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Abstract

We consider a simple two-period model of irreversible investment under strategic interactions
between two players. In this setup, we show that the quasi-option value may cause some con-
ceptual difficulties. In case of asymmetric information, decentralized investment decisions fail
to induce first-best allocations. Therefore a regulator may not be able to exercise the option to
delay the decision to develop. We also show that information-induced inefficiency may arise in
a game situation and that under certain assumptions inefficiency can be eliminated by sending
asymmetric information to the players, even when the regulator faces informational constraints.
Our model is potentially applicable to various global environmental problems.
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1. Introduction

Irreversibility is one of the most fundamental characteristics of the environmental problems
we currently face. Extinction of an endangered species is one obvious example. Because we
cannot restore a species that has become extinct, the action that entails a loss of species can
be considered irreversible.! When there is uncertainty about future states, the impacts of
irreversible actions must be carefully evaluated. For example, if a project drives an economically
valuable but yet-to-be-discovered species to extinction, opportunity cost arises due to the loss
of that species. However, such cost is typically ignored in project evaluation because of the lack
of information about the species at the time of evaluation.

One can appropriately account for the potential loss of species by taking into consideration
the quasi-option value (QOV), or the Arrow-Fisher-Hanemann-Henry option value due to Arrow
and Fisher (1974), Henry (1974), Fisher and Hanemann (1987), and Hanemann (1989). The
quasi-option value can be viewed as the value associated with the mere prospect of obtaining
better information in the future. This concept is related to the (unconditional) expected value
of information (EVI) but is generally different from it (Conrad, 1980; Hanemann, 1989). Fisher
(2000) argued that QOV is also equivalent to the option value for investment under uncertainty
proposed by Dixit and Pindyck (1994), though Mensink and Requate (2005) showed that they
differ by the postponement value irrespective of uncertainty.

Previous studies of the QOV have generally assumed the presence of a single decision-maker.
Given that strategic interactions are almost always absent in a standard cost-benefit analysis,
this is a reasonable starting point. Yet, many of the situations to which the concept of the QOV
is relevant involve strategic interactions among relevant players.

For example, consider an open-access forest that potentially contains undiscovered genetic
resources, the existence of which may only become known in the future as a result of scien-
tific research. Because there is open access to the forest, each logger may find the immediate
benefits from logging more attractive than conservation of the forest’s genetic resources, even
if conservation is a better option for the society at large; this results in a “prisoners’ dilemma”
situation.

It is important to take strategic interactions into account when conducting the cost-benefit
analysis because it may alter the conclusion. For example, in the case of a single decision-maker,
the information that becomes available in the future never hurt the decision-maker. However, in
the presence of strategic interactions, a prisoners’ dilemma situation can be induced by public
information.

To see this, consider a case when there is a follower advantage (and a leader disadvantage) in
development.? In this case, the prospect of future information gives players a strong incentive to
hold back development because future information helps the players to make an informed decision
and because the players can avoid the leader disadvantage by holding back development. As a
result, both players may choose to conserve the forest, even if it is socially efficient to develop
the forest now. As shown below, an efficient outcome can be achieved in this case by giving
information asymmetrically. That is, the perfect information about the true state is given to
one player and a noisy message is given to the other player.

This finding has important implications for policies. It is widely believed that making ad-
ditional information to the public is generally desirable. Therefore, we often tend to hold the
opinion that new information and knowledge accumulated by the public sector, for example
through publicly-funded research activities, should be made widely available. However, our re-
sults warns against mindless public disclosure of information. It may be better to keep some

'In this paper, we say that an action is irreversible when it is impossible or prohibitively expensive to undo
the action.
2 A more precise definition of this is given later.



players more informed than others. Based on this, public information disclosure must be ac-
companied by careful consideration of the possibility of information-induced inefficiency.

This argument creates obvious and immediate concerns regarding equity issues. It may be
difficult to justify informing one player but not the other. However, even in cases of this type, we
can ensure equity ex ante by randomly assigning the player who receives the perfect information
before current actions are taken. Incorporating this twist into our model would not change our
results in any significant manner.

Beside contributing to the existing literature on the QOV mentioned above, this study also
contributes to the body of literature on value of information. Our definition of the value of
information is different from the definitions used in previous studies such as Levine and Ponssard
(1977), Bassan et al. (2003), and Kamien et al. (1990). For example, Kamien et al. (1990)
essentially define the value of information as the maximum transfer that an external agent
(maven) can extract from the players of the game. In contrast, our definition is based on the
expected social gains that information brings about.

This paper has two purposes. The first is to highlight some conceptual difficulties with the
QOV under strategic interactions. As will be shown later, it is possible to define generalized
version of EVI in the presence of strategic interaction. However, the same cannot said about
the QOV because the option to delay decisions to exploit future information may not exist.
For example, when the best response to conserve the forest is to develop the forest today,
conservation will not be supported as an equilibrium.

The second purpose of the paper is to investigate the potential importance of information-
induced inefficiency. We demonstrate that all the players could be hurt if they know that they will
know more in the future. In cases where this applies, the regulator should carefully disseminate
information. In particular, we show that sending information about the state asymmetrically
across players may be useful for achieving a socially efficient outcome.

This paper is organized as follows. In Section 2, we introduce strategic interactions into
the standard framework of the QOV. We then discuss the conceptual difficulty with the QOV
under strategic interactions. In Section 3, we consider a case in which information is given
to the players asymmetrically to achieve an efficient outcome. It is shown in this section that
manipulating information about the state by providing noisy message about the state may be
socially desirable. Section 4 provides some discussions.

2. Setup

Building upon the existing literature on QOV, we set up a model of irreversible investment
that includes the possibility of strategic interactions among players. Whenever possible, we use
notations similar to Hanemann (1989).

Following the previous literature, we assume that there are two time periods, of which
period 1 is the current period and period 2 is the future period. Previous studies typically
assumed, often implicitly, that there is a single decision-maker who can choose the action to be
taken in each period. We regard this decision-maker as a social planner in this study.

