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~ Abstract—In the present paper, we show that the pairing pairing is widely used, and numerous improved versions of
inversion problem of Ate; pairing can be solved under the Tate pairing, such ag; pairing and Ate pairing, have been
assumption that we have a generic algorithm for solving “ex- proposed (see Section 2). In the present paper, we consider the

ponentiation inversion” problem. With such an algorithm, the . bl f Tat . The following i tural
inversion problem of Ate; pairing can be solved without solving inversion probiem of late pairing. The ioflowing IS a hatura

the Miller inversion. Thus, the pairing inversion problem of Ate; ~@pproach to the pairing inversion problem of Tate pairing:
pairing is reduced to the exponentiation inversion problem. Step 1: Find aqr—*l-th root 8 of the inputa € Gr.
Step 2: For the solutiong of Step 1, find a pointP € E (or

Index Terms—Ate; pairing, exponentiation inversion, Miller @ € E or the pair(P, Q)) with 8 = fs p(Q) if such a point

inversion, pairing inversion, Tate pairing or pair exists (see Section 2 for an explanation of the notation
Js.p(Q)): j _
|. INTRODUCTION At first glance, this approach would seem to be infeasible

k_1
pairing e, is a map fromG; x Go to Gr, where G, because attackers neeq to ﬁ‘gep 2for_a|| 14— roots of Step
and G, are additive groups of order and G is a 1. However, as shown in [11], it suffices to choose a random

k_1 . . ..
multiplicative group of order-, which satisfies the following = root to solve the inversion problem of the Tate pairing

properties: e(P,Q). . T .
Step 2is referred to in [11] as the Miller inversion. The
er(PL+ P, Q) = e,(P1, Q)er (P2, Q), difficulty of the Miller inversion is related to the degree of
er(P,Q1 + Q2) = e-(P,Q1)e, (P, Q2). the functionfs p(X,Y"). Generally, the degree ¢& p(X,Y)

is very large. So, the Miller inversion is generally a difficult
problem. Galbraith et al. [12] discuss the difficulty of Miller

inversion of pairings over small characteristic fields. Although
some examples of “easy” Miller inversion are shown in [11],
solving the Miller inversion does not need to be made difficult
to guarantee the difficulty of solving the pairing inversion
({)roblem becaus8tep 1, namely inverting the final exponen-

These are referred to collectively as bilinearity.

In the present paper, we consider the case in wiigh
and G, are subgroups of points of order on an elliptic
curve E over a finite fieldF,, and Gr is a subgroup of
the multiplicative group off ., wherek is a positive integer
determined byg and r. We refer to pairings fronG; x Go
to Gr as pairings on elliptic curves. Pairings on ellipti E\tion, is generally difficult.

curves, first, attracted attention in cryptography to attac On the other hand, a very interesting approach to solve

elliptic curve cryptosystems based on the elliptic curve discreﬁﬁiring inversion was shown by Page and Vercauteren [24].

logarithm problem (ECDLP). We can reduce the ECDLP t9pir method, fault attack on pairings, does not require solving
the discrete logarithm problem (DLP) dfir using pairings \jijier inversion. The basic approach of their attack is to

on elliptic curves and attack elliptic curve Cryptosystems ifjse the structure of Miller's algorithm, which is currently a
sub-exponential time (see [17], [8]). Around 2000, Sakai €landard algorithm for pairing computation. let= f, »(Q)

al. [25] and Boneh et al. [4] independently proposed ID-basgll o target pairing for attackers, that is, attackers try
cryptosystems using pairings on elliptic curves. Furthermorl% find Q from P and a. If attackers are able to access
many excellent schemes based on pairing have been prOpoﬁ’?éj’value o' == foi1.p(Q), they can obtain the value of
including one-round DH_key exchange for tripartite proposed _upp(@Q)/vp(Q) from o and o/(see Section 2 for the

by Joux [15] and short signature proposed by Boneh et al. [%tatién I and v). In [24], the authors considered several
At present, pairing-based cryptography is a subject of greghes of pairing. Vercauteren [28] considered general cases

interest in cryptography. » bg/ introducing the hidden root problem.
The security of most of pairing-based cryptosystems ISthe main result of the present paper provides another

based on the difficulty in solving the ECDLP, the DLP, and thg,h4ch to solve pairing inversion without solving Miller
pairing inversion problem. For cryptographic use, we considgfersion. Our method assumes that we have an efficient

two pairings: Weil pairing and Tate pairing. Currently, Tat@qqrithm for solvingexponentiation inversiofgl), which is
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liptic curves (wheres(k) is the Euler function of). However,
the structure of Atgpairings is “too good” and provides some ) % % \r
information to attackers. In the present paper, we demonstrate (o dr s E(Fge)[r] x E(Fqr)/rE([Fqr) — IFq’“/(]Fqk) ’
that the pairing inversion problems of Atgairings can be (P, Q) = (P,Q)r = fr,p(D).

