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Abstract

We call a positive semidefinite matrix whose elements are nonnegative a doubly nonnegative
matrix, and the set of those matrices the doubly nonnegative cone (DNN cone). The DNN cone

is not symmetric but can be represented as the projection of a symmetric cone embedded in a

higher dimension. In [16], the authors demonstrated the efficiency of the DNN relaxation using

the symmetric cone representation of the DNN cone. They showed that the DNN relaxation gives

significantly tight bounds for a class of quadratic assignment problems, but the computational time

is not affordable as long as we employ the symmetric cone representation. They then suggested a

primal barrier function approach for solving the DNN optimization problem directly, instead of using

the symmetric cone representation. However, most of existing studies on the primal barrier function

approach have assumed the availability of a feasible interior point. This fact means that those

studies are not inextricably tied to the practical usage. Motivated by these observations, we propose

a primal barrier function Phase I algorithm for solving conic optimization problems over the closed

convex cone K having the following properties: (a) its interior int K is not necessarily symmetric,

(b) a self-concordant function f is defined over int K, and (c) its dual cone K∗
is not explicit or

is intractable, all of which are observed when K is the DNN cone. We analyze the algorithm and

provide a sufficient condition for finite termination.

1 Introduction

This paper deals with the conic optimization problem given by

Minimize �c, x�

subject to Ax = b,

x ∈ K

(1)

where K ⊆ Rp is a closed convex cone, A : Rp → Rq is a linear operator, b ∈ Rq, c ∈ Rp and �·, ·� is
an inner product on Rp. In the last two decades, many studies have been done on the symmetric conic
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optimization where the closed convex cone K is self-dual, i.e., K satisfies

K = K
∗ := {y | �x, y� ≥ 0 for all x ∈ K}.

A typical example of such problems is the semidefinite optimization problem with the semidefinite cone
(SDP cone) given by

K = S
n
+ :=

�
X ∈ Rn×n

| X = X
T
, ∀d ∈ Rn

, d
T
Xd ≥ 0

�
.

The effectiveness of semidefinite relaxation (SDP relaxation) approach for combinatorial optimization
problems has been supported in many papers (see, e.g., [2, 4, 15, 5, 3, 10, 7]).

In the SDP relaxation, the solution matrix X is restricted to X ∈ Sn
+ and often meant to be nonnegative,

i.e.,
X ∈ Rn×n

+ :=
�
X ∈ Rn×n

| xij ≥ 0 (i, j = 1, 2, . . . , n)
�

.

We call a positive semidefinite matrix whose elements are nonnegative a doubly nonnegative matrix, and
the set

D
n := S

n
+ ∩ Rn×n

+

of those matrices the doubly nonnegative cone (DNN cone). The DNN cone can be represented as the
projection of the direct sum of the SDP cone and the nonnegative orthant as follows:

D
n = {X | (X,Y ) ∈ S

n
+ × Rn×n

+ , X = Y }. (2)

Note that the set Sn
+×Rn×n

+ is a symmetric cone, and we can adopt existing symmetric conic optimization
solvers to solve the DNN relaxation. Matsukawa and Yoshise [16] demonstrated the efficiency of this
approach and reported that

- the DNN relaxation gives significantly tighter bounds than the SDP relaxation for a class of quadratic
assignment problems: more than 95% accuracy can be achieved for many instances from the
QAPLIB library [1], but

- the size of the problem grows too much large due to the symmetric cone representation (2): even a
mid-size problem with n = 15 requires more than 7 hours to solve the relaxation problem with
SDPA Online Solver [13] in 2010.

