
PHYSICAL REVIEW B 85, 064521 (2012)

Three-dimensional numerical analysis of terahertz radiation emitted from intrinsic
Josephson junctions with hot spots
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In this study, we numerically investigate the terahertz radiation from mesa-structured intrinsic Josephson
junctions (IJJs) using a three-dimensional calculation model. We assume an in-phase mode of the phase differences
and calculate electromagnetic fields inside and outside of the IJJs simultaneously. We consider the appearance
of a hot spot in the mesa where jc locally decreases and investigate the change of the radiation power with
varying hot-spot positions. The radiation powers for three different hot-spot positions are calculated as functions
of voltage. We observe strong radiation when the ac Josephson frequency satisfies the cavity resonance condition.
Transverse-magnetic modes TMm,n whose indices m and n are even appear regardless of the positions of hot
spots. Meanwhile, the TMm,n cavity modes whose m or n are odd appear only when the hot spots break the
reflectional symmetry of the mesa structure. Moreover, we calculate the radiation patterns emitted by the IJJs
at these cavity resonance conditions. The radiation patterns reflect the existence of two types of internal modes,
that is, a uniform background mode and a cavity resonance mode.
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I. INTRODUCTION

Recently, the radiation of coherent terahertz waves from
high-Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212) single
crystal has attracted much attention. These samples generate
0.3–1-THz waves and are expected to be possible candidates
for a compact solid-state terahertz source. Since Bi2212 single
crystals form intrinsic Josephson junctions (IJJs) that consist
of the stacking of superconducting CuO2 layers and insulating
Bi-Sr-O layers, ac Josephson currents flow through the crystals
under dc bias voltages. Intense radiation has been reported in
both experimental and theoretical studies at the voltages where
the ac Josephson frequencies coincide with cavity resonant
frequencies of the Bi2212 mesa.1–16 However, the precise
nature of the radiation mechanism is not fully understood.

Klemm and Kadowaki have recently investigated the inter-
nal mode of the IJJs by analyzing the experimental radiation
patterns2–4 using antenna theory.17–19 For the interpretation of
the experimental results, they assumed two types of radiation
sources: the uniform part of ac Josephson current and the
nonuniform part of ac Josephson current corresponding to
cavity resonant modes. However, they did not calculate
the phase dynamics in the IJJs. Meanwhile, Matsumoto
and Koyama numerically investigated simultaneously the
phase dynamics in the IJJs and radiation pattern using a
two-dimensional model.13–15 They reported strong emissions
from IJJs in the cavity resonance conditions and discussed
the relation between the internal modes and the radiation
patterns. However, in two-dimensional models, we cannot
treat correctly the electromagnetic field emitted from three-
dimensional rectangular IJJs. Moreover, the radiation patterns
emitted by inhomogeneous samples have not been investigated
in previous studies. Recently, Wang et al. have reported the
appearance of hot spots where the temperature is locally
high,20–22 and these inhomogeneities are considered to affect
the emission from the IJJs.

In this paper, we present a three-dimensional simulation of
the radiation from IJJs to discuss the radiation properties of
IJJs in further detail. In particular, we focus on the radiation

properties of the IJJs having a hot spot. We consider the
appearance of a hot spot in the mesa where jc locally decreases
and investigate the change of the radiation power with the
positions of the hot spots. The radiation power is calculated as
a function of the voltage for three different hot-spot positions.
We observe strong radiation when ac Josephson frequency
satisfies the cavity resonance condition. Transverse-magnetic
modes TMm,n whose indices m and n are even appear regard-
less of the positions of hot spots. On the other hand, TMm,n

cavity modes whose m or n are odd appear only when the hot
spots break the reflectional symmetry of the mesa structure.
Moreover, the radiation patterns emitted from the IJJs reflect
the coexistence of two types of internal modes, that is, the
uniform background mode and the cavity resonance mode.