ret#ced to Itthe ?ltlﬁsmg this |tnfct>rr(rj1at|(;)n td rat tl’llt ks shown that{P, ), is bilinear and non-degenerate.
€ results ot Ihe present study do not demonstrate n cryptographic applications, it is convenient to define

pairing inversion is easy, because the El is generally haé%mngs in which the outputs are unigue values rather than

:—lowevr:ar, It IS n}tergsttlng tthat palrlnrg |nverS|obr; can be reduc uivalent classes. Therefore, we usually consider the reduced
0 such a simple (but not necessardgisy problem. Tate pairing defined by

The remainder of the present paper is organized as follow
Section 2 presents a brief mathematical description of pamngs e: E(Fu)[r] x E(Fgr)/rE(Fgr) — iy,
and the pairing inversion problem. Section 3 presents the so- _ (" =1)/r
luti L , o . e(P,Q) = (P, Q) ,
ution of the pairing inversion problem of Atgairings, which
is the main result of the present study. Finally, conclusions amaere i, denotes the group af-th roots of unity. We refer
presented in Section 4. to the operation: — 2(@"~1D/7 as the final exponentiation.

Numerous improved versions of Tate pairing have been pro-
Il. PRELIMINARIES posed. In 2004, Barreto et al. [1] proposed the pairing,
. which is a generalization of a method proposed by Duursma
A. Pairings et al. [6] for supersingular curves. In 2006, Hess et al. [14]

Let F, be a finite field of characteristig, and letE:Y? + proposed the Ate and twisted Ate pairing as generalizations
a1 XY +a3Y = X? +ayX? 4+ a4 X + ag be an elliptic curve of the 5 pairing. These can be applied to both supersingular
overlF,. We denote the point at infinity df asO. Let E(F,;) curves and ordinary elliptic curves. In 2007, Zhao et al. [27]
(j > 1) be the group off ;; -rational points on&. The trace of proposed the Ateand twisted Atg pairings.

E is denoted ag. Then,#E(F,) = q+1—t. Letr be alarge  We review only the Atge pairing because we will consider
prime number withr|#E(F,) and(r,¢) = 1. The embedding the inversion problem of Atepairings.

degreek with respect tay andr is the smallest positive integer  3) Ate and twisted Atgpairings: The ¢-Frobenius endo-
with 7|(¢* — 1). We assume that? { (¢* — 1). morphism onk is denoted as,, i.e., 7, : (z,y) — (x9,y?).

1) Rational functions on curvesBefore introducing pair- We consider the following two groupss, = E(F,)[r] =
ings, we briefly review divisors and rational functions orE[r] N Ker(mr, — 1) and Gy = E[r] N Ker(m, — q).
curves. For details, see, e.g., [18]. LetT; := ¢ mod r for i =1,2,--- ,k — 1. For eachi, we

A divisor on E is a formal sum of finite numbers of pointsdefine the following quantities in a manner similar to that for
onE: D =YXmp(P),mp € Z. Here,mp is referred to as the Ate pairing. Leta; be the smallest positive integer such that
order of D on P, and we writeordp(D) = mp. The degree T/ = 1 (mod r). In addition, N; := ged(T} — 1,¢* — 1),
of D, denoted bydegD, is defined aslegD := X pcgmp. and L; is a positive integer such th&@" — 1 = L;N,.

