I nformation Processing Society of Japan

Regular Paper

Knowledge-Based Spelling Correction
in Unix Command Names

YosHIHIKO EBIHARA*

Misspelling error correction in Unix commands and its measued data is presented as a prerequisite study for
man-intelligent machine interface. An I-shell (Intelligent-shell) has been developed as part of the C-shell in the
Unix system to correct misspellings. The I-shell incorporates knowledge-based dictionaries representing the char-
acteristics of a user’s keyboarding habits and performs knowledge acquisition of these characteristics for cor-
rect command prognosis. In practice, the I-shell corrected approximately 83.0% of the command misspellings
and predicted the correct command on 97.3% of occasions when the correct command was among the 5 can-

didate commands with the highest priority.

1. Introduction

The study of computerized correction of command
spelling errors in interactive processing systems has a rel-
atively long history and still remains of considerable in-
terest in the current research of a man-intelligent
machine interface [1]. Despite a small vocabulary of
Unix commands, there is still difficulty in driving the
powerful and accurate correction algorithm. One of the
reasons for this is due to the fact that each individual
user has a different level of skill and training in com-
puters and the correction strategy depends largely on
these characteristics. Another is due to the fact that
most Unix command names are short words. An earlier
paper [2] emphasized that a short misspelt word was
much more ambiguous than a longer one. Where a
misspelling was assumed to contain one error a high
rate of miscorrections by the correction algorithm occur-
red with respect to short command words.

This paper describes the command interpreter devel-
oped as part of the C-shell in the Unix system and is
referred to here as an I-shell (Intelligent-Shell). The I-
shell incorporates knowledge-based dictionaries
representing the characteristics and habits of a user’s
keyboarding. The knowledge acquisition of a user’s
keyboarding behavior is dynamically performed during
the operation of the I-shell. By using the acquired
knowledge, the I-shell selects a plausible correction,
where the corrected misspelling is limited to only com-
mand names, not including command attributes.

In practice, the I-shell corrected approximately
83.0% of the command misspellings and predicted the
correct command on 97.3% of occasions when the cor-

*Institute of Information Sciences and Electronics, University of
Tsukuba.

Journal of Information Processing, Vol. 15, No. 3, 1992

rect command was among the 5 candidate commands
with the highest priority.

Section 2 describes the concept of the correction
algorithm, Section 3 shows the system structure of I-
shell and Section 4 explains the knowledge-based dic-
tionaries. The error types are defined in Section 5 and
the knowledge acquisition and the error reversal
methods in Section 6, with the experimental results
given in Section 7.

2. General Concepts of Correction Algorithm

The command misspelling is corrected by two fun-
damentally different operations. The first step is to
select one or more candidate commands which have
been deduced by collating each type of error pattern
most closely resembling the misspelling. Plausible com-
mands are then stored in a command candidate set. We
assume that an input command name contains only one
error. These papers suggest that it is not as drastic a
restriction as it may seem since a large percentage of
misspellings in raw keyboarding typically contain one er-
ror [2-4].

The second step is to rearrange each member in the
command candidate set in a plausible order. The
plausibility of correction is evaluated by using the
knowledge-based dictionaries. When a user indicates
the correct command from the set, the knowledge data
of dictionaries is renewed and the effectiveness of this
correction is evaluated and measured by the I-shell.

3. System Structure of I-shell
The I-shell consists of 4 supporting processes in addi-

tion to the ordinary C-shell in the Unix system: Spelling
checker, Candidate selector, Probability calculator and

NI | -El ectronic Library Service

I nformation Processing Society of Japan

Knowledge-Based Spelling Correction in Unix Command Names

C-shell

Spelling

Lo Checker

| | Candidate Knowledge
Selector Data

v’

Probability Knowledge

Calculator Data

L, LRU Knowledge
Stacker Data

Fig. 1 System Structure of I-shell.

LRU stacker. Figure 1 illustrates the basic system struc-
ture of I-shell. In the knowledge database system, the
candidate selector has knowledge data related to the er-
ror patterns of a user’s keyboarding. The probability
calculator has knowledge data of transition probability
of a user’s input commands. The LRU stacker has
knowledge data of information on the recently used
commands for a user. These processes are executed in
parallel to reduce the processing overhead. They are ac-
tivated when the C-shell finishes establishing the in-
itialization and are stopped by signalling techniques
when the C-shell is exited.