II. CALCULATION METHOD

We consider a rectangular mesa sample whose IJJs stack
along the z axis. The mesa is sandwiched by an infinite-size
substrate and an upper electrode whose geometry is the same
as the mesa. Figure 1 shows the schematic figure of our three-
dimensional calculation model. We assume that the substrate
and the electrode are perfect electric conductors. The uniform
external current parallel to the z axis is injected from the
upper electrode. For the outer boundary of the calculation
region, we use the perfectly matched layer absorbing boundary
condition. The dimensions of the mesas are as follows: width
w = 0.48λc, length l = 0.72λc, and height h = 0.02λc, where
λc is the magnetic penetration depth along the IJJ plane. If we
take λc = 100 μm, the sizes of the mesas become similar to
the experimental studies.

In this study, we focus on the reversible type of emission
observed at the reversible region of the I -V curve.2,5,8,21 The
thickness of the superconducting CuO2 layer of the Bi2212
single crystal is an atomic scale (∼3 Å) and comparable to a
charge screening length. Hence, the phase differences between
the IJJs interact with each other through the electric fields,
which perpendicularly penetrate the junctions, and the phase
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FIG. 1. (Color online) A schematic view of the three-dimensional
calculation model.

synchronization will occur to keep the charge neutrality of
the junctions. We assume the in-phase motion of the phase
differences: all phase differences are equal to each other.11,13,14

In this assumption, the time evolution of the dimensionless
electromagnetic fields and the phase differences in the IJJs are
described by the following equations:11,13,14

∂

∂t ′
P = E′

z, B ′
x = − ∂

∂y ′ P, B ′
y = ∂

∂x ′ P, (1)

∂

∂t ′
E′

z = 1

εc

(
∂

∂x ′ B
′
y − ∂

∂y ′ B
′
x

)
+ j ′

ext

− j ′
c(x,y) sin P − βE′

z , (2)

where P is the phase difference between the IJJs, E′
z is the

electric field, B ′
x and B ′

y are oscillation parts of the magnetic
field, j ′

c is the critical current, and j ′
ext is the homogeneous

external current injected into the IJJs. The parameter β =
4πλcσc/c

√
εc is the normalized conductivity, and εc is the

dielectric constant of the junctions along the c axis. In this
study, we take εc = 16 and β = 0.075. The value of β is
comparable to that of the normal conductivity of Bi2212
mesa under a large applied current. The I -V curves of the
Bi2212 mesa show negative resistance in a large current region
due to the joule heating, and the reversible type of emission
has been reported in this region.2,5,8,21 Here we assume that
the electric field parallel to the IJJ plane is negligibly small
(Ex = Ey = 0) and the applied magnetic field is zero. In the
above equations, we use dimensionless quantities as follows:
length x ′ = x/

√
εcλc, time t ′ = ωpt , where ωp = c/

√
εcλc,

electromagnetic field E′ = (2ed/h̄ωp)E, B ′ = (2ed/h̄ωp)B,
where d is the thickness of the insulating layers of IJJs, and
current j ′ = (8π2dλ2

c/cφ)j . As described in Eqs. (1) and (2),
the phase dynamics of the in-phase IJJs is similar to that in a
single junction. However, the distances between the adjacent
IJJ layers are extremely small; thus a large number of junctions
contribute to the phase dynamics even in thin mesas whose
thicknesses are approximately microns. This situation makes
it possible for IJJs to emit a high-power terahertz wave.

In this study, we use a finite-difference time-domain method
for calculating the electromagnetic field inside and outside of
the mesa. In the region inside of the mesa, we set Ex = Ey =
Bz = 0 and solve Eqs. (1) and (2). Meanwhile, in the region
outside of the mesa, we solve three-dimensional Maxwell’s
equations in free space. The electromagnetic fields in both the
regions are directly connected to each other at the side edges of

FIG. 2. (Color online) Schematic figures of the positions of the
hot spots in the four different mesas.

the mesa. The far-field radiation patterns are calculated from
the equivalent electric and magnetic current along the surface
of the calculation region.23