When a rational functiorh(X,Y) on E has zerosP; of As with Ate pairing, Ate pairing has two versions: the
orderm,; and poleq); of ordern;, the divisorD = ¥m;(P;,)— pairing defined orz, x G; and the pairing orz; x G,. The
¥n;(Q;) is referred to as the divisor éf(X,Y’), and we write  Ate; pairing onG» x G, is defined bya;(Q, P) := f3°%'(P)

D = div(h). (Q € Gy and P € G4), where E may be either supersingular

For a pointP € E(Fg ) and an integers, we define a or ordinary. Here,f7°%" is the normalization offr, o. As
rational function onE, denoted byf, p(X,Y") or simply f; p, mentioned at the beginning of this section, the rational function
overFF» as a function withdiv(fs p) = s(P) — ([s|P) — (s — with div(fr, o) = T:(Q) — ([T3]Q) — (T3 — 1)(O) is uniquely
1)(0), where[s] P is the s-multiplication of P. The function determined up to non-zero scalar multiples. When the point
fs,p is uniquely determined, up to non-zero scalar multiple§) is in E(F), the multiples are inf . and will not be

from the ground field ofP = (zp,yp). annihilated by final exponentiation. Therefore, we need to
To computef; p, we use the following properties of, » consider the normalization. We can use the normalization
(see, e.g., [21] and [22]). function f3°%" = fr, @/, wherey := (27! fr, ¢)(O) and
o finp= % for a positive integen, z is called a uniformizer of~ on O (see, e.g., [18]).
e lojp e . On G; x G2, we must consider whethd is supersingular.
o fatop = fap-fop 70 forintegersa andb, When E is supersingular, the Atepairing is defined by
o fanr=fop Jofap = fip fapp forintegersaand (P Q) := fr, p(Q) (P € G, andQ € G»). If Eis ordinary,

b, fr,,p(Q) does not have bilinearity of; x G, the same as
where the line througl, B € E is denoted a$,4 , and the for Ate pairings (see [14]). In this case, we must use the twist
vertical line throughA is denoted as 4. We definefy p = of E.
fip =1 Let E and E’ be ordinary elliptic curves oveF,. We refer

2) Tate pairing : Let P € E(F)[r] := {Py € E(F,) : to the curveE’ as a twist of degred of E if there exists an
[Py = O} andQ € E(F ). Choose a poink € E(F,) isomorphism) : E' — E defined overF « andd is minimal
such thadiv(f, p) andD = (Q+R)—(R) are disjoint. Then, with this property. We hereafter considgy with characteristic
the Tate pairing is defined by p > 5. Then, onlyd = 2,3, 4, and6 are possible (see [14] for



explicit forms of twists of elliptic curves with characteristicB. Pairing inversion problem

p=>5). As mentioned in Section 1, the pairing inversion problem

We define Ate pairing onG; x G for ordinary elliptic consists of finding a point (or a pair of points) on an elliptic
curves. Letm := ged(k, d), and lete := k/m for an ordinary curve from the value of a pairing function.
elliptic curve ' with embedding degrele PutS, ; := T} mod Galbraith et al. [11] and Satoh [26] have already consid-
r = ¢'“ mod r. Then, the Atg pairing onG, x G, referred ered the pairing inversion problem theoretically. Satoh [26]
to as the twisted Atepairing, is defined byr{"™ (P,Q) := discussed the difficulty of the pairing inversion and related
fs...p(Q) (P € Gy andQ € Gy). Note that normalization is problems(e.g., the Weak Diffie-Hellman problem). Galbraith
not required in this case becauBeis in E(F,) and constants et al. [11] gave a detailed discussion of inverting a final
of fr, p O fs., p are inkF,. exponentiation and inverting a Miller computation.

The Tate and the Ate(and also twisted At@ pairings are In the present paper, we formulate the pairing inversion
connected by a power relationship, i.e., one pairing is a powsrtoblem according to [11]. In this subsectiai; and G, are
function of the other. This relationship makes the Atd additive groups of order. Later, we will consider the case
twisted Ate pairings bilinear and non-degenerate. (The (G;,Gs) = (G1,Gs) or (Gz,G;), whereG; and G, are the
and Ate pairings also have similar relations.) In the presegtoups introduced in Section 2.1. The groupreth roots of
paper, we refer to this type of relationship aseuponential unity is denoted ag,., and the pairing function,. is assumed