In line with the standard model, we consider the following situation: a forest can be developed
in each period. The forest may contain biological resources that will be lost if the forest is
developed (clear-cut). A key assumption in the previous QOV literature and in this study is
that development is irreversible; forest that has been developed in period 1 cannot be reversed
to the original state in period 2 (i.e., the lost biological resources cannot be recovered).

We shall denote by S = {s1,s2} the set of all possible states; s; represents the state in
which there are no biological resources, and s, is the state in which biological resources exist.
Hence, opportunity cost due to the loss of biological resources arises only when the state is ss.
In period 1, the state is not known. However, it is known ez ante that s; and so occur with
probability m and 1 — 7 respectively. In period 2, the state may be known before an action is



taken because of, for example, (exogenous) scientific research. To keep the model simple, we
shall only consider independent learning. That is, the state is revealed in period 2 regardless of
the actions taken in period 1.

An important difference between this study and previous QOV studies is that we incorporate
strategic interactions. We assume that the society has two risk-neutral players, a and 3, and a
risk-neutral regulator. The value of 7 is common knowledge. The two players in this setup may
be thought of as forest loggers or private land developers. We shall discuss various outcomes
that depends on the degree of control the regulator has over the players.

In each period ¢ € {1,2}, each player i € {a, 3} chooses an action, di € {0,1}, where di = 0
represents conservation and di = 1 represents development. We assume that conservation is
always chosen when the decision-maker is indifferent between conservation and development.

Because the action to develop is irreversible, we must have df < di. Notice that modeling
the choice between conservation and development as a discrete choice is not as restrictive as it
may appear because a corner solution almost always arises when there is a constant returns to
scale technology of development, as shown by Arrow and Fisher (1974). Hence, our analysis can
readily be extended to a case of continuous development on a unit interval. In this study, we
use a discrete-choice model to avoid unnecessary complications.

In what follows, players may be allowed to take an action in period 2 after they have learned
the state. In such a case, the action in period 2 is state-dependent. Therefore, we shall write
d5(s) when we need to make clear that the action is state-dependent. With a slight abuse of
notation, we denote the action profile at time ¢ by d; = (d, df ), the sequence of actions taken
by player i by d* = (d},d}), and the sequence of the action profile by d = (di, d2).

Let A} = {0,1} and A%(d%) = {1}U{d}} represent the set of permissible actions for player i in
periods 1 and 2, respectively. Note that A% depends on dj because conservation cannot be chosen
in period 2 if the player has already chosen development in period 1. We let A; = A§ x Af be the
set of permissible action profiles in period 1 and define the set A of the sequence of permissible
action profiles by the following:

A= {(@d)), (a5, d3)) |5 < g, df < df, and df, d},d5,d5 € {0,1}}. (1)

We also assume that the forest is subject to open access. When at least one player chooses to
develop, the biological resources in the forest will be lost. We also assume that the total payoff
from development (i.e., the sum of payoffs for the two players) depends only on the timing of
development and not on who develops. Therefore, who develops only affects the distribution of
individual payoffs for the two players.

We make the following assumptions about the distribution of the payoffs from development:
When both players choose to develop at the same time, they share the payoffs from development
equally. If one player chooses to develop in period 1 and the other in period 2, then the leader
in development (i.e., the player who develops in periods 1 and 2) takes all of the per-period
payoff from development in period 1 and a share k € (0,1) in period 2. The follower (i.e., the
player who develops only in period 2) receives no payoff in period 1 and a share 1 — k of the
payoff from development in period 2. We assume that the value of £ is common knowledge. The
interpretation of the parameter k will be presented subsequently.

We normalize the payoffs so that the per-period payoff from conservation is equal to zero.
Further, we assume that the total payoff from development to the society in period 1 is positive.
If not, it is always best for the society to wait until period 2 to develop and the problem is not
interesting. For a similar reason, we assume the per-period payoff from development in period 2
is negative in one state and positive in the other. Given these assumptions, we can permit the
total per-period payoff from development to the society be equal to a in period 1, b in period 2
if the state is s, and —c in period 2 if the state is s, where a, b, and ¢ are positive constants



Table 1: The per-period payoff matrix (v$(d1),v?(d1)) in period 1.

;=0 d) =1
=01 (0,00 (0,a)
f=1] (a,0) (53%)

Table 2: The per-period payoff matrix (v$(d, s),vh (d, s)) in period 2 when s = 51 (top) and s = s2 (bottom).

s=s | d’=(0,0) d? =(0,1) dP = (1,1)
d* = (07 0) (07 0) (07 b) ( ) b)
d*=(0,1) | (,0) (30, 3b) (1= k)b, kb)
d* = (1,1) (b,0) (kb, (1 — k)b) (30, 2b)

s=sy | d’=(0,0) d? = (0,1) P =(1,1)
e = (07 0) ( ’ 0) (07 _C) (07 _C)
d*=(0,1) (—¢,0) (—%c, —%c) (—(1 = k)e, —kc)
d* = (1,1) (—¢,0) (—ke,— (1 —k)c) (—%c, —%c)

expressed in present value. In this section, the values of a, b, and ¢ are common knowledge. In
the next section, however, they are known only to the players, but not necessarily to a regulator.

We denote player i’s per-period payoff in periods 1 and 2 by v : A} — Rand v : AxS — R,
respectively. Note here that the payoff in period 2 is state-dependent. We present vt (d;) and
vi(d, s) in the form of payoff matrices in Tables 1 and 2.

The rows and columns of each matrix represent, respectively, player a’s and player f3’s
strategies (action or sequence of actions). The first entry in each parenthesis represents player
a’s per-period payoff, and the second entry represents player 8’s per-period payoff. Note that,
regardless of who chooses to develop, the total payoff always sums to a in period 1 when de-
velopment takes place in that period. Similarly, the total payoff from development in period 2
is b when s = s1 and —c when s = s3, respectively. An important parameter in Table 2 is k.
When k& > 1/2, the leader takes a larger share of the total payoff from development than the
follower, and the opposite is true when k& < 1/2. Therefore, k can be considered a measure of
leader advantage in getting a larger share of the total payoff than the follower.

There is no reason a priori to assume that k is larger than, equal to, or smaller than 1/2.
It would be possible for the leader in development to retain a large share of forest in period 2,
because he already has a footing in the forest. However, it would also be possible for the follower
to obtain a larger share of the forest if the institution is designed to favor the follower in period 2
to ensure dynamic equality with regard to the use of open-access resources.