Motivated by the above observations, in [16], the authors provided basic properties of the DNN cone
aiming to develop another approach, and showed that

(i) the dual cone (Dn)∗ of the DNN cone is

(Dn)∗ = S
n
+ + Rn×n

+ := {x + y | x ∈ S
n
+, y ∈ Rn×n

+ } (3)

(see Proposition 4.1 of [16]) and

(ii) the interior of the DNN cone intDn is a hyperbolic cone characterized by the self-concordant function
f : intDn → R

f(X) := − log det (X)−
n�

i=1

n�

i=1

log xij (4)

(see Proposition 4.2 of [16] and cf. also [6, 12]).
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The property (ii) above ensures that we can apply the primal barrier function approach provided in,
e.g., [8, 11, 9] to solve the DNN optimization problem. In particular, the paper [9] dealt with the
nonsymmetric conic optimization where only the primal cone K has a self-concordant function on its
interior intK. However, all of these studies assume that a feasible interior point x

0 satisfying

Ax
0 = b, x

0
∈ intK (5)

is obtained a priori, which means that those studies are not inextricably tied to the practical usage. In
fact, with the appearance of the primal-dual interior point algorithm in 1989 for linear optimization, the
number of studies on the primal barrier function algorithm diminished and there are few papers on the
primal infeasible interior point algorithm which may start from an infeasible interior point.

Recently, Skajaa, Jørgensen and Hansen [14] proposed a homogeneous interior-point algorithm for non-
symmetric conic optimization which does not need to assume the existence of a feasible interior point.
Note that, in either [14] or [9], it has been assumed that we can easily check whether an element s lies in
the dual cone K

∗ of K. However, as described in (ii) above, the dual cone (Dn)∗ of the DNN cone Dn

is given by (3) and it is not necessarily easy to find whether s ∈ (Dn)∗ or not. A new and purely primal
algorithm would be expected to find a feasible interior point satisfying (5) for the DNN optimization
problem.

In this paper, we propose an algorithm to find a feasible interior point of the conic optimization (1)
where the closed convex cone has the following properties:

(a) intK is not necessarily symmetric, i.e., it can be not self-dual or not homogeneous,

(b) a self-concordant function f is defined over intK, and

(c) its dual cone K
∗ is not explicit or is intractable.

Our algorithm is a purely primal barrier function algorithm based on the self-concordant function f ,
and does not require any knowledge of the dual cone K

∗.

The paper is organized as follows. In Section 2, we summarize basic properties of the self-concordant
function according to [11]. The primal barrier function Phase I algorithm is provided in Section 3.
The algorithm consists of the feasibility step and the well-known centering steps. After analyzing the
feasibility step in Section 4, we provide a sufficient condition for finite termination of the algorithm and
estimate the required number of iterations in Section 5. Concluding remarks are given in Section 6.

2 Basic properties of the self-concordant function

Our analysis crucially relies on Section 2 of [11] where many properties of the self-concordant function
have been investigated. In this section, we provide some basic properties of the self-concordant function
used in the paper.

Let Df be an open convex set and f : Df → R be a functional f ∈ C2. We denote by g(x) and H(x)
the gradient and the Hessian of f(x) at x, respectively. We obtain the following proposition.

Proposition 2.1 (Proposition 1.5.7 of [11]). If x, y ∈ Df then

g(y) = g(x) + H(x)(y − x) +
� 1

0

�
H(x + t(y − x))−H(x)

�
(y − x)dt.
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In what follows, we suppose that H(x) is positive definite for all x ∈ Df which implies that f is strictly
convex. The local inner (or the intrinsic) product and the induced norm are defined as follows:

�u, v�x := �u,H(x)v�, �u�x :=
�
�u, u�x. (6)

Let Bx(x,λ) be the open ball given by

Bx(x,λ) := {y | �y − x�x < λ}.

In [11], the self-concordant function is defined as follows.

Definition 2.2 (Section 2.2.1 of [11]). A functional f : Df → R is said to be (strongly nondegenerate)
self-concordant if for all x ∈ Df we have

Bx(x, 1) ⊆ Df (7)

and if whenever y ∈ Bx(x, 1) we have

1− �y − x�x ≤
�v�y

�v�x
≤

1
1− �y − x�x

for all v �= 0. (8)

Since H(x) is positive definite, H(x)−1 exists for any x ∈ Df . By introducing the notation

Hx(y) := H(x)−1
H(y), (9)

we see the following properties.

Theorem 2.3 (Theorem 2.2.1 of [11]). Assume that the functional f has the property that Bx(x, 1) ⊆ Df

for all x ∈ Df .

(i) f is self-concordant iff for all x ∈ Df and y ∈ Bx(x, 1)

�Hx(y)�x, �Hx(y)−1
�x ≤

1
(1− �y − x�x)2

.

