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PREFERENCE PROFILE DETERMINING THE PROPOSALS IN THE
GALE-SHAPLEY ALGORITHM FOR STABLE MATCHING PROBLEMS

NORIYOSHI SUKEGAWA AND YOSHITSUGU YAMAMOTO

ABSTRACT. Concerning the strategic manipulability of the the stable matching produced by the
Gale-Shapley algorithm, Kobayashi and Matsui recently considered the existence problem of a
preference profile of women, that is, given a preference profile of men, find a preference profile of
women that makes the Gale-Shapley algorithm produce the prescribed complete matching of men
and women. Reformulating this problem by introducing the set of proposals to be made through the
execution of the algorithm, and switching the roles of men and women, we consider the existence
problem of a preference profile of men and show that the problem is reduced to a problem of
checking if a directed graph is a rooted tree and is solvable in polynomial time. We also show
that the existence problem of preference profiles of both sexes when a set of proposals is given is
solvable in polynomial time.

1. INTRODUCTION

Those who triggered this work are Tomomi Matsui, who presented his work concerning the
strategic issue in the stable matching model, and Akihisa Tamura, who raised a question for his
presentation. Matsui’s work has been published in [7], where given a preference profile of men
and a complete matching, they consider the problem of finding a preference profile of women
such that the men-proposing Gale-Shapley algorithm produces the given complete matching, and
show that the problem is solvable in polynomial time. They also consider some variations of the
problem in [8], and show that one of the variations results in NP-completeness.

Tamura’s question is concerned with the switch of the roles of men and women while leaving
the men-proposing Gale-Shapley algorithm intact. Suppose that given a preference profile of
women and a complete matching, we are asked if there is a preference profile of men such that the
men-proposing Gale-Shapley algorithm produces the given complete matching. This problem has
a trivial solution, that is, each man just has to rank his assigned mate first in his preference list.
When we are given a preference profile of men, being given a complete matching is equivalent to
being given the set of women to whom each man proposes to during the execution of the algorithm.
Hence the problem that Kobayashi and Matsui consider in [7], which is the first problem in [8],
can be restated as “given a preference profile of men and a set of proposals, find a preference
profile of women such that during the execution of the men-proposing Gale-Shapley algorithm
each man proposes to women prescribed by the set of proposals.” The aim of this paper is to
answer the question what if we switch the roles of men and women in this setting. We will show
that it reduces to a problem of determining if a directed graph is a rooted spanning tree, hence is
solvable in polynomial time.

The issue of strategical manipulability in the stable matching model has been discussed in many
publications such as [5], [10], and the references therein. To our knowledge, the above problem
setting is novel and will serve as a foundation stone for further research on the strategical manipu-
lability in the stable matching model. In the next section, we describe the stable matching problem
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and the men-proposing Gale-Shapley algorithm. In Section 3 we define the problem considered in
this paper, and then in Section 4 introduce the keystone of this paper named second suitor graph.
The solution as well as the polynomial solvability of the problem is shown in Section 5. In Sec-
tion 6 we discuss the existence of preference profiles of men and women when a set of proposals
is prescribed.

2. STABLE MATCHING AND MEN-PROPOSING GALE-SHAPLEY ALGORITHM

We denote the set of men and the set of women by M and W , respectively, and suppose that
they consist of the same number, say n, of persons, i.e., |M| = |W | = n. Each man has a totally
ordered list of all the women, which we call his preference list, and each woman also has her
preference list of all the men. We denote person u’s preference list by Lu. We denote v !u v′ or
v′ ≺u v when v is ranked prior to v′ in Lu, and v $u v′ or v′ %u v when v = v′ or v !u v′. We will
use the symbols Lu and !u interchangeably. We also denote the set of preference lists of M and W
by LM := [Lm]m∈M = [!m]m∈M and LW := [Lw]w∈W = [!w]w∈W , and call them preference profile
of men and preference profile of women, respectively.