It should also be noted that the share k is fixed regardless of the state in this model. There
are two reasons for this choice. First, by fixing k, the responsibility for the (potential) loss of
biological resources is proportionate to the (potential) gain from development. In this way, we
can shut off the externality due to the loss of biological resources. Second, by fixing k, we can
keep the number of model parameters small.

Having said this, however, it is plausible that in practice the benefits and costs of development
may be shared differently by the players. When biological resources are lost, everyone in the
society may be hurt. On the other hand, logging would only benefit the loggers. Therefore,
depending on the situation, it may be appropriate to let k£ depend on the state.

In the remainder of this paper, we assume that the regulator is able to transfer the payoffs
between the players in a lump-sum manner. Therefore, the social welfare function that the



regulator tries to maximize is simply the expected total payoff in the society (i.e., the sum of
the payoffs for players « and () for the two periods.

We shall consider the following three cases in which the regulator r has different degrees of
control over the actions of the players and sends different type of information about the true
state:

(I) The regulator is a social planner who can stipulate the actions taken by each player. This
is the first-best case and is equivalent to a single decision-maker case.

(IT) The regulator is merely an informant. He simply tells the players the true state in period 2
before their actions are taken; he has no control over the actions taken by each player.
This case is used to introduce the EVI for the society.

(ITI) The regulator has no control over the actions taken by each player and also has no knowl-
edge of the values of a, b, and ¢, except that they satisfy a certain condition. He can,
however, send a (potentially noisy) message about the state to each player to achieve an
efficient outcome. The regulator may vary the message across players.

In each of these cases, the regulator learns the state in period 2 and may pass to the players
some information about the true state.

In the next subsections, we shall discuss the QOV as well as a related concept of the EVTI for
Cases (I) and (IT). Comparison of these cases allows us to see the importance of strategic inter-
actions in the model of irreversible investment. It also permits us to highlight some conceptual
difficulties with the QOV under conditions where strategic interactions occur.

We shall delay the discussion of Case (III) until the next section, in which we discuss the
possibility of sending messages about the state to the players in an asymmetric manner to achieve
an efficient outcome. We will demonstrate that the EVI for the society depends critically on
how the information is disseminated. For example, making better information available to
everyone hurts everyone when the prospect of better information induces a prisoner’s dilemma
situation. In such cases, social welfare may be improved by providing information to the public
asymmetrically so that one player gets better information than the other. Therefore, Case (III)
points to the possibility that the government may be able to improve efficiency by manipulating
the information given to the players.

2.1. Case (1): Social Planner

In Case (I), we shall consider a social planner, who can stipulate the actions taken by the
players. Because the social planner is the sole decision-maker in this case, Case (I) is equivalent
to the standard single-person setup. Therefore, the definitions of the QOV and EVI in Case (I)
are also equivalent to the standard definitions. Note that the parameter k is not relevant in this
case because this parameter affects only the distribution and not the expected total payoff.

Let d} = dff + dtﬁ - d,‘?‘df ; this expression takes a value of zero if both players choose to
conserve in period ¢ € {1,2} and a value of one otherwise. From the social planner’s perspective,

i provides sufficient statistics, because the expected total payoff depends only on whether and

when development takes place, and not on who chooses to develop. Using dj, we can also define
the per-period payoff for the social planner as follows:

oi(d) = of(dr) + 07 (dh) = ad] (2)
vy(dy,s) = v5(d,s)+ vg(d, s) = (b-Ind(s = s1) — ¢ Ind(s = s2)) db, (3)

where Ind(-) is an indicator function that takes a value of one if the statement inside the
parentheses is true and zero otherwise and where d} < dj is satisfied for i € {«, 8,7}

To define the QOV and EVI, we need to consider two scenarios. In the first, no information
about the state is available to the players or the social planner in period 2. Hence, all decisions



can be made in period 1, and these decisions correspond to the open-loop strategy. In this
scenario, the objective function that the social planner wishes to maximize in period 1 is the
following:

V(dy) = wi(di)+ d;l(la;g)E slva(dy, s)] (4)
= o (d B—C,0 5
”(Q+é@%{ ,0}, (5)

where B = wb, C = (1 — )¢, and Eg[-] is an expectation operator taken over all the possible
states. We use an asterisk (*) to emphasize that the decisions are made in the absence of
information in period 2. B and C may be interpreted as the expected payoff for period 2,
decomposed into the s1- and so-components.

The social planner chooses d}* in period 1 to maximize V*(-). Because V*(0) = max{B—C,0}
and V*(1) = (a + B — C), we have:

Wi = rr(li?xV*(dq) (6)
= V*(dy") (7)
[ V*()=a+B-C ifC<a+B .
- {V() ifC>a+ B, ()

with di* = Ind(C < a + B).

In the second scenario, information about the state becomes available before actions are
taken in period 2 but after actions are taken in period 1. In general, information about the
state may consist of a message that contains some information about the state. However, in this
section, we consider only the simplest case, in which the information is perfect (i.e., the players
and the social planner learn the true state in period 2). Therefore, in the second scenario, the
players are allowed to take state-contingent actions in period 2, and the strategy in this scenario
corresponds to the closed-loop strategy. The objective function in this scenario can be written
as follows:

V() = vi(d])+E; [m?}§v2(d2( s),s)] (9)
= vi(dy) + (B = C)di + B(1 - dy) (10)
= (a—C)d] + B. (11)

We use the hat () notation to emphasize that the decisions are made in the presence of infor-
mation in period 2. The social planner chooses dj to maximize V (-). Because V(0) = B and
V(1) =a+ B — C, we have:

wr = maxV(dl) (12)
= V() (13)
[ V()=a+B-C ifC<a
- {f/o if C > a, 14)

with dj = Ind(C < a).