For investigating the effect of an inhomogeneity on the
radiation properties, we consider the appearance of “hot
spots” where the temperature is locally high. In our model,
such hot spots are simulated by decreasing the local crit-
ical current. We consider four types of mesas (mesas A–
D). Mesa A does not have hot spots, and mesas B–D
have one hot spot each. We take j ′

c(x,y) = 1 − γ in the
hot-spot region (xs < x < xe,ys < y < ye) and j ′

c(x,y) =
1 in the other region. The center of the mesa is lo-
cated at the origin, and we choose xs = −0.24λc, xe =
−0.08λc, ys = −0.12λc, ye = 0.12λc for mesa B, xs =
−0.08λc, xe = 0.08λc, ys = −0.36λc, ye = −0.12λc for mesa
C, and xs = −0.24λc, xe = −0.08λc, ys = −0.36λc, ye =
−0.12λc for mesa D. Figure 2 shows schematic figures of
the geometries of these four mesas. The appearance of such
hot spots whose positions are asymmetric with respect to the
center of the mesas have been already reported in previous
experimental studies.20–22

III. RESULTS AND DISCUSSIONS

First, we examine the radiation power versus voltage (P -V )
curves of the mesas. The radiation powers are calculated from
the time average of the surface integration of the Poynting
vector given by (c/4π )

∫
S
(E × H) · ndS, where S indicates

the outer boundary of the calculation region and n is the unit
vector normal to the boundary. Figures 3(a)–3(d) show the
P -V curves of mesas A–D, respectively, for γ = 0.1–0.3.
Here the power and the voltage are normalized by P0 =
c�2

0/16πd3 and Vp = h̄ωp/2e, respectively. With respect to
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FIG. 3. (Color online) (a) The P -V curve of the homogeneous mesa. (b)–(d) The P -V curves of the inhomogeneous mesas with hot spots.
The black (dotted), red (broken) and blue (solid) lines indicate the curves for γ = 0.1, γ = 0.2, and γ = 0.3 respectively.

mesas B–D, we have calculated P -V curves for γ = 0.1–0.3.
In Figs. 3(a)–3(d), we can see sharp peaks at voltages where
the ac Josephson frequency fJ = 2eV/h satisfies the cavity
resonance condition fJ = c

√
(m/2w)2 + (n/2l)2/

√
εc, where

m and n are arbitrary integers. The peak voltage V = 6.44Vp,
for example, satisfies (m,n) = (1,0). The labels of the peaks
in Fig. 3 indicate the indices of the cavity resonance modes.
It should be noted that the peak voltages slightly deviate
from the voltages that are estimated from the above cavity
resonance condition due to the fringing effect. If we take
d = 1.2 × 10−7cm, the peak powers become ∼10 μW. These
values are comparable to those reported in experimental
works.1–3 As can be seen from Fig. 3, the cavity resonant peaks
whose m and n are even appear in all mesas. Meanwhile, the
peaks whose m is odd only appear when the y-axis symmetry
is broken (mesas B and D), and the peaks whose n is odd only
appear when the x-axis symmetry is broken (mesas C and D)

In the mesa-structured IJJs, the excitation of the electro-
magnetic mode comes from the ac Josephson current flowing
through the mesa, and the distribution of the ac Josephson
current has a symmetry corresponding to the mesa structure
unless the solitonic states appear. Hence, in a homogeneous
rectangular mesa such as mesa A, the odd-numbered cavity
modes whose electric fields are asymmetric with respect to the
center of the mesa cannot be excited. Meanwhile, in mesas
B–D, the odd-numbered cavity modes appear because the
hot spots break the reflectional symmetries of the rectangular
mesas. Furthermore, the increase of the asymmetric nature of

the mesa enhances the mode excitation, as can be seen from
the results for γ = 0.1–0.3 in Figs. 3(b)–3(d).