(i) f is self-concordant iff for all x ∈ Df and y ∈ Bx(x, 1)

�I −Hx(y)�x, �I −Hx(y)−1
�x ≤

1
(1− �y − x�x)2

− 1.

We denote by n(x) the Newton direction for f at x which is given by

n(x) = −H(x)−1
g(x) (10)

and by n̄(x) the projected Newton direction which is the unique solution of the system

H(x)n̄(x) + g(x) = A
∗
y, (11)

An̄(x) = 0, (12)

where A
∗ denotes the adjoint of A satisfying �x,A

∗
y� = �Ax, y� for any x ∈ Rp and y ∈ Rq. The

projected Newton direction n̄(x) and the Newton direction n(x) have the following relation:

�n̄(x), n(x)�x = �n̄(x), n̄(x)−H(x)−1
A
∗
y�x (by (10) and (11))

= �n̄(x), n̄(x)�x − �n̄(x), A∗y� (by (6) )
= �n̄(x)�2x − �An̄(x), y�
= �n̄(x)�2x. (by (12)) (13)

The theorem below gives an upper bound of the difference between the function value f(y) and its
second-order approximation at x of the self-concordant function f .
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Theorem 2.4 (Theorem 2.2.2 of [11]). If f is self-concordant, x ∈ Df and y ∈ Bx(x, 1), then

|f(y)− qx(y)| ≤
�y − x�3x

3(1− �y − x�x)

where qx(y) is the second-order approximation of f(y) at x given by

qx(y) := f(x) + �g(x), (y − x)�+
1
2
�(y − x),H(x)(y − x)�

= f(x)− �n(x), (y − x)�x +
1
2
�y − x�

2
x

Here the second equality above follows from the definitions of (10) and (6). At the last of this section,
we give two propositions on the complexity value of f .

Proposition 2.5 (Section 2.3.1 of [11]). Let f : Df → R be a strongly nondegenerate self-concordant
barrier. Let ϑf be the complexity value of f given by

ϑf := sup
x∈Df

�n(x)�2x.

Then the following inequalities hold.

�n̄(x)�x ≤ �n(x)�x ≤
�

ϑf .

For the self-concordant function f over the interior intDn of the DNN cone Dn in (2), we obtain the
following lemma by simple calculations.

Proposition 2.6. Let f be a self-concordant barrier on intDn given by (4). The complexity value

ϑf := sup
x∈intDn

�n(x)�2x

of the function f is n
2 + n.

3 A primal barrier function Phase I algorithm for the nonsym-
metric conic optimization problem

Let K be a closed convex cone which is not necessarily symmetric, and f be a self-concordant functional
defined over Df := intK. In this section, we propose an algorithm for finding a feasible interior point
of the primal (nonsymmetric) optimization problem of (1).

Recall that the Newton direction n(x) and the projected Newton direction n̄(x) for f at x are given by
(10) and (11) – (12), respectively. Here we outline the algorithm.

Let τ ∈ (0, 1) and choose an initial point x
0 ∈ intK. Define

r
0 := Ax

0
− b, Sγ := {x ∈ intK | Ax− b = γr

0
}. (14)

Note that r
0 is not necessarily zero and x

0 may be an infeasible interior point. We impose the following
assumption which is often satisfied by the DNN relaxation problems of combinatorial optimization
problems (cf., e.g., [2, 4, 3, 10, 7]).
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Assumption 3.1. The set
S1 = {x ∈ intK | Ax− b = r

0
}

is bounded.

If the original problem has a feasible interior point then S0 �= ∅ and otherwise S0 = ∅. In any cases, we
have the following lemma.

Lemma 3.2. Suppose that Assumption 3.1 holds.

(i) The set
∪γ∈[0,1]Sγ

is a bounded convex set.

(ii) If Sγ �= ∅ then the analytical center z(γ) for f in Sγ , which is the minimizer of f over Sγ , uniquely
exists and satisfies

n̄(z(γ)) = 0

for any γ ∈ [0, 1].