Following Arrow and Fisher (1974), Henry (1974), Fisher and Hanemann (1987), and Hane-
mann (1989), the QOV in Case (I) is the difference in the expected net present value of devel-
opment relative to conservation between the two scenarios. That is:

QOV; = (V(0) — V(1)) — (V*(0) — V*(1)) = min(B, C). (15)

The QOV can be interpreted in the following way. Suppose we evaluate the conservation
(relative to development) in period 1 while ignoring the prospect of new information in period 2.
The net present value of conservation is then V*(0) — V*(1). However, this is not a correct
calculation. To obtain the correct net present value of conservation (i.e., V(0) — V(1)), we need
to add an adjustment term. This adjustment term is the QOV.

In this model, the information in period 2 is valueless when development starts in period 1
because the decision to develop is irreversible. This point is reflected in the fact that V*(1) =
V(1). Using this relationship, we can rewrite Eq.(15) as QOV; = V(0) — V*(0). Therefore, as
Hanemann (1989) has shown, QOV can be interpreted as the value of information conditional
on conservation in period 1.

The EVI should be defined as the expected gains in the objective function from the in-
formation that becomes available in period 2. Following Hanemann (1989), we define EVI as
follows:

A 0 itC <a
EVI=W;—-W; =< —a+C ifa<C<a+B (16)
B ifa+B < C.

The definitions of QOV and EVI in Case (I) are equivalent to the standard definitions. Therefore,
Case (I) serves as a benchmark case for this study and is used as a basis for comparison with
the two cases presented below.

2.2. Case (II): Social EVI resulting from decentralized decision making

Case (II) is the same as Case (I) except that in Case (II) the regulator has no control over
the players’ actions. In other words, the players can freely choose their actions. The regulator
in Case (II) simply informs the players of the state in period 2 before their actions are taken.

A major difference between Case (I) and Case (II) is that in Case (II), each player has to take
into account the direct consequences of his own action (i.e., if he chooses to develop in period 1,
then he must choose to develop in period 2 as well) as well as his opponent’s response to his
action. In our model, player i assumes that his opponent —i = {«, 5} \ {i} always plays the best
response to his action in each period, and this is common knowledge. We also assume that the
players know exactly whether and how the information is transmitted from the regulator; this
assumption is maintained for the rest of this paper.

Because, given the action profile d; = (df, df )(€ A1) in period 1, each player freely chooses
his own action, a Nash equilibrium is played in period 2. With this equilibrium, we can go back
to period 1, and find the subgame perfect Nash equilibrium. By comparing the equilibrium
outcome that occurs with and without the prospect of information in period 2, we can consider
the QOV and EVI for Case (II). As we argue below, it turns out to be difficult to define the
QOV in the presence of strategic interactions. However, by comparing the EVI for Case (I) and
Case (II), we can see the impacts of strategic interactions.

Note that the equilibrium is not necessarily unique. Because equilibrium selection is not the
focus of this paper, we simply assume that an equilibrium that is efficient under the potential
compensation criterion (i.e., the equilibrium that has the highest expected total payoff) will be
chosen. Even with this restriction, the possibility of multiple equilibria remains. However, once
this restriction is imposed, the multiplicity of equilibria is irrelevant for our purpose because
the total equilibrium payoff is unique. Further, as described in the Appendix, we have a unique



equilibrium for most combinations of parameters. Therefore, even if we drop the assumption
of efficient equilibrium, the main findings of our study will hold. We shall briefly consider the
consequences of relaxing this assumption in the Appendix.

Let us now formally consider the QOV and EVI under strategic interactions with some
additional notations. As with the previous subsection, we need to consider two scenarios. In
the first, the information is not available to the players in period 2. Therefore, the players are
not allowed to take state-contingent actions in period 2.

To solve the game using backward induction, we first define the best response BRY in
period 2 for player i(€ {a,}) as a function of the action profile d; in period 1 and of the
opponent’s action d, (€ A;*(d;")) in period 2, as follows:

BRY (dy';dy) € arg max  Eg[vh((di, (d5,d3)), 5)]. (17)
dy€Ay(dy)
Given dj, the Nash equilibrium in period 2 can be described as a pair d5 that satisfies the
following;:

ds(dr) = (d5*(dh).d5"(dr)) = (BRS*(d5":d), BRS"(d5%; ) ) - (18)

Using the Nash equilibrium action profile d%(d;) in period 2, the best response Ble" for
player 4 in period 1 can be defined as follows:

BRY (d)") € arg max {vi(d) + By [o((dr, d3(dn)), )]} (19)

Hence, the action profile d} in a subgame perfect Nash equilibrium satisfies the expression:
d = (di*,d)") = (BRY* ("), BR{" (d57)) . (20)
The sequence of the equilibrium action profile is given by d* = (df, d5(d7)).

Let us now illustrate the solution procedure described above. The top panel of Table 3
provides the expected payoff profile for all the possible action profiles. The bold rules define the
four subgames determined by each of the four action profiles d; € {(0,0),(0,1),(1,0),(1,1)}.
For example, when the action profile in period 1 is d; = (0,0), the cells a*), b*), d*), and e*)
belong to the same subgame. The cell i*), on the other hand, is a subgame in itself. Therefore,
given dy = (1,1), this cell is trivially an equilibrium in period 2

Let us now describe how backward induction works in our model when C' > a + B. The
lightly shaded cells in the top panel of Table 3 provide the equilibrium in each subgame. Going
back to period 1, we have the bottom panel of Table 3. When C' > a + B, both players choose
dli = 0, so that the sequence of the action profile in the subgame perfect Nash equilibrium
is ((0,0),(0,0)). Hereafter, we shall use the payoff matrix to describe the equilibrium. For
example, when C' > a + B, the equilibrium is given by the cell a*) in the top panel of Table 3.

One might argue that the analysis could be simplified by taking the Nash equilibrium in the
top panel instead of considering the equilibrium in each subgame. It turns out that doing so
makes no difference for the analysis in this subsection. However, in general, the players cannot
commit to the action taken in period 2, and this point is relevant in the next section. Therefore,
the subgame perfect Nash equilibrium is a more appropriate solution concept in our model.