Definition 2.1. A complete matching is a mapping f : M∪W → M∪W such that
(1) f (m) ∈W for all m ∈ M, and f (w) ∈ M for all w ∈W ,
(2) w = f (m) if and only if m = f (w) for all (m,w) ∈ M×W .

We say that f (u) is u’s mate in f and {u, f (u)} is a matched pair in f . We say {m,w} with m ∈ M
and w ∈W is an unmatched pair in f when w *= f (m).

Definition 2.2. An unmatched pair {m,w} in a complete matching f is said to be a blocking pair
for f if and only if

w !m f (m) and m !w f (w).

Definition 2.3. A complete matching f is said to be a stable matching if and only if it admits no
blocking pairs.

Gale and Shapley [4] showed that there is a stable matching for any given pair of preference
profiles LM and LW . Their constructive proof is based on an algorithm now known as the Gale-
Shapley algorithm which repeats proposal followed by an engagement or a decline. The algorithm
has two variations: men-proposing and women-proposing depending on which sex proposes to
the other sex. The version we consider in this paper is the men-proposing GS algorithm (mGS
algorithm for short) described below.

Men-proposing Gale-Shapley algorithm
Step 0: Set FM := M, FW := W , Π = /0, µ(u) = u for all u ∈ M∪W , and k := 0.
Step 1: If FM = /0, then output µ and Π, and stop.
Step 2: Choose m ∈ FM, let

w := max
!m

{
w′ ∈W | (m,w′) *∈ Π

}
,

Π := Π∪{(m,w)}.
Step 3:

3a: If w ∈ FW , then set

µ(m) := w and µ(w) := m,

FM := FM \{m} and FW := FW \{w},

and go to Step 4.
3b: If w *∈ FW , let m′ := µ(w).
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3b1 If m !w m′, then set

µ(m) := w and µ(w) := m,

µ(m′) := m′,

FM := FM \{m}∪{m′},
and go to Step 4.

3b2 If m ≺w m′, go to Step 4.
Step 4: Update k := k +1 and return to Step 1.

In the execution of the algorithm each person is either engaged or free. In the above description
FM and FW are the sets of men and women who are free at the current iteration, respectively, and Π
is the set of ordered pairs of man m and woman w such that m has proposed to w up to the current
iteration. A man m who is free is chosen in Step 2, and then let him propose to his most favorite
woman w whom he has not yet proposed to. If the woman w prefers the proposer m to her current
mate m′, she breaks her current engagement, sets her ex-mate m′ free and becomes engaged to m
in Step 3.

Definition 2.4. For a given pair of preference profiles LM and LW , we denote the matching µ
and the set of proposals Π that the mGS algorithm produces by µ(LM,LW ) and Π(LM,LW ),
respectively.

It is known that the matching µ(LM,LW ) as well as the set of proposals Π(LM,LW ) is inde-
pendent of the choice of a man in Step 2. See Theorem 1.2.2 in Gusfield and Irving [5] or Lecture 2
in Knuth [6].

Definition 2.5. For a nonempty subset P of M×W let

PM(m) := {w ∈W | (m,w) ∈ P} for m ∈ M
PW (w) := {m ∈ M | (m,w) ∈ P} for w ∈W .

We call P ⊆ M ×W a set of proposals when PM(m) and PW (w) are nonempty for all m ∈ M and
w ∈W .

Since each man proposes to women who are successively less preferred by him, and each
woman who receives a proposal compares her current mate with the proposer and becomes en-
gaged to a more favorite man, we readily obtain the following lemma.

Lemma 2.6. For LM := [!m]m∈M and LW := [!w]w∈W , let µ := µ(LM,LW ) and Π := Π(LM,LW ).
Then

µ(m) = min
!m

ΠM(m) for m ∈ M(2.1)

µ(w) = max
!w

ΠW (w) for w ∈W ,(2.2)

where min!m ΠM(m) is the woman who is ranked lowest in the set ΠM(m) according to man m’s
preference !m.