The spelling checker receives an input command data
from the C-shell by the pipeline technique and examines
the syntax of the incoming command. If there was an er-
ror in the command name, the candidate selector not
only selects command candidates by using the misspell-
ing patterns but also dynamically performs knowledge
acquisition of misspelt patterns. The probability
calculator is activated to hold a valid command history
for a user whenever the incoming command is correctly
executed. It calculates the command transition probabil-
ity from the command history and keeps updating the
value in knowledge data during its operation. The LRU
stacker creates LRU command stacks for each directory
used by an individual user and loads the new corre-
sponding command stack in memory whenever the cur-
rent directory is changed. It also uses the command
stacks for a good command name prognosis. A com-
mand stack is a group of the five most recently used
commands.

4. Knowledge-Based Dictionaries

The knowledge database system has three kinds of
knowledge-based user dictionaries. They are an Error
Pattern Dictionary (EPD), a Transition Probability Dic-
tionary (TPD) and a LRU Stack Dictionary (LSD) per
directory.

3D

The EPD contains a pair of a group m numbers identi-
fying a misspelt error pattern and an occurrence
probability P, of its misspelt error pattern. In addition,
this dictionary also contains valid names of Unix stan-
dard commands and a keyboard arrangement which is
used to locate adjacent letters and evaluate whether a
typed letter belongs to the left or right hand (assuming
that a user employs touch-typing methods) of the target
key.

Q;(n) is defined as a transition probability with
which an incoming command j will appear at the n-th
time of input commands after the command i occurred
in the past.

The TPD has each file identified by a command
name. The file i, identified by command name i, consists
of the name of the command j, and a transition
probability value, Q;(1), where command j occurs im-
mediately after the previous command i.

The LSD is prepared with a pair of a name of com-
mand i and its transition probability value, R;(n),
n=1~5, per dictionary.

5. Error Types

In Papers [3, 4], four basic spelling error patterns are
identified: omission, insertion, substitution and
transposition. In addition to these four patterns, we
have defined four more subgroups in insertion, substitu-
tion and transposition, respectively. Thus, in total 13 er-
ror patterns (m=13) have been classified to reverse a
misspelling as shown in Table 1.

A definition for each error pattern is explained in the
following.

(1) Omission is defined as one character left out of
the string of a command name. This misspelling
belongs to subgroup 1 in Table 1.

(2 In the case of insertion, there are four
subgroups of misspelling error patterns: subgroup 2—

Table 1 Classification of Error Patterns.

Group m Subgroup

Omission 1 One omission

2 One extra adjacent character
. 3 A chattering

Insertion 4 One repetition
5 Others
6 A substitution in the left hand keys
7 A substitution in the right hand keys

Substitution 8 A substitution between the left and the

right hand keys
9 Others

10 An interchange between two adjacent
characters

11 An interchange between the small and
the capital letters

12 A chattering transposition

13 Others

Transposition

NI | -El ectronic Library Service

I nformation Processing Society of Japan

396

one extra adjacent character is inserted in the string;
subgroup 3—a chattering of a double letter; subgroup
4—one extra character which has previously appeared
in the string is inserted; subgroup S—other insertions
other than the above three error patterns.

(3) In the case of substitution, there are also four
subgroups: subgroup 6—a substitution between two
left hand keys; subgroup 7—a substitution between two
right hand keys; subgroup 8—a substitution between a
left and a right hand key; subgroup 9—all other
substitutions.

(4) There are also four subgroups for transposition:
subgroup 10—an interchange of two adjacent
characters; subgroup ll—an interchange between a
capital and a small letter of the same character;
subgroup 12—a chattering transposition; subgroup
13—other transpositions. The chattering transposition
is caused by at least one repetition of a key stroke.
Here, it is treated as an exception. For example, if one
typed ‘“little’’ as ‘‘litlle’’, it may be regarded as one
omission and one chattering insertion. However, for
practical purposes we classified this kind of misspelling
as a chattering transposition.