10
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Table 4: The ex ante payoff matrix when the players learn the true state in period 2 before they take actions

d? 0 1
¢ dg(s) nd(s = s
ds ds (s) Ind(s = s1) 1
0 | Imdis=s1) | a) (B/2, B/2) b) (1 —k)B,a+ kB —C)
1 &) | (a+kB—-C,(1—k)B) [ d) | (a+B-0C)/2,(a+ B—C)/2)

Let us now consider the second scenario, in which the uncertainty about the state is resolved
after players have taken actions in period 1 but before actions are taken in period 2. Because
both players know the state before they take their actions in period 2, each player ¢ is able to
take his actions dj(s) contingent on the state s(€ S) in this scenario. To obtain the equilibrium

action profile, we need to define the best response EJ\%; of player ¢ in period 2 as a function of
the action profile di(€ A;) in period 1, the opponent’s action d;*(s)(€ A5"), and the state s as
follows:

ﬁ;(d;(s);dl,s)6argdi(sgxéiz;(di){vé((dl,(dg‘(s),dg(s))),s)} for ie{a B} (21)

With this definition and given di(€ A7), the Nash equilibrium action profile in period 2 can
be described as a pair of best response actions da(dy, s)(€ Az2(dy)) in the following manner:

da(dr, 5) = (d3 (s: ), d5 (s ) = (BRS (A5 (5; dv)sdy, ), BR (d5 (s: )i das)) - (22)

We can now go back to period 1 and define the best response in period 1 as a function of
the opponent’s action as follows:

BR)(d;") € arg max {vi(dr) + Bu[uh(dr, da(dy, ), 8)]} for i€ {o ). (23)
di €Al

Given this, the subgame perfect Nash equilibrium action profile in period 1 is d:
7 Joa gl DB Y5 i Jo
di = (d,df) = (BR\ (d)), BR, (d})) (24)

Thus, the sequence of the equilibrium action profile in the presence of information in period 2
is given by d(s) = (dy,da(dy, s)).

When the players can take state-contingent actions, they always choose to develop if the state
is s1 and never choose to develop if the state is so regardless of the parameter values. Therefore,
(dy(s1),d5(s2)) = (1,0) dominates (0,0), (0,1), and (1,1). After eliminating the dominated
strategies, we can write the ex ante payoff matrix, as shown in Table 4. As the table shows,
there is only one cell in each of the four subgames in period 2. As a result, the subgame-perfect
Nash equilibrium is identical to the Nash equilibrium for a one-shot game with the same payoff
matrix.

Let us now revisit the concepts of the QOV and EVI. The standard QOV measures the
difference in the payoff of conservation relative to development between the two scenarios with
and without information about the state in period 2. Therefore, if V(0), V/(1), V*(0), and V*(1)
for the society could somehow be defined (hereafter, we denote these with the subscript ), then
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the social QOV could be defined as QOVg = (Vs(0) — V(1)) — (VE(0) — VE(1)).

However, the problem is that it is difficult to meaningfully define VS(O) and so on. Ideally,
VS(O) should be defined as the total payoff when conservation takes place in period 1. However,
if the regulator is unable to stipulate the players’ actions and if conservation in period 1 is not
supported as an equilibrium, then the regulator does not really have an option to delay devel-
opment decision until period 2. Therefore, without additional restrictions on the equilibrium, it
would not be possible to meaningfully define the social QOV.

Unlike the social QOV, it is possible to meaningfully define the EVI for the society in the
presence of strategic interactions. The idea is simple; we take the change in the expected total
payoff in the equilibrium due to the information that becomes available in period 2. Formally,
we can define the social EVI (EVIg) as follows:

Definition 1 Let W;; = E, [(v%(dl) + vf(d}) +v$(d(s), ) +v§(c§(s),s))] be the expected
total payoff with information about the true state in period 2. Similarly, we let Wy, =
E; [v{(d}) + vf(d’l‘) + v (d*,s) + vg(d*,s)} be the expected total payoff without information
about the true state in period 2. We define the social EVI under strategic interactions as
follows:

EVIg = Wi — Wi (25)

The social EVI is not uniquely defined if there are multiple equilibria. Therefore, as discussed
earlier, we shall take the most efficient equilibrium. With this restriction, the full description of
EVlIg is given in the Appendix.

One important point to notice from Definition 1 is that the social EVI may or may not
be positive. Remember that the players are informed of the true state in period 2 before the
actions are taken. Therefore, if the social EVI is negative, making more information available
to everyone decreases the efficiency. For the payoff structure described in Tables 1 and 2, it is
possible to show the following proposition:

Proposition 1 The social EVI is negative if and only if

2(a—C) 2a
1 —or “B<CtiTy;

1
k< 2’ C<a, and (26)

A complete description of EVIg for all possible combination of parameters is provided in the
Appendix, and it also serves as an informal proof of this proposition. We shall discuss below
why the prospect of additional information is possibly harmful to everyone.

When k < 1/2, we have a situation where a larger share of the benefits (and costs) will be
obtained if the player is a follower in development. Therefore, if B > C, each player has the
incentive to hold back development until period 2 so that he does not have to suffer from the
leader disadvantage. Obviously, this point must be weighed against the opportunity cost (a) of
conservation in period 1.

When C' < a holds, it is efficient for the society to develop in period 1 because the opportunity
cost of conservation in period 1 is large relative to the potential gains from information (C' is
the expected loss that could be avoided by utilizing the information in period 2). This efficient
outcome is achieved in the absence of information in period 2 if development is sufficiently
attractive but B is not large enough for the players to try to be followers in development. This
occurs when 0 < B < C' +2a/(1 — 2k). Therefore, the upper bound on B in Eq.(26) reflects the
condition for the efficient outcome in the absence of information.

13



Now consider the scenario in which the players learn the state in period 2. In this scenario,
the players have more to lose by choosing development in period 1. Because the opponent
can take state-contingent actions in period 2, players suffer from a larger cost when the state
is s = s9, whereas they enjoy a smaller fraction of benefit when the state is s = s1, because
k < 1/2. Therefore, the prospect of future information gives each player an additional incentive
to conserve in period 1. The lower bound on B ensures that both players choose to conserve in
period 1 in this scenario. As a result, when Eq.(26) holds, conservation takes place in period 1
even if it is not socially efficient to conserve.