3. PROBLEM DESCRIPTION

We consider the following problem in this paper.

Input : A preference profile of women LW := [!w]w∈W and a set of proposals P ⊆ M×W .
Output : If there is a preference profile of men LM such that Π(LM,LW ) = P, then output

LM . Otherwise, say “none exists.”
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Now for given LW := [!w]w∈W and P ⊆ M×W , let

(3.1) α(w) := max
!w

PW (w)

for w ∈W . If α(w) = α(w′) for different women w and w′, mGS algorithm would not produce P
no matter what preference profile of men is given. Henceforth we assume that α : W → M is an
injection, i.e.,

(3.2) α(w) *= α(w′) whenever w *= w′.

Since M and W are of the same cardinality, the woman w such that α(w) = m is uniquely deter-
mined for each m ∈ M, hence we denote it by α−1(m). If mGS algorithm produces P for some
LM := [!m]m∈M , it satisfies the conditions

(3.3) α−1(m) = min
!m

PM(m),

and

(3.4) α−1(m) !m w′ for all w′ ∈W \PM(m).

Namely, the preference list of m should be as shown in Table 1.

TABLE 1. man m’s preference satisfying (3.3) and (3.4)

PM(m)\{α−1(m)} !m α−1(m) !m W \PM(m)

A natural question would be whether such a preference profile of men LM together with LW
always gives the prescribed set of proposal P. In other words, “are the conditions (3.2), (3.3) and
(3.4) on LM sufficient for the mGS algorithm to produce P? If not, what other conditions are
needed?” The following small example shows that the conditions (3.2), (3.3) and (3.4) are not
sufficient.

Example 3.1. Let M := {1,2}, W := {a,b}, LM and LW be given in Table 2, and P := {(1,a),
(1,b),(2,a),(2,b)}. The underlined elements denote the prescribed proposals P and the boldfaced
figure in each row of LW is α(w), and the boldfaced alphabet in each row of LM is α−1(m). Note
that this instance satisfies the conditions (3.1), (3.2), (3.3) and (3.4). The mGS algorithm, however,
will produce Π(LM,LW ) = {(1,b),(2,a)}, which is different from the prescribed proposals P.

TABLE 2. LM and LW

m LM
1 b a
2 a b

w LM
a 1 2
b 2 1

4. SECOND SUITOR GRAPH

Definition 4.1. For woman w ∈W with |PW (w)|≥ 2 and her preference list Lw =!w let

β (w) := max
!w

(PW (w)\{α(w)}) .
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Definition 4.2. Let G(LW ,P) be a directed bipartite graph with node set (M ∪ {r})∪W and arc
set consisting of following three disjoint arc sets:

A := {(w,α(w)) ∈W ×M | |PW (w)|≥ 1}
B := {(β (w),w) ∈ M×W | |PW (w)|≥ 2}
R := {(r,w) ∈ {r}×W | |PW (w)| = 1}.

We call this directed graph the second suitor graph for LW and P.

Definition 4.3. For an arc (u,v) of a directed graph, we call u and v endpoints of the arc, and we
say that the arc emanates from node u and terminates at node v. The arc (u,v) is an outgoing arc
of node u and an incoming arc of node v. The indegree of node u, denoted by indeg(u), is the
number of incoming arcs of node u, and its outdegree, denoted by outdeg(u), is the number of
outgoing arcs.

Lemma 4.4. Suppose that (3.2) holds. Then the second suitor graph G(LW ,P) has the following
properties.

(1) indeg(r) = 0,
(2) indeg(w) = outdeg(w) = 1 for all w ∈W, and
(3) indeg(m) = 1 for all m ∈ M.

Proof. Each node w ∈W has only one outgoing arc (w,α(w)), and only one incoming arc which
is either (β (w),w) or (r,w) depending on the cardinality of PW (w). Thus both of indeg(w) and
outdeg(w) are one. The indegree of node m ∈ M is clearly one from (3.2). !
Example 4.5. The second suitor graph G(LM,LW ) for the preference profiles of Example 3.1
consists of two components: one being the root r alone, and the other being a directed cycle
passing the nodes a,1,b,2,a in this order.