(iii)
inf{f(x) | x ∈ ∪γ∈[0,1]Sγ} > −∞

Proof. (i): The convexity of the set ∪γ∈[0,1]Sγ directly follows from the definition and the convexity of
K. Suppose that ∪γ∈[0,1]Sγ is unbounded. Then there exists a sequence {(γk

, x
k)} satisfying

γ
k
∈ [0, 1], Ax

k
− b = γ

k
r
0
, x

k
∈ intK, �x

k
� → +∞.

Let us consider the sequence

y
k :=

x
k

�xk�
∈ intK.

Since {yk} and {γk} are bounded and �yk� = 1 for any k, by taking a subsequence if necessary, we find
ȳ �= 0 satisfying

Aȳ = 0, ȳ ∈ K.

Thus, for any α > 0, x
0 + αȳ is in the set S1 which contradicts the assumption that S1 is bounded.

(ii): Since Sγ is bounded for any γ ∈ [0, 1], by Theorem 2.2.8 of [11], the function f(x) has a minimizer
z(γ) ∈ Sγ . Since Karush-Kuhn-Tucker optimality conditions imply that z(γ) satisfies

g(z(γ)) = A
∗
y,

it follows from the system of (11) and (12) that n̄(z(γ)) = 0.

(iii): Since the function f is convex, it holds that

f(x) ≥ f(x0) + �g(x0), x− x
0
�

≥ f(x0)− �g(x0)��x− x
0
�

for any x in the bounded convex set ∪γ∈[0,1]Sγ . Thus the function f(x) is bounded from below on
∪γ∈[0,1]Sγ .
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The assertion (ii) of Lemma 3.2 ensures that the value �n̄(x)�x can be used to measure proximity to the
analytical center. Moreover, it follows from (iii) of Lemma 3.2 that the value

∆ := f(x0)− inf{f(x) | x ∈ ∪γ∈[0,1]Sγ} ≥ 0 (15)

is well defined. It is not required to compute the value ∆ in our algorithm, but plays an important role
to estimate the iteration number of centering steps described below.

Let x be the current iterate of our algorithm and define r := Ax − b. In our algorithm, the residual
vector r is decreasing on a line segment (0, r

0] whenever r
0 = Ax

0− b �= 0 by using the shifted projected
Newton direction given below (see (20)). So, we can take a γ ∈ (0, 1] so that r = γr

0.

If x is close to the analytical center z(γ), e.g., �n̄(x)�x ≤ 1 and γ is sufficiently small, i.e., γ ≤ �, our
algorithm will stop with a sufficiently approximated feasible interior point x. We may start several
primal interior point algorithm with x as an initial point.

If �n̄(x)�x ≤ 1 but γ > �, our algorithm will proceed to the feasibility step where we compute the shifted
projected Newton direction n̄

r(x) which is the solution of
�

H(x)n̄r(x) + g(x) = A
∗
y,

An̄
r(x) = −r.

(16)

Define
d

r(x) := −H(x)−1
A
∗(AH(x)−1

A
∗)−1

r. (17)

Then it holds that
n̄

r(x) = n̄(x) + d
r(x). (18)

We calculate the new iteration x
+ as

x
+ := x + αn̄

r(x), α :=
1− τ

1 + �dr(x)�x
∈ (0, 1− τ ]. (19)

Note that by (16), x
+ satisfies

Ax
+
− b = A(x + αn̄

r(x))− b = (Ax− b) + αAn̄
r(x) = (1− α)r. (20)

The above relation and the fact α ∈ (0, 1) ensure that the residual vector r is decreasing on the line
segment (0, r

0].

If �n̄(x)�x > 1 our algorithm will proceed to the centering steps described as in Theorem 2.2.3 of [8]
until we find a point y such that �n̄(y)�x ≤ 1.

We summarize our algorithm below.

A primal barrier function Phase I algorithm

Step 0: Choose an accuracy � > 0, a step size parameter τ ∈ (0, 1), and an initial point x
0 ∈ intK. Set

x := x
0.

Step 1: Define r := Ax− b and let γ ∈ (0, 1] be the value satisfying r = γr
0. If

�n̄(x)�x ≤ 1, γ ≤ �

then stop. We have obtained a sufficiently approximated feasible interior point x. Here �n̄(x)�x

can be calculated by solving the system (11) – (12) and by (6).
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Step 2: If
�n̄(x)�x ≤ 1, γ > �

then proceed to the feasibility step. Compute the shifted projected Newton direction n̄
r(x) by

solving (16). Set the new iterate x
+ as in (19). Set x := x

+. Go to Step 1.