In short, the situation described in Eq.(26) shows that the prospect of future information
induces a prisoner’s dilemma situation. There are other situations in our model where such a
situation arises in the presence of information (@) and ® in Figure A.2 and Table A.7 in the
Appendix), but the situation described in Proposition 1 is unique in the sense that the prisoner’s
dilemma is induced by the prospect of better information.

This point begs another question. Would it be possible for the regulator to manipulate the
information given to the players in such a way as to improve the efficiency (by avoiding the
prisoner’s dilemma situation)? It is clear from Proposition 1 that the regulator can improve
efficiency by not passing information to players when Eq.(26) holds (the regulator announces in
period 1 that he does not give any information on the state in period 2). Therefore, when the
regulator knows the values of a, B, and C, he can simply choose to pass information if and only
if Eq.(26) does not hold.

However, it is possible that some of the parameters are not known to the regulator in some
practical settings. For example, the benefits from developing the forest may be better known to
the loggers than to the regulator. Therefore, it is useful to consider a situation in which a, B, and
C are known only to the two players, and the regulator has only some vague ideas about their
values. We demonstrate in the next section that, even in such a situation, the regulator may be
able to induce an efficient equilibrium by giving information to the players asymmetrically.

3. Case (III): Optimal regulation under strategic interactions and informational

constraints

Thus far, the players have been treated completely symmetrically (i.e., players o and 8 have
been treated in the same way). However, under certain assumptions stated below, it is socially
desirable to give perfect information to one of the players and less-than-perfect information
(noisy message about the true state) to the other player. Without loss of generality, we let the
former player be player 8 and the latter player «.

With perfect information, player a chooses to develop if and only if the social planner in
Case (I) would choose to develop. Put differently, player 5 makes the right decision about
development. At the same time, the incentive for player « to wait until period 2 is smaller
in this case than in Case (II), where there is a prospect of future information. Therefore, the
prisoner’s dilemma situation due to the prospect of future information described in the previous
section can be avoided.

Sending information in this way would raise the following question: Why does one of the
players have to learn the true state? The answer is that if neither player knows the true state,
there is always a small probability that an inefficient outcome is supported as an equilibrium.
Therefore, we need at least one player to know the true state.

We hereafter focus on cases in which sending information asymmetrically can help improve
efficiency. Therefore, in this section, we make the following assumptions: (A-i) k£ < 1/2, (A-ii)
B < 2a/(1 — 2k), and (A-iii) a, B, and C are known to the players but not to the regulator.

Assumption (A-i) is required to have a situation in which information-induced inefficiency
occurs. Assumption (A-ii) is also necessary. When B is very large relative to other parameters,
the regulator cannot keep the players from choosing to conserve in period 1 because the cost of
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the leader disadvantage is simply too large. Therefore, we need an upper bound on B. We include
Assumption (A-iii) to make the possibility of sending information asymmetrically meaningful.
This assumption is not essential and can be dropped without any major modifications. However,
if the values of a, B, and C' are also known to the regulator, the regulator can achieve an efficient
outcome by sending the information to neither or both players. Hence, the regulator does not
gain anything from the possibility of sending information asymmetrically.

We can now formalize the idea described above. Suppose that the regulator informs player
B of the true state in period 2 before an action is taken. Player «, on the other hand, receives a
message m € M from the regulator, where M is the message space. In period 2, player o can
take a message-contingent action and player 8 a state-contingent action, if they have chosen to
conserve in period 1. This structure is common knowledge.

There are five possible strategies for player 3: (a) d” = (0,0), (b) d® = (0,1), (c) d° =
(0,Ind(s = s1)), (d) d® = (0,Ind(s = s3)), and (e) d® = (1,1). Because strategy (c) dominates
strategies (b), (d) and (e), the only strategies that can possibly be chosen in an equilibrium are
(a) and (c). As a result, the regulator does not need more than two messages because there are
at most two Nash equilibria in general except for some corner cases that have measure zero on
the B — C' plane. Therefore, we can let M = {my, mo} without loss of generality.

We assume that the message sent to player « has the following structure: the regulator can
choose the probability of sending a message conditional on the state. That is, the regulator can
choose ¢ and g2, where Pr(m = m1|s1) = ¢1 and Pr(m = mq|s2) = g2 before the players choose
their actions in period 1. We assume that the players know ¢; and ¢». Because player a always
receives a my or mg, we also have Pr(m = ma|s;) = 1 — ¢1 and Pr(m = ma|s2) = 1 — q2. As
with player 3, there are five possible strategies for «, though player « can only take a message-
contingent action instead of a state-contingent action. Unlike the case of player 3, none of these
five strategies are trivially dominated by others.

With a slight abuse of notation, we can define the best response functions for players o and
[ in period 2 in a way similar to that presented previously:

BR;(dj(s);di,m) € arg  max B, [u§((dy, (d5(m),d5(s))),9)lm|  (27)
dg (m)eAg (df)

pé] o o

BRy(d3(m);di,s) € arg  max By [vf((dr, (d5(m),d](5))),5)]s] (28)
d; (s)EA5 (dY)

Now, given s € {s1,s2} and m € {m1,ma}, we can define the equilibrium action profile in
period 2 as follows:

da(dy, (s,m)) = (d3(m;dy),ds(s;d1)) (29)

= (BRS(d(s;dv); di,m), BR, (45 (m; dv)s du, 5)) (30)

By going back to period 1, we can define the best response in period 1 in the following
manner:

BR)(d;") € arg max v} (df, d}) + B [vh(d, oy, (s,m). 5)]] for i€ {af}  (31)
1 1

Given this, the equilibrium action profile in period 1 is characterized by the following:
& = (dd7) = (BR (d), BR, (d1)) (32)
1% 1\¥1/» 1\~*1/)-
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Using this, the sequence of equilibrium profile can be written as d(s, m) = (d1, da(dy, (s, m))).
Based on this, we can define as follows the expected value of information for the society
when the regulator gives information asymmetrically:

E/"\//IS = W[][ — Wl*lv (33)

where Wy = E(sm) [U?(Jl) +U’f(d1) + v§(d(s,m), s) + vg(d(s,m),s) is the expected total
payoff when the information is asymmetrically sent.