6. Error Reversal

Here we explain the error pattern knowledge, com-
mand transition and command locality. Knowledge ac-
quisition and error reversal methods are also described
in this section.

6.1 Knowledge of Error Patterns

The most suitable correction strategy for Unix com-
mand names depends on both the nature of a small
vocabulary with short words and the misspelling charac-
teristics of an individual user’s keyboarding. Thus, the
I-shell has been adapted to positively learn misspelling
characteristics. Knowledge acquisition is executed as
follows. Whenever the correct member of the command
candidate set was determined by the user, the I-shell ex-
amines it to discover which error pattern caused the
misspelling and dynamically updates the value of the
corresponding error pattern probability.

There is a trade-off between a quick response and ac-
curacy of correction. For practical purposes, the
number of error patterns is limited to 13 groups. A
misspelling is examined in order of an error pattern
with the highest occurrence probability and is
transformed into one or more Unix commands by col-
lating error patterns most closely resembling the
misspelling. 13 error patterns are executed by a single
application of the corresponding error operation. If
necessary, the error operations use the similar string-
distance measurement technique [3, 5, 6], differing in
length by 0, 1.

Y. EBIHARA

6.2 Knowledge of Command Transition

A strong correlation between specific commands ex-
ists in the command sequences. The correlation varies
with the individual characteristics of a user. Thus, the I-
shell prepares the TPD for each user at the time of
login. It dynamiclly updates the value of transition
probability in the dictionary whenever the user utilizes a
valid command. For example, when the current com-
mand j was correctly executed, the I-shell can calculate
Q;;(1) as it memorized the previous command /. Then, it
updates its value in the dictionary. The Unix system is
supported by more than 300 standard commands.
However, we have selected the 300 standard commands
with the highest rate of usage. Neither the remaining
Unix command nor the editing subcommands are in-
cluded in the dictionary. The size of each user’s dic-
tionary approaches the order of 300 x 300.

The large part of mean processing time for a com-
mand is represented by the mean processing time of a
valid command because valid commands occupy the
most of the total commands. Thus, the mean processing
time is measured from the time the C-shell sends an in-
coming command to the spelling checker until the time
the probability calculator completes to update the
TPD. The measurement was executed when almost 10
terminals were connected to a Sequent S81 (Main
Memory 24 Mbytes) and very few background jobs
were running. It takes the mean processing time of
70~ 120 mS to examine an incoming command and up-
date the transition probability. This includes the pure
processing time of 10~ 15 mS plus the disk I/O proc-
essing time of 60~ 105 mS.

6.3 Knowledge of Command Locality

By looking closely at a user’s history of command se-
quences, it was found that a specific command that oc-
curred in the past will recur in the very near future. This
means that a locality of command reference exists. A
typical example is that a combination of the ‘‘emacs”’
editing command and the ‘‘make’’ command appear
very frequently when a user is developing a program.
Another phenomena is that the command history
depends not only on user characteristics but also on
what job the user is doing on the computer [7]. In other
words, the number and kinds of commands used vary
according to different directories. This locality will be in-
cluded as knowledge data to improve a plausible correc-
tion. When the LRU stacker puts a valid command i on
the LRU stack, it learns the distance n of the current
command / from the previous command i and updates
dynamically the value with the new probability R;(n) in
the LSD. The command i in the command candidate set
has the value of R;(n) only when the previous com-
mand / is found in the current LRU stack.

NI | -El ectronic Library Service

I nformation Processing Society of Japan

S-t- - —@- o —pctir@ T T —-eto e oo o - -

6.4 Priority Decisions

When the command candidate set has been retrieved,
each member is tested for plausibility of corrections by
a plausible vaue. The plausible value is calculated as
follows. If command j followed by the previous com-
mand / is one candidate and the same command j occur-
red in the past n times of input commands, the plausible
value 7; of command j is simply yielded by a sum of
each of the probabilities.

T;j=Pn+Q;(1)+R;(n), n=1~5 4]

Thus, each member of the command candidate set is
sorted in the right place in the order of the highest
plausible value.