Step 3: If
�n̄(x)�x > 1

then proceed to the centering steps described as in Theorem 2.2.3 of [8] until we find a point y ∈ Sγ

such that �n̄(y)�x ≤ 1. Set x := y. Go to Step 1.

Note that at the beginning of the centering steps, we have an interior initial point x ∈ Sγ to find a
point y ∈ Sγ which is sufficiently close to the analytical center z(γ) of Sγ . This fact implies that the
centering steps in Step 3 exactly corresponds to the ones in existing primal feasible algorithms as in
[11] or in [8] and has been well analyzed. Thus we only have to know the behavior of the feasibility step.
In the succeeding sections, we will analyze the feasibility step and give a sufficient condition for finding
an approximate feasible interior point in a finite number of iterations.

4 Analysis of the feasibility step

In this section, we analyze the feasibility step in Section 3. Recall that K is a closed convex cone and f

is a self-concordant function over Df := intK with the complexity value ϑf . At the feasibility step, we
choose a point x

+ as in (19). As we will see in Theorem 4.6, the value of the barrier function f will be
increased at most O(ϑf ) at x

+.

Lemma 4.1. At the feasibility step, we have

(i)
α�n̄

r(x)�x ≤ α (�n̄(x)�x + �d
r(x)�x) ≤ 1− τ.

(ii)

x
+ := x + α (n̄(x) + d

r(x)) ∈ Bx(x, 1) ⊆ intK,

x + αn̄(x) ∈ Bx(x, 1) ⊆ intK.

(iii)

0 < α�d
r(x)�x+αn̄(x) ≤

α�dr(x)�x

1− α�n̄(x)�x
≤ 1− τ.

(iv)
x

+
∈ Bx+αn̄(x)(x + αn̄(x), 1) ⊆ intK.

Proof. (i): The first inequality follows from (18). Since �n̄(x)�x ≤ 1 holds at Step 2, by the definition
(19) of α, we have

α (�n̄(x)�x + �d
r(x)�x) ≤ α (1 + �d

r(x)�x) ≤ 1− τ.

(ii): By the definitions (19) and (18), we see that

�x
+
− x�x = α�n̄

r(x)�x = α�n̄(x) + d
r(x)� ≤ α (�n̄(x)�x + �d

r(x)�x) .
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Thus, the assertion (i) and the property (7) imply that x
+ ∈ Bx(x, 1) ⊆ Df = intK. By a similar

discussion, we also see that

α�n̄(x)�x ≤ 1− τ and x + αn̄(x) ∈ Bx(x, 1) ⊆ Df = intK.

(iii): Note that �dr(x)� > 0 whenever the algorithm enters the feasibility step. Since x + αn̄(x) ∈ Df =
intK by (ii) above, by substituting x + αn̄(x) and d

r(x) �= 0 into y and v in (8), respectively, we see
that

�dr(x)�x+αn̄(x)

�dr(x)�x
≤

1
1− α�n̄(x)�x

or equivalently

0 < �d
r(x)�x+αn̄(x) ≤

�dr(x)�x

1− α�n̄(x)�x

holds. Since the assertion (i) ensures that

α�dr(x)�x

1− �αn̄(x)�x
≤ 1− τ,

we obtain the assertion (iii).

(iv): We see that
�x

+
− (x + αn̄(x))�x+αn̄(x) = �αd

r(x)�x+αn̄(x).

Thus the assertion follows from (iii) and the property (7).

We will derive an upper bound of f(x+) using the above and the results in Section 2.

First we observe the relation between f(x+) and f(x + αn̄(x)). Since x
+ ∈ Bx+αn̄(x)(x + αn̄(x), 1) by

(iv) of Lemma 4.1, by substituting x
+ := x + αn̄(x) + αd

r(x) and x + αn̄(x) into y and x in Theorem
2.4, we obtain the following inequality:

f(x+) ≤ f(x + αn̄(x)) (21)
+�g(x + αn̄(x)),αd

r(x)� (22)

+
1
2
�αd

r(x),H(x + αn̄(x))αd
r(x)� (23)

+
α

3�dr(x)�3x+αn̄(x)

3(1− α�dr(x)�x+αn̄(x))
. (24)

We derive the following bounds for each term in (21) - (24).