Definition 4.6. A sequence of arcs a1,a2, . . . ,a! of a directed graph is said to be a path when
! ≥ 2, and ai has one endpoint in common with ai−1 and its other endpoint in common with ai+1
for i = 2,3, . . . ,!−1. A path is said to be a cycle when the two end nodes of the path are the same
node. When arc ai+1 emanates from the node that ai terminates at for i = 1,2, . . . ,!− 1, we call
them a directed path and a directed cycle, respectively.

Definition 4.7. A node v of a directed graph is called a root if all the nodes are reached by directed
paths starting from v. A rooted spanning tree is defined as a spanning tree that has a root. For each
node u of a rooted spanning tree, there is a unique directed path from the root to u. The number of
arcs on this directed path is called the height of node u and denoted by h(u). The node right prior
to u on this directed path is called a predecessor of u and denoted by pred(u), and the node right
after u on this directed path is called a successor of u and denoted by succ(u).

The following lemma is among the equivalent characterizations of rooted spanning tree1 given
in Berge [1].

Lemma 4.8 (Theorem 13 in Chapter 3, Berge [1]). A directed graph is a rooted spanning tree
with root v if and only if

(1) indeg(v) = 0,
(2) indeg(u) = 1 for all nodes u *= v, and
(3) the graph contains no cycles.

Lemma 4.9. The second suitor graph G(LW ,P) is a rooted spanning tree with root r if and only
if it contains no directed cycles.

1A rooted spanning tree is called an arborescence in [1].
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Proof. Since the “only if” part is trivial, we prove the “if” part. Suppose G(LW ,P) is not a rooted
spanning tree. Then by Lemma 4.4 and Lemma 4.8 it contains a cycle, say C. If C contains the
root r, whose indegree is zero, C has a node whose indegree is more than one. This contradicts
Lemma 4.4. Then the node set of C is contained in M∪W . Since the indegrees are one for all the
nodes of M∪W , this implies that the cycle C is a directed cycle. !

5. EXISTENCE OF MEN’S PREFERENCE PROFILE

Lemma 5.1. Suppose that for a given set of proposals P ⊆ M×W there is a preference profile of
men LM such P = Π(LM,LW ). Then G(LW ,P) is a rooted spanning tree.

Proof. We will show that the existence of a directed cycle would lead to a contradiction. Denote
the directed cycle by

(w1,m1),(m1,w2), . . . ,(mi−1,wi),(wi,mi),(mi,wi+1), . . . ,(w!,m!),(m!,w1).

Then mi = α(wi) for i = 1,2, . . . ,! and mi = β (wi+1) for i = 1,2, . . . ,!−1 and m! = β (w1) by the
construction of G(LW ,P). Let pi be the number of iteration counter k when mi proposed to wi,
and let ri be the number of the iteration counter k when mi−1 was rejected by wi in the execution
of mGS algorithm, where we use the convention that r1 denotes the number of iteration counter
when m! was rejected by w1. Then

pi > ri+1 for i = 1,2, . . . ,!−1
p! > r1

ri ≥ pi for i = 1,2, . . . ,!.

The third inequality is due to the fact that wi rejects mi−1 = β (wi) only because of the engagement
to or the proposal from mi = α(wi). Then we obtain

p1 > r2 ≥ p2 > r3 ≥ p3 > · · ·≥ p!−1 > r! ≥ p! > r1 ≥ p1,

which is a contradiction. !
Now suppose that we are given LW and P such that the second suitor graph G(LW ,P) is a

rooted spanning tree. Then indeg(m) = 1 for each node m ∈ M, that is, α(w) *= α(w′) when
w *= w′. Therefore the mapping f̂ : M∪W → M∪W defined as follows is a complete matching:

f̂ (w) := α(w) for w ∈W(5.1)

f̂ (m) := α−1(m) for m ∈ M.(5.2)