Let us now create the ex ante expected payoff matrix similar to Tables 3 and 4. To show how
this is done, let us consider cell CZ) in Table 5. Suppose that player 8 always chooses to develop
in both periods and that player « chooses to conserve in period 1 and develop in period 2 if
and only if m = my. When (s,m) = (s1,m1), the sum of payoffs over the two periods for the
two players is ((1 — k)b, a + kb), and this occurs with probability mq;. Similarly, the sum of
payoffs for the two players is (—(1 —k)c,a —kc), (0,a+0b), and (0,a — ¢) when (s, m) is (s2,m1),
(s1,m2), and (s2,ma), respectively. These occur with probabilities ga(1 — 7), (1 — ¢q1), and
(1 —m)(1 — g2), respectively. Therefore, the expected payoff in this example is:

mq1((1 — k)b, a + kb) + q2(1 — 7)(—(1 — k)c,a — kc) (34)
+7(1 —q1)(0,a+b)+ (1 —7)(1 —g2)(0,a —c)
= (1=k)(Bu - Cq)), (a+ (kqr + (1 = q1))B = (kg2 + (1 = 42))C)) - (35)

Carrying out similar computations for other strategy profiles, we have Table 5. As with the
previous tables, the bold rules define the subgames. Thus, we can solve the game using backward
induction as with Case (II).

The regulator can choose g1 and g2 appropriately so that an efficient outcome is supported as
an equilibrium. It turns out that an efficient outcome can be always supported as an equilibrium
under Assumptions (A-i) and (A-ii) regardless of the values of a, b, and c:

Proposition 2 . Suppose that Assumptions (A-i) and (A-ii) hold. Then, except for some
corner cases with measure zero on the B — C' plane, a necessary and sufficient condition for the

subgame perfect Nash equilibrium to be efficient (i.e., W = Wirr) is (qu, q2) = (2k,0).

Proof. Let us first discuss the necessary condition. Notice first that Wi = B when C > a.
Therefore, we must have WH[ = B for C' > a. This can only occur when the equilibrium is
either in cell &), or in cell ¢) when ¢go = 0 in Table 5. However, a) cannot be an equilibrium if,
for example, B/2 > C' > a, because d$(m) = 1 dominates d3(m) = 0 for player « in this case.
Therefore, go = 0 is necessary.

Notice that max{(),(l_%)B—(1—Q2)C,§—C,a+kB—C’} =a+kB—C for B< 2

T2k
Therefore, for ¢) to be an equilibrium if and only if C' > a, we want to have the following:
B
‘“72@+k3—0<:>02a (36)

The above condition holds if and only if q; = 2k.
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For the sufficiency, we have provided a complete description of the equilibrium for various
combinations of a, B, and C' when (q1,¢2) = (2k,0) in Table A.9 and in Figure A.4 of the Ap-
pendix. This description also shows that W; = W, when (q1,92) = (2k,0) under assumptions
(A-i) and (A-ii). O

Notice that there still remain some combinations of a, B, and C (D, @, @, and ® in
Figure A.4 of the Appendix) that lead to inefficient outcome. This is expected because the cost
of the leader disadvantage is high when B is high, and this cannot be changed by manipulating
the message. However, the figure also shows that Assumption (A-ii) can be slightly relaxed. We
can replace it by Assumption (A-ii’) B < 2max{a,C}/(1 — 2k).

The results reported in Table A.9 of the Appendix show that sending information with
(q1,92) = (2k,0) is good even when Assumption (A-ii’) may not be satisfied, because EVIg
is always non-negative. Therefore, even if the regulator has no knowledge about a, b, and c,
the regulator can still potentially improve the efficiency by sending information asymmetrically.
Proposition 2 and this point underscore the importance of careful dissemination of information
to achieve an efficient outcome.

4. Discussion

In this study, we have introduced strategic interactions into the analysis of QOV. In so
doing, we have highlighted some conceptual difficulties with the QOV when the regulator (or
the cost-benefit analyst, for that matter) has to take strategic interactions as given.

We have shown that information may be harmful to the society as a whole because it may
induce a prisoner’s dilemma situation. For example, when there is a follower advantage in
development, there are always some incentives for players to conserve in period 1 even when it
is inefficient to develop in period 1. By giving perfect information about the true state to player
£ and a noisy message to player «, we can exploit the value of information to the society in
the first-best case (i.e., EVI;) while avoiding the inefficiency induced by strategic interactions.
Proposition 2 provides the conditions for this to occur.

Notice that two conditions needs to be satisfied for efficiency. First, if it is efficient for
the society to develop in period 1, then development should take place in period 1. Second, if
conservation is chosen in period 1 in the society, then development should take place in period 2
if and only if the state is s;.

Provided that Assumptions (A-i) and (A-ii’) hold, the sufficiency of the second condition is
satisfied, because development is always chosen by player 8 in period 2 when the state is s;.
For the necessity part, it is clear that player 5 chooses to develop only if the state is s;. Noting
that the message m; is never sent when the state is so, we see that player o chooses to develop
only if the state s1. Therefore, the second condition is satisfied.

The first condition is also satisfied by giving a noisy message to player . Because player «
receives only less-than-perfect information about the state in period 2, the expected gains from
delaying development is smaller for player a. As a result, conservation is not as attractive to
player a as it is to player 5 in period 1. Hence, we can induce player « to choose to develop in
period 1 when it is efficient for the society to do so.

Because the primary goals of this paper is to highlight some conceptual difficulties of the
QOV and to demonstrate the potential importance of information-induced inefficiency, we tried
to keep the model as parsimonious as possible. However, it is useful to discuss qualitatively
what happens if our model allows for the possibility of state-dependent.

We consider an alternative setup, in which k < 1/2 if the state is s; and k = 1/2 if the state
is s9, because it is one of the most interesting cases. In this case, as with Case (III), the follower
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advantage is still present. However, the cost is equally shared when the two players choose to
develop.