relationship to be given.
Let Definition 1: (FAPI-1, FAPI-2 and GPI)
e re(me1—3) (o)1 . Fixed Argument Pairing Inversion 1 (FAPI-1): Given a pairing
dico Ly Q_(em =mg™™ "  (mod N;) er, P € Gy such thate,(P,Gs) = p, and z € p,., compute
e .= ) (G1x Gy, E :ordinary), Q € G, such thate, (P, Q) = z.
v ST T g = ket (mod ;) Fixed Argument Pairing Inversion 2 (FAPI-2): Given a pairing
(otherwisg. e, @ € Gy such thate,.(G1,Q) = u, and z € u,, compute
P € G, such thate,. (P, Q) = z.
Then, Generalized Pairing Inversion (GPI): Given a pairingand
L ei(at—1)/N; a valuez € p,, find (P,Q) € G x G with e,.(P, Q) = z.
e(Q, P)L = 0;(Q, P)*il4 :/ ), As in [26], we consider the FAPI-1 problem in the present
a; (P, Q)Cl(q —1)/N; paper.
e(P,Q)L = (J?V;isstuperSIr}c(Jukli)ri)/N‘ Whene,.(P,Q) is a (reduced) Tate pairing, or a variant
a;" = (P, Q) ' thereof (e.g..jr or Ate), it is natural to attempt to invert
(£: ordinary). the pairinge,(P,Q) = f.p(Q)*= by first inverting the
. . . . . k7 . . .
Thus, the Ate and twisted Ate pairings are non-degeneratdiinal exponentiation (i.e., by taking—-th roots in the finite
if and only if (r, L;) = 1. field) and then inverting the pairing function (Miller inversion).
The reduced Ateand twisted Ate pairings are denoted asHere, we formulate the Miller inversion. .
a;(Q, P) (or d;(P,Q)) andd;™™ (P, Q): Definition 2: Miller inversion (MI): Let D; be fixed, and
let S be a set of divisors. Let € F*,. Compute a divisor
4;(Q, P) == ai(Q, P)qk’;l? D, € S such that: = fS,Dl(DQ), or, if no such divisor exists,
o then output “no solution”.

—1
d?(PaQ) = ai(P7 Q) ()
a1 Il1. I NVERSION OFATE; PAIRING

~ twist twist

i P,Q) = q; P, o i i i i
“ (P.Q) = o™ (P Q) In this section, we explain the main result of the present
gper. First, we give the definition of El:

Definition 3: (Exponentiation Inversion, EI) For an un-

In Section 3, we use the exponential relationship betwef
the reduced Ate pairing @;(Q,P) and the Tate pairing

e(Q,P) : known elements € sz assume that an integer and the
’ value ofw := g™ € F*, are known. Then, the El, dn,w)-
- . PR LES S LiN; El, is the problem of finding? from the instancén, w).
Q. P)* = ay(Q. )" 7 T = e(Q, P P ¢ o, w)

When w is a value of a reduced pairing and = qk%

Note that the exponert-: is prime tor because?  (¢"—1). (n,w)-El corresponds to inverting the final exponentiation.
" However, we will deal with(n,w)-El for generaln in the

Improvements to Atge pairing have been proposed. Fopresent paper.

example, the R-Ate pairing has been proposed by Lee et alWe demonstrate that the pairing inversion problem of; Ate

[20], optimal pairing has been proposed by Vercauteren [2%fairings for many cases is reduced to the El. The basic concept

and a generalization of optimal pairing has been proposed dfyour approach is to use cyclotomic polynomigy, (X) for

Hess [13]. However, we do not present further informatioembedding degreé. As in Proposition 2.4 in [9]®(q) =

on these pairings in the present paper because the presefinod r) is equivalent to that the embedding degreekis

approach is applied herein only to Atand twisted Ate Therefore, we obtain a relationship among the Tate pairing

pairings. and a number of Atepairings using®; (X).



A. FAPI-1 onG; x G, attackers know the value of the (reduced) paindhdQ@, P) =

Here, we consider FAPI-1 oy x G; (Input: z € p,. C sz al(Q,P)%. Hence, the attackers must obtain values of
and Q € Gy, Output: P € G; such thatz = e.(Q,P)), a4(Q,P), a2(Q,P), and7(Q, P) from a1 (Q, P). However,
although the basic strategy does not depend on whethwader the assumption that the El can be solved efficiently, the
pairings are defined o, x G; or Gy x Go. attackers can compute, (Q, P), a(Q, P), and7(Q, P) from

We first explain the case for which the embedding degrea (Q, P). First, the attackers comput&, (Q, P), d2(Q, P),
is k = 12. The proposed approach can be described veapde(Q, P) by the exponential relationship
simply for & = 12, which is currently the most popular . o LiN;
embedding degree for implementation (see e.g., [7], [23]) a;(Q, P)" =e(Q,P)""
because good parameterized curves, so-called BN-curves (8if course, attackers can easily compig L;, andc; for all
can be obtained witlht = 12. i.) Then, attackers compute,(Q, P), a2(Q, P), and7(Q, P)

1) Thek = 12 case: The cyclotomic polynomiafb,5(X) by mvertmg the final exponentiation. Note thaf@, P) =

is X*— X%+ 1. Therefore, divides ®12(q) = at —¢® +1, 7(Q, P)*=
that is, T; := ¢' mod r satisfies the following: Therefore, FAPI-1 of the Al;epalrmg onG, x G, is reduced
Ty—To+1=0 (modr). to the EI for the case in which = 12.