Note that α−1(m) = pred(m), the predecessor of m in G(LW ,P). For the complete matching f̂ de-
fined above, let L ∗

M = [!∗
m]m∈M be an arbitrary preference profile of men satisfying the following

two conditions (compare with Table 1):

w !∗
m f̂ (m) for all w ∈ PM(m)\{ f̂ (m)}(5.3)

f̂ (m) !∗
m w′ for all w′ ∈W \PM(m).(5.4)

Lemma 5.2. Suppose that the second suitor graph G(LW ,P) is a rooted spanning tree and a
preference profile of men L ∗

M := [!∗
m]m∈M satisfies the conditions (5.3) and (5.4). Let f ∗ :=

µ(L ∗
M,LW ), then it holds that

f ∗(m) $∗
m f̂ (m) for all m ∈ M.

Proof. Since the complete matching f ∗ is a men-optimal stable matching (see, e.g., Theorem 1.2.2
in [5]), it suffices to show that f̂ is a stable matching with respect to L ∗

M and LW . Let {m,w} be an
arbitrary unmatched pair in f̂ and suppose that w !∗

m f̂ (m). Then by (5.3) we see that w ∈ PM(m),
which implies that m ∈ PW (w). Therefore f̂ (w) = α(w) = max!w PW (w) $w m. This means that
there are no blocking pairs for f̂ , hence f̂ is stable. !
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Theorem 5.3. Let LW be a preference profile women, and P ⊆ M ×W be a set of proposals.
There is a preference profile of men L ∗

M such that Π(L ∗
M,LW ) = P if and only if the second suitor

graph G(LW ,P) is a rooted spanning tree. In this case, Π(L ∗
M,LW ) = P holds if and only if L ∗

M
satisfies (5.3) and (5.4).

Proof. We have seen that if there is L ∗
M such that Π(L ∗

M,LW ) = P, then G(LM,P) is a rooted
spanning tree, and also that L ∗

M satisfies (5.3) and (5.4). We then suppose that G(LW ,P) is a
rooted spanning tree, and show µ(L ∗

M,LW ) = f̂ for any L ∗
M satisfying (5.3) and (5.4). This

implies the desired result that Π(L ∗
M,LW ) = P by the construction of L ∗

M . We denote µ(L ∗
M,LW )

by f ∗ for the sake of simplicity.
We will prove f ∗(u) = f̂ (u) by the induction over the height h(u) of node u on G(LW ,P). Note

that h(u) is odd when u ∈W , and even when u ∈ M.

– For w ∈W with h(w) = 1

Let m′ := f ∗(w). Then by Lemma 5.2 we have w = f ∗(m′) $∗
m′ f̂ (m′). This means that w ∈

PM(m′) by (5.4), hence m′ ∈ PW (w). Since h(w) = 1, i.e., an arc comes in from the root r, PW (w)
is a singleton set of f̂ (w) by Definition 4.2. Therefore we have m′ = f̂ (w).

– For m ∈ M

Suppose that f ∗(w) = f̂ (w) for all w ∈ W with h(w) = h(m)− 1 as the induction hypothesis.
Let w := f̂ (m). Then h(w) = h(m)−1 and we have f ∗( f̂ (m)) = f ∗(w) = f̂ (w) = f̂ ( f̂ (m)) = m.
Since both f̂ and f ∗ are complete matching, we obtain f ∗(m) = f̂ (m).

– For w ∈W with h(w) ≥ 3

Let m := pred(w). Then m *= f̂ (w), since otherwise the graph G(LM,P) would contain a
directed cycle (w,m),(m,w), contradicting the assumption. Since f̂ is a complete matching,
f̂ (m) *= w. Since m ∈ PW (w), we have

w ∈ PM(m)\{ f̂ (m)}.
Therefore by (5.3) we obtain

w !∗
m f̂ (m).