Lemma 4.2 (An upperbound of the term in (21)).

f(x + αn̄(x)) ≤ f(x) +
(1− τ)2

τ

9



Proof. By (ii) of Lemma 4.1, we know that x + αn̄(x) ∈ Bx(x, 1). Thus by Theorem 2.4, it holds that

f(x + αn̄(x)) ≤ f(x) + �g(x),αn̄(x)�+
1
2
�αn̄(x),H(x)αn̄(x)�+

α
3�n̄(x)�3x

3(1− α�n̄(x)�x)

= f(x)− �n(x),αn̄(x)�x +
1
2
�αn̄(x)�2x +

α
3�n̄(x)�3x

3(1− α�n̄(x)�x)
(by (6) and (10))

≤ f(x)− α�n̄(x)�2x +
1
2
α

2
�n̄(x)�2x +

α
3�n̄(x)�3x

3(1− α�n̄(x)�x)
(by (13))

≤ f(x) +
1
2
α

2
�n̄(x)�2x +

α
3�n̄(x)�3x

3(1− α�n̄(x)�x)
.

Note that at the feasibility step, we have �n̄(x)�x ≤ 1, α ≤ 1− τ by (19), and

1
1− α�n̄(x)�x

≤
1

1− α (�n̄(x)�x + �dr(x)�x)
≤

1
τ

by (i) of Lemma 4.1. These facts and τ ∈ (0, 1) imply that

1
2
α

2
�n̄(x)�2x +

α
3�n̄(x)�3x

3(1− α�n̄(x)�x)
≤

(1− τ)2

2
+

(1− τ)3

3τ

<
(1− τ)2

2τ
+

(1− τ)2

3τ

<
(1− τ)2

τ
.

Thus we obtain the lemma.

Lemma 4.3 (An upperbound of the term in (22)).

�g(x + αn̄(x)),αd
r(x)� ≤ ϑf +

(1− τ)2

τ
.

Proof. In what follows, we denote H(x)−1
g(x) by gx(x) for ease of notation. It follows from (10) that
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gx(x) = −n(x) and �gx(x)�x = �n(x)�x. Then, by the definition (6), we have

�g(x + αn̄(x)),αd
r(x)�

= �gx(x + αn̄(x)),αd
r(x)�x

≤ �αd
r(x)�x�gx(x + αn̄(x))�x

= �αd
r(x)�x

�����gx(x) + αn̄(x) + αn̄(x)
� 1

0
(Hx(x + tαn̄(x))− I)dt

����
x

�

(by Proposition 2.1)

≤ �αd
r(x)�x

�
�gx(x)�x + �αn̄(x)�x + �αn̄(x)�x

� 1

0
�Hx(x + tαn̄(x))− I�xdt

�

≤ �αd
r(x)�x

�
�gx(x)�x + �αn̄(x)�x + �αn̄(x)�x

� 1

0

�
1

(1− t�αn̄(x)�x)2
− 1

�
dt

�

(by Theorem 2.3)

= �αd
r(x)�x

�
�n(x)�x + �αn̄(x)�x + �αn̄(x)�x

�
1

�αn̄(x)�x − �αn̄(x)�2xt
− t

�1

0

�

= �αd
r(x)�x

�
�n(x)�x + �αn̄(x)�x +

�αn̄(x)�2x
1− �αn̄(x)�x

�

= �αd
r(x)�x

�
�n(x)�x +

�αn̄(x)�x

1− �αn̄(x)�x

�

= α�d
r(x)�x

�
�n(x)�x +

α�n̄(x)�x

1− α�n̄(x)�x

�
.