Next, we investigate the internal mode of the mesa at the
peak voltages. Hereafter, we show the results of mesa D
for γ = 0.2 because all cavity modes appear in this mesa.
To investigate the oscillation part of the electric field, we
take the Fourier transform of the electric fields Ez in the
mesa. Figures 4(a)–4(f) show the amplitude maps of the
Fourier components of Ez at the ac Josephson frequency for
V = 4.47Vp, V = 6.44Vp, V = 8.07Vp, V = 8.77Vp, V =
11.3Vp, and V = 12.7Vp, respectively. Figure 4 shows the
appearance of the standing waves corresponding to the cavity
resonance modes. However, the amplitudes of the electric
fields at the positions of the nodes have finite values. Since
the shapes of the standing waves are clearly seen in Fig. 4, this
fact indicates the existence of background oscillating modes
that are almost uniform in the mesas. If we assume the uniform
background modes, the oscillation part of the electric field EOS

in the mesa can be written as

EOS(x,y,t) = Ebg sin(2πfct) + Ecv cos

(
mπx

w
+ mπ

2

)

× cos

(
nπy

l
+ nπ

2

)
sin(2πfct + ϕ0)

(−w/2 < x < w/2, − l/2 < y < l/2),

(3)
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FIG. 4. (Color online) The Fourier components of electric fields Ez at (a) V = 4.47Vp , (b) V = 6.44Vp , (c) V = 8.07Vp , (d) V = 8.77Vp ,
(e) V = 11.3Vp , and (f) V = 12.7Vp .

where Ebg and Ecv are, respectively, the amplitudes of the
uniform background mode and the cavity resonance mode, fc

is the cavity resonance frequency c
√

(m/2w)2 + (n/2l)2/
√

εc,
and ϕ0 is the phase difference between these modes. This
kind of “dual” internal modes has already been proposed in
a previous theoretical study.17 However, that study did not
calculate the phase dynamics in the IJJs and did not confirm
the existence of this mode by numerical calculations.

Here we examine the results at V = 6.44Vp which satisfy
the (1,0) cavity resonance condition to see how well this
dual-mode model [Eq. (3)] can describe the numerical results.

FIG. 5. (Color online) The time evolution of the oscillation part
of electric fields at V = 6.44Vp . The black, red, and blue open circles
indicate the calculated values in our simulation at (x,y) = (0,0),
(x,y) = (0.24λc,0), and (x,y) = (−0.24λc,0), respectively. The lines
indicate EOS at each position when m = 1,n = 0, Ebg = 0.142,
Ecv = 0.492, and ϕ0 = 0.5π .

Figure 5 shows the time evolution of the oscillation part
of electric fields at three positions in the mesa: (x,y) =
(0,0), (x,y) = (0.24λc,0), and (x,y) = (−0.24λc,0). The open
circles indicate the calculated values in our simulation using
Eqs. (1) and (2), and the lines indicate EOS(x,y,t) obtained
from Eq. (3) when m = 1, n = 0, Ebg = 0.142, Ecv = 0.492,
and ϕ0 = 0.5π . As seen in Fig. 5, the calculated values
are well described by Eq. (3). Moreover, the amplitude
distribution of EOS becomes ∼

√
E2

bg + E2
cv sin(πx/w)2 when

the phase difference ϕ0 ∼ 0.5π , and this distribution agrees
well with the amplitude distribution at V = 6.44Vp, shown
in Fig. 4(b). Next, we examine the tail region of the
resonance peak. Although ϕ0 is close to 0.5π at the peak
voltage, ϕ0 deviates from 0.5π in the tail region of the peak.
Figure 6(a) shows the time evolution of the oscillation part
of electric fields at V = 6.37Vp. The open circles indicate
the calculated values in our simulation, and the lines in-
dicate EOS(x,y,t) obtained from Eq. (3) when m = 1, n =
0, Ebg = 0.144, Ecv = 0.244, and ϕ0 = 0.831π . Again, the
simulated data are described very well by Eq. (3). Figure 6(b)
shows the amplitude maps of the Fourier components of
Ez at the ac Josephson frequency for V = 6.37Vp. Since
ϕ0 deviates from 0.5π in this voltage region, the amplitude
distribution of EOS becomes asymmetric and is given by√

E2
bg + E2

cv sin(πx/w)2 + 2EbgEcv sin(πx/w) cos(ϕ0). This
agrees well with the simulated amplitude map of Ez at the
ac Josephson frequency for V = 6.37Vp, shown in Fig. 6(b).

