T2]Q

l[T4]Q,[−T2]Q
.

By normalization and evaluation atP = (xP , yP ), we obtain
the relationship among pairings:

α4(Q,P )
α2(Q,P )τ(Q,P )U

=
xP − x[T2]Q

axP + yP + b
,

whereτ(Q,P ) := fr,Q(P ) andax+ y + b is the normalized
function of l[T4]Q,[−T2]Q.

If attackers obtain values of three pairingsα4(Q,P ),
α2(Q,P ), and τ(Q,P ), they are able to computeβ :=
α4(Q,P )α2(Q,P )−1τ(Q,P )−U and find the pointP =
(xP , yP ) by solving (axP + yP + b)β = xP − x[T2]Q and
the defining equation ofE, namely,y2

P + a1xP yP + a3yP =
x3
P + a2x

2
P + a4xP + a6.

We next consider the method of computing the three pairing
values. Usually, attackers are assumed to obtain one pairing
value. For example, for the case in which we use BN-curves
[3] to implement pairings withk = 12, the most efficient
Atei pairing isα1(Q,P ). Therefore, we may assume that the

attackers know the value of the (reduced) pairingα̂1(Q,P ) =
α1(Q,P )

qk−1
r . Hence, the attackers must obtain values of

α4(Q,P ), α2(Q,P ), andτ(Q,P ) from α̂1(Q,P ). However,
under the assumption that the EI can be solved efficiently, the
attackers can computeα4(Q,P ), α2(Q,P ), andτ(Q,P ) from
α̂1(Q,P ). First, the attackers computêα4(Q,P ), α̂2(Q,P ),
ande(Q,P ) by the exponential relationship

α̂i(Q,P )ci = e(Q,P )
LiNi
r .

(Of course, attackers can easily computeNi, Li, andci for all
i.) Then, attackers computeα4(Q,P ), α2(Q,P ), andτ(Q,P )
by inverting the final exponentiation. Note thate(Q,P ) =
τ(Q,P )

qk−1
r (see p. 4596 of [14]).

Therefore, FAPI-1 of the Atei pairing onG2×G1 is reduced
to the EI for the case in whichk = 12.

2) Other case:The general case is similar to thek = 12
case. We show the cyclotomic polynomialΦk(X) and the
relationships among pairings for various embedding degrees,
k(> 1).
Case 1:k = 2µ3ν (µ ≥ 1, ν ≥ 1)

This is a direct generalization of thek = 12 case. The
cyclotomic polynomial isΦk(X) = X

k
3 − X

k
6 + 1. In the

same manner as for thek = 12 case, we obtain the following
relationship

α k
3
(Q,P )

α k
6
(Q,P )τ(Q,P )U

=
v[Tk/3]Q(P )

l[Tk/3]Q,−[Tk/6]Q(P )
,

whereU =
Tk/3 − Tk/6 + 1

r
.

Case 2:k = 3ν (ν ≥ 1)
The cyclotomic polynomial isΦk(X) = X

2k
3 + X

k
3 + 1,

and the pairing relationship is

α 2k
3

(Q,P )α k
3
(Q,P )

τ(Q,P )U
=

1
l[T2k/3]Q,[Tk/3]Q(P )

,

whereU =
T2k/3 + Tk/3 + 1

r
.

Case 3:k = 2µ(µ ≥ 1)
The cyclotomic polynomial isΦk(X) = X

k
2 + 1. In this

case, at first it might appear that no pairing relationship exists.
However, multiplying by the polynomialX + 1, we obtain

Tk/2+1 + Tk/2 + T1 + 1 ≡ 0 (mod r).

Thus, we obtain the following relationship:

α k
2 +1(Q,P )α k

2
(Q,P )α1(Q,P )

τ(Q,P )U

=
xP − x[T k

2
+T1]Q

l[T k
2

]Q,Q(P ) · l[T k
2 +1]Q,[T k

2
+T1]Q(P )

,

whereU =
Tk/2+1 + Tk/2 + T1 + 1

r
.

For generalk,
∑k−1
i=0 Ti ≡ 0 (mod r) holds because the

cyclotomic polynomial Φk(X) satisfies Φk(X)|∑k−1
i=0 X

i.
Therefore, we obtain the following relationship:

τ(Q,P )−U
k−1∏

i=1

αi(Q,P ) =
k−1∏

i=2

v[Wi]Q(P )
l[Ti]Q,[Wi]Q(P )

,
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whereU =
∑k−1
i=1 Ti
r

and Wi :=
i−1∑

j=0

Tj (i ≥ 2). Thus, we

obtain a pairing relationship using all of the Atei pairings
αi(Q,P ) (i = 1, 2, · · · , k − 1).

We estimate the running cost of reduction from the pairing
inversion to the EI. We assume the use of pairing-friendly
elliptic curves. Then, it may be assumed thatk ≤ log2(q)
because the embedding degrees of pairing-friendly elliptic
curves are less thanlog2(r)/8 (see Section 2 of [9]). Thus, the
number of using an algorithm for solving the EI to compute
αi(P,Q) is less than2 log2(q). The complexity of finding

P = (xP , yP ), namely solvingβ =
k−1∏

i=2

v[Wi]Q(P )
l[Ti]Q,[Wi]Q(P )

and

the defining equation ofE, is O(k) because the degree of the
former equation isO(k). Therefore, the reduction from the
pairing inversion to the EI can be performed in polynomial
time in log(q).