7. Experimental Results

In order to examine the effectiveness of the
knowledge-based error correction, several experimental
measurements have been conducted by installing the I-
shell in a Unix system. Collection of data was started at
the stage of steady status after one month’s running of
the I-shell for knowledge acquisition of user’s character-
istics. The three experimentees we chose are graduate
students who can touch-type. They used 80 different
kinds of commands on an average. The total number of
used commands is about 2,000 for a user. During the
measurement period, they programmed for system
development of almost the same job. Thus, it seems to
be all right to consider that the variation of different
percentage for the error patterns among them mainly
comes from their personal experiences rather than the
differences of job content. The measured resuits are
shown in the following.

(1) Error detection

Figure 2 shows the number of candidates and its
percentage as an average, achieved by using only the er-

Percentage(%)
16 148
14 12.9
12
10
8 7.6
6 6.1
4 36 34 34 32
24 22
0 , [0
1 2 3 4 5 6 17 9 10 11 12
Number of Candidates

Fig. 2 Number of Candidates for the Error Detection.

ror detection technique without any knowledge data.
The results show that many candidates are ambiguously
selected in this correction operation. The percentage of
correction was approximately 14.8%.

(2) Effect of the EPD

By using the EPD, the I-shell determines the value of
probability for each member of the command candidate
set according to the error pattern of misspelling. A
mean occurrence probability of each error pattern is il-
lustrated in Table 2 and the variation of error pattern
frequency among the three users is also shown in Fig. 3.
Table 3 shows the effectiveness of the EPD in correction
operation. The result explains that this operation ap-
plied by the EPD in effect corrected 54.7% of misspell-
ings and predicted the correct one on 86.5% of
occasions when the correct command was among the §
candidates with the highest priority. It is concluded that
this correction operation performs with a higher ac-

Table 2 Occurrence Probability of Error Ptterns.

Group m Subgroup Prc;(b]a(;)_ll;ty
Omission 1 One omission 184
2 One extra adjacent character 163
. 3 A chattering 56
Insertion 4 One repetition 28
5 Others 72
6 A substitution in the left hand
keys 32
7 A substitution in the right hand
Substitution keys s
8 A substitution between the left
and the right hand keys 187
9 Others 5
10 Aninterchange between two ad-
. jacent characters 221
Transposition 12 A chattering transposition 2
13 Others 16

Percentage(%)

8 User 1
40 O User2
O User3 33

35| 4
30
25
20
15

9 10 11 12 13

Group Number of Error Patterns

Fig. 3 Error Patterns of the Three Users.

NI | -El ectronic Library Service

I nformation Processing Society of Japan

398
(%)
100 92.5 5953
%;./‘s’—:: 920
75.7 81.0
799
69.8
50 54,2
338
217
14.8
0
1 2 3 4
Error Error Error Error
detection detection detection detection
+ EPD + EPD + EPD
+ TPD +TPD
+LSD
(O Percent of occasions when the correct d was the first candid:

4 Percent of occasions when the correct command was among the 2 candidates
with the highest priority.

[Percent of occasions when the correct command was among the 3 candidates
with the highest priority.

Fig. 4 Effect of the Combined Dictionaries.

curacy of correction than when only the error detection
operation is executed, even though there is still liable to
be a slight variation between the users.

(3) Effect of the TPD

By referencing the TPD, the I-shell selects the value
of transition probability for the candidates and sorts
them according to the highest order. Table 4 shows the
effectiveness of the TPD. On the average, the command
dictionary alone corrected 32.7% of misspellings and
predicted on 68.4% of occasions if the 5 command can-
didates with the highest priority are included. The
results suggest that the variation of the correction ac-
curacy among the users has improved in comparison to
that of the EPD, although the plausible correction rate
remains low.

(4) Effect of the LSD

Table 5 illustrates the comparison of error correction
effectiveness between the stand-alone operation of the
TPD and the combined knowledge that includes the
TPD and LSD. By applying the LSD to the correction
operation, the accuracy of error corrections has been
slightly improved by approximately 5% on an average.
With the two dictionaries together, the I-shell forecasts
the correct command on an average 73.3% of occasions
if the 5 command candidates with the highest priority
are included.