Note that at the feasibility step, we have α�n̄(x)�x ≤ 1− τ by (19), and

α�d
r(x)�x ≤ 1− τ,

1
1− α�n̄(x)�x

≤
1

1− α (�n̄(x)�x + �dr(x)�x)
≤

1
τ

by (i) of Lemma 4.1. The above facts ensure that

α�d
r(x)�x

�
�n(x)�x +

α�n̄(x)�x

1− α�n̄(x)�x

�
≤ (1− τ)

�
ϑf +

1− τ

τ

�

≤ ϑf +
(1− τ)2

τ
.

and we obtain the lemma.

Lemma 4.4 (An upperbound of the term in (23) ).

1
2
�αd

r(x), H(x + αn̄(x))αd
r(x)� ≤

(1− τ)2

2τ2
.

11



Proof. Recall that Hx(y) is defined by (9). By the definition (6), we see that

1
2
�αd

r(x), H(x + αn̄(x))αd
r(x)�

=
1
2
�αd

r(x),Hx(x + αn̄(x))αd
r(x)�x

≤
1
2
�αd

r(x)�2x�Hx(x + αn̄(x))�x

≤
1
2
�αd

r(x)�2x
1

(1− �αn̄(x)�x)2

=
1
2

�
α�dr(x)�x

1− α�n̄(x)�x

�2

where the last inequality follows from x+αn̄(x) ∈ Bx(x, 1) by (ii) of Lemma 4.1 and from Theorem 2.3.
As we have seen in the proof of Lemma 4.3, it holds that

α�d
r(x)�x ≤ 1− τ and

1
1− α�n̄(x)�x

≤
1
τ

.

Therefore, we have �
α�dr(x)�x

1− α�n̄(x)�x

�2

≤

�
1− τ

τ

�2

which completes the proof.

Lemma 4.5 (An upperbound of the term in (24)).

α
3�dr(x)�3x+αn̄(x)

3(1− α�dr(x)�x+αn̄(x))
≤

(1− τ)3

3τ
.

Proof. The definition of the local norm (6) and the assertion (iii) of Lemma 4.1 ensure that

α�d
r(x)�x+αn̄(x) ≤ 1− τ.

Thus, it immediately follows that

α
3�dr(x)�3x+αn̄(x)

3(1− α�dr(x)�x+αn̄(x))
≤

(1− τ)3

3τ

which completes the proof.

Combining the results in Lemmas 4.2 to 4.5, we obtain the following theorem which gives an upperbound
of the value f(x+).

Theorem 4.6. At the feasibility step, the new iterate x
+ ∈ Df = intK satisfies

f(x+) ≤ f(x) + ϑf + 3
�

1− τ

τ

�2

.

Thus
f(x+)− f(x) = O(1 + ϑf ).

12



Proof. By replacing the terms in (21) – (24) by the upperbounds in Lemmas 4.2 to 4.5, we have

f(x+) ≤ f(x) +
(1− τ)2

τ

+ϑf +
(1− τ)2

τ

+
(1− τ)2

2τ2

+
(1− τ)3

3τ

≤ f(x) + ϑf + 3
�

1− τ

τ

�2

.

Since τ ∈ (0, 1), we obtain the theorem.

5 Finite termination of the algorithm

In this section, we analyze the total number of steps of the primal barrier function Phase I algorithm
proposed in Section 3. We impose the following assumption.

Assumption 5.1. There exists δ < +∞ such that

sup
�
�d

r(x)�x | x ∈ ∪γ∈[0,1]Sγ , �n̄(x)�x ≤ 1
�
≤ δ.

Here � · �x, d
r(x), Sγ and n̄(x) are defined by (6), (17), (14) and (11) – (12), respectively.

Note that by the definitions � · �x and d
r(x), �dr(x)�x can be represented equivalently as

�d
r(x)�x =

�
�dr(x),H(x)dr(x)� =

�
�r, (AH(x)−1A∗)−1r�.

In what follows, we show that Assumption 5.1 is a sufficient condition for finite termination of the
algorithm. We obtain the following lemma under Assumption 5.1.

Lemma 5.2. Suppose that Assumptions 3.1 and 5.1 hold. Then the maximum number of executions of
Step 2 (the feasibility step) is bounded by

1 + δ

1− τ
log

1
�

= O

�
(1 + δ) log

1
�

�
.