2) Other case:The general case is similar to thie= 12
We write T, — T5 + 1 = rU, whereU ¢ Z. Therefore, we case. We show the cyclotomic polynomi&l,(X) and the

obtain relationships among pairings for various embedding degrees,
fTi-T0,0 = [-14+rU,Q- (1) k(>1).

. . o Case 1.k =2M3" (u>1,v>1)

The right-hand side of (1) can be expressed This is a direct generalization of the = 12 case. The
lrt1Q,-Q cyclotomic polynomial is®;(X) = X5 — X% + 1. In the
foimrvo = fruof-10 VU110 same manner as for the= 12 case, we obtain the following
" lationship
1 o1 re
fT QfU e VQ B fr,Q . @ Om- (Q P) — v[Tk/s]Q(P)
The left-hand side of (1) can be expressed g(Q P) @, P)Y Z[Tk/B]Qv_[Tk/G]Q(P)
I T Tz —Type+ 1
fr-mo = fT‘th_TZ’Qw whereU = —
V[T, —T2]Q Case 22k=3" (v > 1) . i
s 1 ) lryo,-m)0 The cyclotomic polynomial ishb,(X) = X5 + X35 41,
TaQ I12.Q " Vim0 v_@Q and the pairing relationship is
_ fre lmjelme 1 az(Q, P)ax(Q,P) 1
sz,Q U[TZ]Q VQ T(Q, P)U l[TQk/B]Qy[Tk/B]Q(P) ’
Therefore, by comparing the left- and right-hand sides, we Torys + Thys + 1
have whereU = —
frio VmQ Case 3:k =2(u = 1)

The cyclotomic polynomial isby(X) = X3 + 1. In this
case, at first it might appear that no pairing relationship exists.
By normalization and evaluation & = (xp,yp), we obtain However, multiplying by the polynomiak + 1, we obtain
the relationship among pairings:

ay(Q, P) _ TP T InQ
@ (Q, P)7(Q,P)V  axp+yp+b’

wheret(Q, P) := f, o(P) andaz + y + b is the normalized
function of /1,10, - 12)0-

If attackers obtain values of three pairings,(Q, P), _
a2(Q, P), and 7(Q, P), they are able to computg := lr@.@(P) iz, 1. r,+1Q(P)
a4(Q, P)az(Q, P)~'7(Q,P)~Y and find the pointP = : ? ?

(.’L’P,yp) by solving (Cm?p +yp + b)ﬁ = Tp — T[1y)Q and wherelU = Tk/2+1 + Tk/2 +11 + 1.
the defining equation of?, namely,y% + a1z pyp + asyp = r
Th + axx? + asxp + ag. For generalk, Zf OlT = 0 (mod r) holds because the

We next consider the method of computing the three pairirgclotomic polynomial ®,(X) satisfies @ (X)| Y21 X'
values. Usually, attackers are assumed to obtain one pairifigerefore, we obtain the following relationsh|p
value. For example, for the case in which we use BN-curves ,_

[3] to implement pairings witht = 12, the most efficient 7(Q,P)7Y Hai(Q P) H
Ate; pairing isa1(Q, P). Therefore, we may assume that the . l[T]Q

frooffo  lmie-me

Tyjo41 +Tyo+T1+1=0 (mod r).

Thus, we obtain the following relationship:
OL%—&-l(Q) P)O[g (Q7 P)al(Qa P)
m(Q, P)Y

rp — ﬂf[Tg +T11Q

)

)

4



ST — for m = 6 and

whereU = ==L=" and W; := Y T (i > 2). Thus, we
T .
’ [T, o™(P,Q)

=0
obtain a pairing relationship usJing all of the Atpairings

U
ai(Q7P) (i:1727"'ak_1)- T(PvQ)