By the induction hypothesis f ∗(m) = f̂ (m), which we have seen is different from w. This means
that m was rejected by w in the execution of the mGS algorithm. Therefore f ∗(w) !w m. Let
M!wm := {m′ ∈ M | m′ !w m}.

Now let m∗ := f ∗(w) and we show that m∗ *= f̂ (w) leads to a contradiction. Since M!wm ∩
PW (w) = { f̂ (w)}, m∗ *∈ PW (w), which implies w *∈ PM(m∗). Then by (5.4) we have

f̂ (m∗) !∗
m∗ w = f ∗(m∗).

This contradicts Lemma 5.2. Thus we have f ∗(w) = f̂ (w). !
Example 5.4. Let M := {1,2,3,4,5,6,7} and W := {a,b,c,d,e, f ,g} and LW be given in the
left table of Table 3, where the elements of PW (w) are underlined and α(w) is in bold face. An
example of men’s preference profile L ∗

M satisfying (3.2), (3.3) and (3.4) is given in the right table.
The second suitor graph G(LW ,P) is shown in Figure 1.

6. EXISTENCE OF PREFERENCE PROFILES OF MEN AND WOMEN

We have considered the existence problem of a preference profile of men LM when a preference
profile of women LW and a set of poposals P are given in the preceding sections. A natural
question to pose would be whether there is a pair of LM and LW that makes the mGS algorithm
produce the given P and/or f . We will first show in the following subsection that the problem is
solvable in polynomial time when f is given in addition to P. Then we show it is still polynomially
solvable when P alone is given.

7



TABLE 3. LW and L ∗
M

w LW
a 1 2 3 4 5 7 6
b 6 2 1 3 4 7 5
c 3 1 6 5 2 7 4
d 7 4 3 6 2 5 1
e 2 7 5 1 6 3 4
f 4 1 3 6 7 2 5
g 1 7 6 4 5 3 2

m L ∗
M

1 d a b c e f g
2 d g b a c e f
3 a b d e g c f
4 b g d a c e f
5 a d g e b c f
6 e g f a b c d
7 a g b c d e f

1

4

2

3

5

6

7

a

d

b

c

e

f

g

r

M W

FIGURE 1. Second suitor graph for LW and P

6.1. Case where f and P are given.

Corollary 6.1. Let LM and LW be preference profiles of men and women, respectively, and let
µ := µ(LM,LW ) and Π := Π(LM,LW ) be the output of the mGS algorithm. Let L ∗

M be an
arbitrary preference profile of men such that

w !∗
m µ(m) for all w ∈ ΠM(m)\{µ(m)}(6.1)

µ(m) !∗
m w′ for all w′ ∈W \ΠM(m)(6.2)

for all m ∈ M. Then it holds that µ(LM,LW ) = µ(L ∗
M,LW ) and Π(LM,LW ) = Π(L ∗

M,LW ).

Proof. The second suitor graph G(LW ,Π(LM,LW )) is a rooted spanning tree by Theorem 5.3.
Then, by the same theorem, the mGS algorithm produces Π(LM,LW ) as well as µ(LM,LW ) for
any preference profile of men L ∗

M satisfying (6.1) and (6.2). !
Now suppose that we are given a complete matching f and a set of proposals P ⊆ M×W such

that

(6.3) (m, f (m)) ∈ P for all m ∈ M.
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If there is a pair of preference profile of men LM and preference profile LW of women that makes
the mGS algorithm produce f and P, LM must satisfy

w !m f (m) for all w ∈ PM(m)\{ f (m)}(6.4)

f (m) !m w′ for all w′ ∈W \PM(m).(6.5)

Now let L ∗
M be an arbitrary preference profile of men satisfying (6.4) and (6.5), and consider the

existence problem of Kobayashi and Matsui [7] or the first problem of [8]. If their polynomial
time algorithm provides a preference profile of women L ∗

W that together with L ∗
M makes the mGS

algorithm produce f , we are done. If not, by Corollary 6.1 we conclude that there are no preference
profiles of women for any preference profile of men satisfying (6.4) and (6.5). Namely, no pairs of
preference profiles of men and women make the mGS algorithm produce the prescribed complete
matching f or the prescribed set of proposals P. Thus we obtain the following theorem.