Furthermore, to clarify the relation between the inter-
nal modes and radiation patterns, we calculate the three-
dimensional radiation patterns at peak voltages. Figure 7(a)
shows three-dimensional plots of the radiation intensity I (θ,φ)
at V = 6.44Vp, and Fig. 7(b) shows the polar plots of I (θ,90◦)
in the x-z plane and I (θ,0◦) in the y-z plane at V = 6.44Vp.
We can see from Fig. 7 that the radiation pattern shows strong
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FIG. 6. (Color online) (a) The time evolution of the oscillation
part of electric fields at V = 6.37Vp . The black, red, and blue open
circles indicate the calculated values in our simulation at (x,y) =
(0,0), (x,y) = (0.24λc,0), and (x,y) = (−0.24λc,0), respectively.
The lines indicate EOS at each position when m = 1,n = 0, Ebg =
0.144, Ecv = 0.244, and ϕ0 = 0.831π . (b) The amplitude maps of the
Fourier components of Ez at ac Josephson frequency for V = 6.37Vp .

asymmetry with respect to the y-z plane and is different
from that of the usual patch antenna satisfying the (1,0)
cavity resonance condition. This asymmetry is explained by
the interference between electromagnetic waves emitted by
two different radiation sources. As previously mentioned,
the internal modes of the mesas are described by the sum

of the background modes and cavity resonance modes. Hence,
the total electromagnetic wave is also described by the sum
of the electromagnetic waves emitted by these modes. If we
assume a uniform background mode similar to the above
discussion, the background mode emits the electromagnetic
wave whose electric field is symmetric with respect to the
y-z plane. On the other hand, the (1,0) cavity resonance
mode emits an electromagnetic wave whose electric field
is antisymmetric with respect to the y-z plane. Therefore,
radiation intensity becomes strong by constructive interference
on one side of the y-z plane and weak by destructive
interference on the opposite side because of the different
symmetries of the radiation waves.

In Figs. 8(a) and 8(b), we show I (θ,φ), I (θ,90◦), and
I (θ,0◦) at V = 12.7Vp, which satisfies the (2,0) cavity
resonance condition. The radiation intensity decreases to
zero at θ = 0◦, similar to that arising from dipole antenna
radiation. In contrast to the result obtained from the (1,0)
cavity resonance condition, the radiation pattern is almost
symmetric with respect to the y-z plane when the voltage
satisfies the (2,0) cavity resonance condition. This is because
the (2,0) cavity mode emits an electromagnetic wave whose
electric field is symmetric with respect to the y-z plane, similar
to the uniform background mode. In this case, interference
between the electromagnetic waves emitted by both modes
results in similar radiation intensities on each side of the y-z
plane. The small asymmetric nature shown in Figs. 8(a) and
8(b) reflects the fact that the background mode is slightly
asymmetric because of the jc modulation at the hot spot. It is
noteworthy that the radiation intensity in the y direction, which
is normal to the wave vector of the standing wave, is small but
finite, as shown in Fig. 8(b). The usual patch antenna satisfying
the (2,0) cavity modes does not emit the electromagnetic wave
in this direction. Thus, the radiation in this direction indicates
the existence of the uniform background mode.

In Figs. 9(a)–9(d), we show I (θ,φ) at V = 4.47Vp,
V = 8.07Vp, V = 8.77Vp, and V = 11.3Vp. Similar to the
radiation pattern at V = 6.44Vp, the large asymmetric nature
shown in Figs. 9(a), 9(b), and 9(d) comes from the interference
between the electromagnetic waves emitted by the cavity
resonance mode and the uniform background mode. It is
important to keep in mind that the diffraction at substrate

FIG. 7. (Color online) (a) The three-dimensional plots of I (θ,φ) at V = 6.44Vp . (b) The polar plots of I (θ,0◦) in the x-z plane and I (θ,90◦)
in the y-z plane at V = 6.44Vp .
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FIG. 8. (Color online) (a) The three-dimensional plots of I (θ,φ) at V = 12.7Vp . (b) The polar plots of I (θ,0◦) in the x-z plane and I (θ,90◦)
in the y-z plane at V = 12.7Vp .