We estimate the running cost of reduction from the pairing _ V[S, 2+ (@)
inversion to the El. We assume the use of pairing-friendly USe 21P[Se11P(Q) * U[sS, 4P, [Se 2 +5..11P (@)
elliptic curves. Then, it may be assumed that< log,(q) AtV (P, Q)b (P, Q) 1
because the embedding degrees of pairing-friendly elliptic (P, Q)Y  lis.0)ps.41P(Q)

curves are less thdng,(r)/8 (see Section 2 of [9]). Thus, the

number of using an algorithm for solving the El to computéor m = 4 and 3, respectively.

a;(P,Q) is less than2log,(q). Thi?omplexity( o)f finding  Whenm =2, theng" —1=¢m —1=¢%>* -1 = (¢° —
B . B vw, (P 1)(¢® + 1). Thus, unlike the cases in whioh = 3,4,6, no
P = (zp,yp), Nnamely solvings = lj[z 0w (P) relationship among pairings is obtained. Finally, we consider
the defining equation af, is O(k) because the degree of thghe case in whictn = 1, whereS, ; = ¢** mod r = ¢'* mod
former equation isO(k). Therefore, the reduction from the” = 1. because = k. Thus, the proposed approach cannot be

pairing inversion to the EI can be performed in polynomigdPPlied in these cases.
time in log(q). We assume thaf, is a prime field, i.e.qg = p. Then,F

is a pairing-friendly field ifp = 1 (mod 12) and k = 2+3"
is even (see [19]). We present examples in which= 1,2
B. FAPI-1 onG, x G for k = 2¢3” (u > 1). Whenk = 2¢ (u > 1), if d = 3, then
Next, we consider FAPI-1 0@, x G2 (Input: z € p, C Fye m =1, and if (k, d) = (2", 2),(2,4), or (2",6), thenm = 2.
and P € Gy, Output: Q € Gs such thatz = e.(P,Q)). In Finally, whenk = 2#3" (u,v > 1), if (k,d) = (2"3",2) or
this case, the definitions of Ate and Atpairings depend on (2 - 3¥,4), thenm = 2.
whetherE is supersingular or ordinary. Whelti is supersin-  Usually, we choose elliptic curves with large(i.e., d =
gular, the Ate pairing onG; x G is defined byfr, p(Q). 4,6) so that point compress techniques, which are analogous to
Therefore, we consider the case 6, x G; in a similar techniques using distortion maps in the case of supersingular
manner. The exponential relationship between the p&éring curves, can be used. Therefore, the number of examples to
and the Tate pairing also holds in thig x G, case. Therefore, which the proposed approach cannot be applied is not large
we can solve FAPI-1 orfz; x G, if the EI can be solved in the case of pairing-friendly fields.
efficiently. Thus, the proposed approach can be applied to FAPI-1 of
Next, we consider the case in which is ordinary. In the twisted Ate pairing onG; x G in numerous practical
this case, the target pairing is the twisted Atpairing cases.
fre p(¥(Q')), wheree = k/ged(k, d). Therefore, we must
consider the values of both andd. Sincem := ged(k, d) =
1,2,3,4,6, we classify the results according to. IV. CONCLUSION
Whenm = 3,4, 6, theng® — 1 = ¢™° — 1 is factored as

and

In the present paper, we have demonstrated that, in several
¢% —1=(¢° = 1)(¢° +1)(¢* +¢° +1)(¢* — ¢° + 1), cases, FAPI-1 of the Atepairing is reduced to solving the EI.
¢ —1=(¢° = 1)(* + >+ ¢ + 1), The proposed approach can be applied to other pairings,
¢* —1=(¢° —1)(g% + ¢ +1). the R-Ate pairing [20] and the optimal pairing [29] (and
the generalization by Hess [13]), by converting the inversion

Thus, we have the following relationships among,; = problem of these pairings to that of the Atpairing since
¢*® mod r: these pairings also have exponential relationships with the
) Tate pairing. Thus, similar results can be obtained for these
Se2—8e1+1=0 (modr) (if m=6), pairings.
Sez+Se2+Se1+1=0 (modr) (if m=4), However, our approach is not practical because the El is not
Se2+Se1+1=0 (modr) (if m=3). easy. So, these results do not demonstrate that pairing-based

cryptosystems are insecure.

By settingS, > — 51 +1 = rU and performing computations - apniving our approach to FAPI-2 is still an open problem.
similar to those performed in the previous cases, we have

ISenPp  US..IP
I Up 1 '
Se,1,PJr P [Se,2] P,[—Se 1] P
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After substituting@ = (z¢,yq), we obtain the following
relationship among pairings:
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