Proof. We have seen that (20) holds at the feasibility step. It follows from the definition (19) that
Assumption 5.1 ensures that

α ≥
1− τ

1 + δ
. (25)

Note that the value of γ is not changed during centering steps. Thus, at the N -th iteration x
N of the

feasibility step, we have

Ax
N
− b = γ

N
r
0
, γ

N
≤

�
1−

1− τ

1 + δ

�N

.

13



By the construction of the algorithm, we will stop if γ
N ≤ �. Thus if

�
1−

1− τ

1 + δ

�N

≤ � (26)

then the algorithm will be terminated. By taking the logarithm of both sides of (26) and using the fact

log(1− ξ) ≤ −ξ for any ξ ∈ [0, 1)

we obtain
N

�
1− τ

1 + δ

�
≥ log

1
�
.

Thus we complete the proof.

The above lemma ensures that if Assumptions 3.1 and 5.1 hold then the original problem has an ap-
proximated feasible interior point. Using the above lemma, we obtain the following iteration bound of
the algorithm.

Theorem 5.3. Suppose that Assumptions 3.1 and 5.1 hold. Then the total number of steps of the primal
barrier function Phase I algorithm is

O

�
∆(1 + δ) log

1
�

+ (1 + ϑf )
�

(1 + δ) log
1
�

�2
�

where ∆ is defined by (15).

Proof. It is well known that the number of the centering steps bounded by O(f0 − f
∗) where f

0 is the
value of f at the beginning of Step 3 and f

∗ is the value of f at the analytical center of f ( see Theorem
2.2.3 of [8] or Section 3 of [9]).

In our algorithm, the value of the function f is increased only at Step 2 of the feasibility step. As we
have shown in Theorem 4.6, the increment is O(1 + ϑf ) at each feasibility step. Moreover, Lemma 5.2
ensures that the total increment throughout the algorithm is

O

�
(1 + ϑf )(1 + δ) log

1
�

�
.

Thus, the function value f
0 at the beginning of Step 3 is

f
0 = f(x0) + O

�
(1 + ϑf )(1 + δ) log

1
�

�
.

At each Step 3, the value f(z(γ)) at the analytical center z(γ) ∈ Sγ satisfies

f(z(γ)) ≥ inf{f(x) | x ∈ ∪γ∈[0,1]Sγ}

where the set Sγ is defined by (14). Thus, by the definition (15), we have

f
0
− f(z(γ)) ≤ ∆ + O

�
(1 + ϑf )(1 + δ) log

1
�

�
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which ensures that the number of corrector steps in each Step 3 is

O

�
∆ + (1 + ϑf )(1 + δ) log

1
�

�
.

Let N be the maximum number of executions of Step 2. Here the maximum number of executions of
Step 3 is bounded by N + 1 since Step 3 is never executed consecutively by the construction of the
algorithm.

Thus, by Lemma 5.2 again, the total number of centering steps throughout the algorithm is

O

�
∆(1 + δ) log

1
�

+ (1 + ϑf )
�

(1 + δ) log
1
�

�2
�

which completes the proof.

By Proposition 2.6, we obtain the following corollary for the special case where K is the DNN cone Dn.

Corollary 5.4. Let K be the DNN cone Dn given by (2). Suppose that Assumptions 3.1 and 5.1 hold.
Then the total number of steps of the primal barrier function Phase I algorithm is

O

�
∆(1 + δ) log

1
�

+ n
2

�
(1 + δ) log

1
�

�2
�

where ∆ is defined by (15).

6 Concluding remarks

In this paper, we proposed a purely primal barrier function Phase I algorithm for solving nonsymmetric
conic optimization problems including the DNN optimization problem. In order to develop efficient and
practical algorithms for such problems, many issues remain to be investigated.

The first one is to find much clearer justification for finite termination of the algorithm. Assumption
5.1 gives a sufficient condition, but we have to figure out which instances satisfy the assumption. The
second one is to provide more sophisticated algorithms. In our algorithm, we only use the self-concordant
barrier function f and do not make any use of the objective function �c, x�. Using the hybrid function

η�c, x�+ f(x)

instead of f will be a promising research direction for developing practical primal barrier algorithms. It
is of course important to conduct numerical experiments to observe the behavior of the algorithms.
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