edges also affects the total radiation pattern. In particular,
the radiation patterns have been measured experimentally for
mesas whose substrate sizes are comparable to the wavelength
of the radiation waves. In this case, the radiation patterns
greatly change from those in which the mesas sat upon an
infinite ground plane.24,25 Therefore, for the analysis of the
experimental radiation patterns, we need to take into account
the effect of the diffraction at the substrate edges whose
geometries are similar to the experimental setups.26

Finally, we would like to discuss the P -V characteristic
from the view point of Fano resonance.27 As shown in
Figs. 3(a)–3(d), the peaks corresponding to the even-numbered

cavity resonance mode show asymmetry Fano resonance
peaks. Fano resonances appear in systems where continuum
and discrete states coexist, such as the quantum dot in
an Aharonov-Bohm ring,28 and the asymmetric nature of
physical quantities with respect to the energy comes from the
interference between these continuum and discrete states. In
the in-phase IJJs under dc bias voltages, the Josephson plasma
mode that uniformly oscillates inside the IJJs appears for any
voltage like the continuum mode, and this mode corresponds to
the uniform background mode discussed above. Meanwhile,
similar to the discrete mode, the Josephson plasma modes
oscillating with electromagnetic standing waves appear only

FIG. 9. The three-dimensional plots of I (θ,φ) at (a) V = 4.47Vp , (b) V = 8.07Vp , (c) V = 8.77Vp , (d) and V = 11.3Vp .
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when the voltage satisfies the cavity resonance condition.
Since the radiation power is related to the strength of the
plasma mode excitation inside the IJJs, the asymmetric peaks
in P -V curves can be regarded as Fano resonance peaks
coming from the interference between the continuum and
discrete Josephson plasma modes. It should be noted that
this asymmetric peak does not appear for the odd-numbered
cavity resonance condition. In the case of the odd-numbered
cavity resonance condition, the discrete Josephson plasma
modes become antisymmetric with respect to the center of
the mesa, while the continuum modes are symmetric. Thus,
the interference between the continuum and discrete plasma
modes becomes very weak, and the Fano resonance peak
disappears. The precise measurement of the line shape of the
peaks in the P -V curves is desired to confirm the resonance
between these two modes.

IV. CONCLUSION

In this study, we have studied numerically the three-
dimensional radiation patterns from mesa-structured intrinsic
Josephson junctions. We assumed an in-phase mode of
the phase differences and calculated electromagnetic fields
inside and outside of IJJs simultaneously. We considered
the appearance of hot spots in the mesa where jc locally
decreases and investigated the change of the radiation power
with the positions of the hot spots. We observe strong
radiation when the ac Josephson frequency satisfies the cavity
resonance condition. The transverse-magnetic modes TMm,n

whose indices m and n are even appear regardless of the
positions of hot spots. On the other hand, TMm,n cavity
modes whose m or n are odd appear only when the hot spots

break the reflectional symmetry of the mesa structure. The
odd-numbered cavity modes are exited by the ac Josephson
currents whose distributions are asymmetric with respect to the
center of the mesa. Moreover, the radiation patterns reflect the
coexistence of two types of internal modes, that is, a uniform
background mode and a cavity resonance mode. In particular,
the radiation patterns for odd-numbered cavity resonance
conditions exhibit asymmetry because of the interference
between these two types of radiation waves. Furthermore,
in the case of even-numbered cavity resonance conditions,
the interference between these two types of Josephson plasma
modes induces asymmetric Fano-like peaks in the P -V curves.

In this study, hot spots are simulated by decreasing the local
jc. Several theoretical studies have also investigated the radia-
tion properties in rectangular mesas having an asymmetric jc

modulation using a two-dimensional calculation model;11,15

however, they did not mention the origin of the jc modulation.
Furthermore, the change of internal modes by modulations in
the ab plane and three-dimensional radiation patterns emitted
by these modes were not clarified in these two-dimensional
analyses. As reported in this paper, the appearance of hot spots
strongly affects the radiation power. Therefore, the control of
hot spots will be one of the key issues for obtaining stable and
strong radiation from IJJs.
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