B. FAPI-1 onG1 ×G2

Next, we consider FAPI-1 onG1×G2 (Input: z ∈ µr ⊂ F∗qk
and P ∈ G1, Output:Q ∈ G2 such thatz = er(P,Q)). In
this case, the definitions of Ate and Atei pairings depend on
whetherE is supersingular or ordinary. WhenE is supersin-
gular, the Atei pairing onG1 × G2 is defined byfTi,P (Q).
Therefore, we consider the case forG2 × G1 in a similar
manner. The exponential relationship between the Atei pairing
and the Tate pairing also holds in theG1×G2 case. Therefore,
we can solve FAPI-1 onG1 × G2 if the EI can be solved
efficiently.

Next, we consider the case in whichE is ordinary. In
this case, the target pairing is the twisted Atei pairing
fT e

i
,P (ψ(Q′)), where e = k/gcd(k, d). Therefore, we must

consider the values of bothk andd. Sincem := gcd(k, d) =
1, 2, 3, 4, 6, we classify the results according tom.

Whenm = 3, 4, 6, thenqk − 1 = qme − 1 is factored as

q6e − 1 = (qe − 1)(qe + 1)(q2e + qe + 1)(q2e − qe + 1),
q4e − 1 = (qe − 1)(q3e + q2e + qe + 1),
q3e − 1 = (qe − 1)(q2e + qe + 1).

Thus, we have the following relationships amongSe,i =
qie mod r:

Se,2 − Se,1 + 1 ≡ 0 (mod r) (if m = 6),
Se,3 + Se,2 + Se,1 + 1 ≡ 0 (mod r) (if m = 4),
Se,2 + Se,1 + 1 ≡ 0 (mod r) (if m = 3).

By settingSe,2−Se,1 +1 = rU and performing computations
similar to those performed in the previous cases, we have

fSe,2,P

fSe,1,P f
U
r,P

=
v[Se,1]P

l[Se,2]P,[−Se,1]P
.

After substitutingQ = (xQ, yQ), we obtain the following
relationship among pairings:

αtwist
2 (P,Q)

αtwist
1 (P,Q)τ(P,Q)U

=
v[Se,1]P (Q)

l[Se,2]P,[−Se,1]P (Q)

for m = 6 and
∏3
i=1 α

twist
i (P,Q)

τ(P,Q)U

=
v[Se,2+Se,1]P (Q)

l[Se,2]P,[Se,1]P (Q) · l[Se,3]P,[Se,2+Se,1]P (Q)
,

αtwist
4 (P,Q)αtwist

2 (P,Q)
τ(P,Q)U

=
1

l[Se,2]P,[Se,1]P (Q)

for m = 4 and3, respectively.
Whenm = 2, thenqk − 1 = qme − 1 = q2e − 1 = (qe −

1)(qe + 1). Thus, unlike the cases in whichm = 3, 4, 6, no
relationship among pairings is obtained. Finally, we consider
the case in whichm = 1, whereSe,i = qie mod r = qik mod
r = 1, becausee = k. Thus, the proposed approach cannot be
applied in these cases.

We assume thatFq is a prime field, i.e.,q = p. Then,Fqk
is a pairing-friendly field ifp ≡ 1 (mod 12) and k = 2µ3ν

is even (see [19]). We present examples in whichm = 1, 2
for k = 2µ3ν (µ ≥ 1). Whenk = 2µ (µ ≥ 1), if d = 3, then
m = 1, and if (k, d) = (2µ, 2), (2, 4), or (2µ, 6), thenm = 2.
Finally, whenk = 2µ3ν (µ, ν ≥ 1), if (k, d) = (2µ3ν , 2) or
(2 · 3ν , 4), thenm = 2.

Usually, we choose elliptic curves with larged (i.e., d =
4, 6) so that point compress techniques, which are analogous to
techniques using distortion maps in the case of supersingular
curves, can be used. Therefore, the number of examples to
which the proposed approach cannot be applied is not large
in the case of pairing-friendly fields.

Thus, the proposed approach can be applied to FAPI-1 of
the twisted Atei pairing onG1 × G2 in numerous practical
cases.

IV. CONCLUSION

In the present paper, we have demonstrated that, in several
cases, FAPI-1 of the Atei pairing is reduced to solving the EI.

The proposed approach can be applied to other pairings,
the R-Ate pairing [20] and the optimal pairing [29] (and
the generalization by Hess [13]), by converting the inversion
problem of these pairings to that of the Atei pairing since
these pairings also have exponential relationships with the
Tate pairing. Thus, similar results can be obtained for these
pairings.

However, our approach is not practical because the EI is not
easy. So, these results do not demonstrate that pairing-based
cryptosystems are insecure.

Applying our approach to FAPI-2 is still an open problem.
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