Theorem 6.2. Given a set of proposals P and a complete matching f satisfying (6.3), the existence
problem of preference profiles LM and LW such that P = Π(LM,LW ) and f = µ(LM,LW ) is
solvable in polynomial time.

6.2. Case where P alone is given.

Definition 6.3. For a given set of proposals P let H(P) = (V,E) be the undirected graph with the
node set V and the edge set E defined by

V := M∪{r}∪W

E :=
{
{m,w} | (m,w) ∈ P

}
∪

{
{r,w} | w ∈W, |PW (w)| = 1

}
.

For each node v ∈V let δ (u) denote the set of edges incident to v and let deg(v) := |δ (v)| and call
it the degree of v.

Lemma 6.4. If H(P) has no spanning tree such that

(6.6) deg(v) = 2 for all w ∈W,

there is no pairs of LM and LW such that Π(LM,LW ) = P.

Proof. Suppose that there are LM and LW such that Π(LM,LW ) = P. Then the undirected ver-
sion of the second suitor graph G(LW ,P) is a spanning tree satisfying (6.6) from Lemma 4.4 and
the proof of Theorem 5.3. !

Now suppose that the graph H(P) has a spanning tree T satisfying the degree constraint (6.6).
Give orientations to the edges of T so that it becomes a rooted spanning tree with r as the root. We
denote the rooted spanning tree by T ∗. Then indeg(w) = outdeg(w) = 1 for each w ∈W , hence its
predecessor pred(w) and successor succ(w) are uniquely determined. Now define the preference
list of w ∈W as

(6.7) succ(w) !∗
w pred(w) !∗

w m for all m ∈ PW (w)\{succ(w),pred(w)}

and collect them to make a preference profile of women, which we will denote by L ∗
W .

Lemma 6.5. If H(P) has a spanning tree satisfying the degree constraint (6.6), then there is a
pair of LM and LW such that Π(LM,LW ) = P.

Proof. As discussed above, the second suitor graph G(L ∗
M,P) turns out to be a rooted spanning

tree for the preference profile of women L ∗
W defined by (6.7) and the given set of proposals P.

Then by Theorem 5.3 there is a preference profile of men LM such that Π(LM,L ∗
W ) = P. !

The problem of fining a degree-constrained spanning tree T in the graph H(P) reduces to a
matroid intersection problem of two matroids defined on E. One matroid is the graphic matroid,
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namely whose independent sets are cycle-free sets of edges; the other is the partition matroid
where a subset I of E is independent if and only if

|I ∩δ (w)|≤ 2 for all w ∈W .

Note that {δ (w) | w ∈W } is a partition of E. Clearly, a common basis, if any, is a spanning tree
of H(P) satisfying the degree constraint (6.6), and vice versa.

Theorem 6.6. Given a set of proposals P, the existence problem of a pair of LM and LW such
that Π(LM,LW ) = P is solvable in polynomial time.

Proof. Since the matroid intersection problem of a graphic matroid and a partition matroid is
solvable in polynomial time. See [2], [3] and [9] for the algorithms and their computational com-
plexity. !

7. CONCLUSION

As stated in [8], one of the open questions as to the strategic manipulability in the stable match-
ing model is described as the question “given a pair of preference profiles LM and LW , is there
a preference profile of women KW such that µ(LM,KW ) is a stable matching with respect to
LM and LW and is different from the pessimal stable matching µ(LM,LW )?” Switching the
roles of men and women, we have a question “is there a preference profile of men KM such that
µ(KM,LW ) is a stable matching with respect to LM and LW and is different from µ(LM,LW )?”
We are not sure if the latter problem is worth asking, or if the results in this paper contribute
something to the answer of this question.
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