This setup could be interpreted in the context of climate change. Suppose that each player
represents a country (e.g., the US and China). We can regard di = 0 as “stringent environmental
policy,” and di = 1 as “business as usual.” When s = s1, a technology to cheaply eliminate
the damages from climate change (by, say, removing greenhouse gases from the atmosphere) is
found. Because the follower country may be able to adopt such a technology faster and more
effectively than the other country, there may be a follower advantage (i.e., & < 1/2) when the
state is s1. On the other hand, when the state is so, no such technology is found. In this case,
the damages from climate change would be felt equally by both countries so that k = 1/2. It
would be reasonable to assume that B is bounded and that B and C are not very well known
to the policy-makers of global climate policies.

Obviously, the example given represents a gross simplification of strategic interactions in the
arena of global climate policy. Our model nevertheless offers some insights into how information
should be handled in this context. In fact, the basic argument in Case (III) holds even in this
alternative setup; The leader disadvantage is exacerbated by the fact that the follower never
shares C with the leader with a prospect of perfect information, but the regulator can mitigate
this by giving a noisy message to one of the players. Therefore, although the state dependence
of k alters the incentive structures, the reason that giving a noisy message about the state helps
ensure an efficient equilibrium remains the same.

Applications of our model to important environmental problems would potentially require
careful calibration of parameters, extension of the number of players and the action space, and
perhaps incorporation of the possibility of dependent learning. Yet, given that many global
environmental problems feature irreversibility, strategic interactions and scientific uncertainty,
we believe that the possibility of information-induced inefficiency is an area that deserves more
attention than it has received.
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O i) d) C 0 0
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@ | i*) d) B 0 0
@ | i) &) B C—a C—-a
® |a) a) B B B
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Appendix A. Appendix

In this appendix, we provide a complete description of the QOV and EVI for Cases (I)
and (II) in Table A.6 and Figure A.1 for kK = 1/2, in Table A.7 and Figure A.2 for k£ > 1/2, and
in Table A.8 and Figure A.3 for & < 1/2. Note that the conditions in Proposition 1 correspond
to @, ®, and (2 in Table A.8 and Figure A.3.

We also provide in Table A.9 and Figure A.4 a complete description of the expected so-
cial welfare and EVI when the conditions in Proposition 2 are satisfied. In Assumption (A-ii)
corresponds to (D), @, @, and (0 in Table A.9 and Figure A.4, whereas Assumption (A-ii’)
corresponds to @ and ® in addition to these. The shaded areas in Figures A.2-A.4 repre-
sent inefficient outcomes in the equilibrium (when information or message is provided by the
regulator).

For Tables A.6 through A.9, we describe the combinations of parameters a, B, and C on
the B — C plane in Figures A.1-A.4, respectively. For example, B in Figure A.1 refers to the
condition C' > a + B when k = 1/2. Reading the corresponding row in Table A.6, we have:

QOV; = EVI; = EVIg = B. (A.1)

In these tables, we also provide a complete description of the sequence of action profile in
the equilibrium. To describe the sequence, we refer to the payoff matrices for Case (II) without
information in period 2 in Table 3, for Case (II) with information in Table 4, for Case (III) when
the condition in Proposition 2 is satisfied (i.e., (g1, ¢2) = (2k,0)) in Table 5.

If there are multiple equilibria, the choice of the equilibrium potentially affects the com-
putation of EVIg. We have used brackets to indicate the inefficient equilibria (@) and () in
Table A.2) that are not used for the computation of EVIg. There are other cases with multiple
equilibria that are equally efficient (@), @, ®), (@, and @@ in Table A.3). In these cases, the
choice of the equilibrium does not affect the values of EVIg.

To show how the tables should be read, let us consider again ) in Table A.6 (or C' > a+ B).
The table indicates that d* and d(s) are a*) and &) respectively. Referring to Tables 3 and 4,
we see that d* = ((0,0), (0,0)) and d(s) = ((0,0), (Ind(s = s1),Ind(s = s1))). Other cells should
be interpreted in a similar manner.

20



Table A.9: EVI and the expected total payoff when the conditions in Proposition 2 are satisfied.

Figure A.4.)

Table A.7: EVI and QOV when k > 1/2. (See also Figure A.2.)

d* d(s) QOV; EVI; EVIg
@|i* d) C 0 0
@ | i%) d C C-a 0
@i 4,4 ¢ C-a C
@ | i*) a) C C—a C—-a
®|i*) d) B 0 0
© | i*)  d) B C-a 0
@i d,a] B C—-a C
® | i*) a) B C—a C-—a
@ | a*)  a) B B B

Table A.8: EVI and QOV when k < 1/2. (See also Figure A.3.)

& d(s) QOV; EVI; EVIg
D] &) a) C 0 C
@ e*) a) C C—a C
@ | ),h*) b),é) C 0 0
@ | £),h*) &) C 0 C—a(<0)
® | f),h*)  a) C C-a C-a
© | i d) C 0 0
@| i) b,e C 0 0
® | i a) C 0 C—a(<0)
@ | i a) ¢ C-a C-a
| i d) B 0 0
0| i*) b, B 0 0
Q| i) a) B 0 C—a(<0)
G| i) a) B C-a C-a
Q| a) a) B B B

?

Y

d(s,m) 190 W EVIg Wr
O g B-C B-C 0 a+B-C
Q| g B-C B-C 0 B
@ 9 B B-C C B
@ g) B-C a+B-C a a+B-C
®| 8 B-C a+B-C a B
® | 9 B a+B-C C—a(>0) B
@ i) a+B-C a+B-C 0 a+B-C
®| h),i) a+B-C a+B-C 0 a+B-C
©) 7) a+B-C a+B-C 0 a+B-C
| ¢ B 0 B B
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Figure A.1: Parameter combinations when k = 1/2.
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Figure A.2: Parameter combinations when k > 1/2.
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C=a-(1-2k)B

C=a-(U2-WB",

a’

ak |

kC+(1/2:K)B=a

C
A C=B+a =B
C=B-a/(1-2K)

C=B-2a/(1-2K)

al(2k1) 2al(2k1)

Figure A.3: Parameter combinations when k < 1/2.

B=2a/(l-2k) C=B+a C= B-a/(l-2k) C= B-2a/(1-2k)

®

©) C=(1/2-k)B

al(1-2k) . 2a/(1-2K)

C+(1°2K)B=a

Figure A.4: Parameter combinations when the conditions in Proposition 2 are satisfied.
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