(5) Effect of the combined dictionaries

By applying the three dictionaries together, the I-shell

Y. EBIHARA

Table 3 Effect of the Error Pattern Dictionary.
Precent (%)

Priority 1 2 3 4 5 Total

User 1 63.4 5.2 13.1 3.9 4.6 90.2
User 2 53.2 16.9 39 0.1 2.6 76.7
User 3 47.4 323 3.2 5.0 4.8 92.7

Average 54.7 18.1 6.7 3.0 4.0 86.5

Table 4 Effect of the Transition Probability Dictionary.
Percent (%)

Priority 1 2 3 4 5 Total

User 1 34.0 18.0 13.0 7.0 2.0 74.0
User 2 25.0 18.0 10.0 8.0 5.0 66.0
User 3 39.0 13.0 6.0 5.0 2.0 65.0

Average 32.7 16.3 9.7 6.7 3.0 68.4

Table 5 Effect of the LRU Stack Dictionary.
Percent (%)

LSD+TPD Diffrence from the effect of TPD
User 1 75.0 1.0
User 2 75.0 9.0
User 3 70.0 5.0
Average 73.3 4.9

Table 6 Effect of the Combined Dictionaries for the Three Users.
Percent (%)

Priority 1 2 3 4 5 Total

User 1 79.7 13.7 3.9 0.7 0.7 98.7
User 2 84.3 9.3 1.0 0.5 1.0 96.1
User 3 84.9 8.1 2.9 0.5 0.5 96.9

Average 83.0 10.4 2.6 0.6 0.7 97.3

corrected on an average 83.0% of the misspellings and
predicted the correct command on 97.3% of the time if
the 5 command candidates with the highest priority
were counted in the percentage as shown in Table 6.

Finally, Figure 4 illustrates an improvement process
in the case of the general public is also included. It
shows how an improvement of error corrections has
been achieved as an average when the three dictionaries
are added one by one to the correction operation.

8. Conclusions

The I-shell corrected approximately 83.0% of the
command misspellings and predicted the correct com-
mand on 97.3% of occasions when the correct com-
mand was among the 5 command candidates with the
highest priority. This measurement data shows that the
knowledge-based error correction algorithm is useful

NI | -El ectronic Library Service

I nformation Processing Society of Japan

ARV ITILURY AMULU AICEIIIEE UG TLEIUIE B A U L YUITECD

and practical.

The I-shell has been developed as part of the C-shell
in the Unix system and required a slight modification of
the C-shell by using the signal and pipeline techniques.
Thus, the I-shell has an advantage in that the impact of
modification on system reliability is much smaller com-
pared to a program being built from scratch. From this
viewpoint of system implementation, I-shell implemen-
tation is more practical and useful than other methods.

The I-shell required an average processing time of
about 160mS per input command. This fact still
guarantees the quick response time for an interactive
processing system.

The knowledge-based error correction algorithm is
based on the simple sum of each probability and works
well in the correction. The logical and reasonable ex-
planations on this affair still remain to be investigated
by further research.

39y

References

1. IKEDA, K. Man-Intelligent Machine Interface, J. of IECE, 69, 11
(1985), 1160-1166.

2. PoLLock, J. J. and ZAMORA, A. Collection and Characterization
of Spelling Errors in Scientific and Scholarly Text, J. Am. Soc. Inf.
Sci., 34 (1983), 511—-58.

3. PoLLock, J. J. and ZAMORA, A. Automatic Spelling Correction
in Scientific and Scholarly Text, Comm. ACM, 27, 4 (1984), 358-368.
4. Gates, A. L. Spelling Difficulties in 3867 Words, Bureau of
Publications, Teachers College, Columbia University, New York
(1937).

5. HaLL, P. A. V. and DowLiNG, G. R. Approximate String
Matching, Comput. surv., 12, 4 (1980), 381-402.

6. ULLMANN, J. R. A Binary N-Gram Technique for Automatic Cor-
rection of Substitution, Deletion, Insertion and Reversal Errors in
Words, Comput. J., 20, 2 (1977), 141-147.

7. Takano, S., EBIHARA, Y. and IKepA, K. Intelligent Man-
Machine Interface with Knowledge of Keyboard-Array, Command-
History and User-Habits, Proc. of the 2nd Annual convention Al
Japan (1988), 505-508.

(Received July 23, 1991; revised February 10, 1992)

NI | -El ectronic Library Service

