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Abstract 
Purpose: To evaluate the choroidal thickness by high-penetration optical coherence 
tomography (OCT) using long wavelength in highly-myopic normal tension glaucoma 
(NTG).  
Design: Cross-sectional retrospective study. 
Methods: Setting: Institutional. Participants: Twelve eyes from 8 patients diagnosed as 
NTG without any other ocular diseases under 45 years old, spherical equivalent 
refractive error between –6 and –12 diopters and axial length greater than 26.5mm, and 
12 eyes of matched healthy eyes. Intervention: Choroid was imaged with prototype 
high-penetration OCT and its thickness was measured. Main Outcome Measurements: 
Choroidal thickness at the fovea and 5 locations; 2mm superior, temporal, inferior to the 
center of the optic nerve head, and 2mm superior (supero-temporal) and 2mm inferior 
(infero-temporal) to the temporal location. 
Results: In overall cases, the choroidal thickness in NTG group was approximately 
50% than that in control. Mean choroidal thickness in NTG group was significantly 
thinner in control group at the fovea (166 vs.276 microns, P<0.001), at the superior (172 
vs. 241 microns, P<0.05), at the supero-temporal (161 vs.244 microns, P<0.01), at the 
temporal (110 vs.161 microns, P<0.01), at the infero-temporal (115 vs. 159 microns, 
P<0.05) to the optic nerve head. Stepwise analysis disclosed that the foveal choroidal 
thicknesses the most influential factor on the occurrence of NTG (P < 0.0001, R2=0.4).  
Conclusions: Choroidal thickness in highly myopic NTG is significantly thinner than in 
controls at least in some specific locations. Choroidal thinning is somehow related with 
highly myopic NTG and may be useful diagnostic parameters for myopic NTG. 
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It is well known that normal tension glaucoma (NTG) is augmented by typical 
glaucomatous optic neuropathy within the range of normal intraocular pressure (IOP). 
Myopia is one of the high-risk factors for development of NTG,1,2 and patients with 
highly myopic glaucoma sometimes have greater progression of visual field loss and 
severe loss of central visual function despite an IOP in the normal range.3,4 Therefore, 
myopic NTG is vision-threatening, whereas its pathogenesis is poorly understood. 

Several studies have reported that blood flow disruption including low blood 
pressure, nocturnal hypotension, and fluctuation of the mean ocular perfusion pressure, 
are possible reasons for progression of NTG.5 Sung et al. reported that fluctuation of the 
24-hour mean ocular perfusion pressure was the most consistent prognostic factor for 
NTG.6 Duijm et al. reported that choroidal circulation in NTG is slower than in control 
subjects.7 Previous histologic studies suggested that the choroidal thickness in glaucoma 
was significantly thinner than in normal subjects.8,9  

Recently, the results of several morphologic studies conducted in living human 
glaucomatous eyes using new non-invasive imaging techniques have been reported. A 
confocal scanning laser ophthalmoscope (Heidelberg Retina Tomograph [HRT], 
Heidelberg Engineering, Dossenheim, Germany) provides quantitative measurements of 
various parameters to evaluate the shape of the optic disc on three-dimensional 
topographic images. In a population-based, cross-sectional study, the sensitivity of the 
HRTII glaucoma classification program, version 3.0, was poor, whereas the specificity 
was satisfactory.10 GDx scanning laser polarimetry (Carl Zeiss Meditec, Inc., Dublin, 
CA) allows evaluation of the retinal nerve fiber layer in glaucomatous eyes.11 Optical 
coherence tomography (OCT) is also a noninvasive technique that provides 
high-resolution, cross-sectional retinal images. Spectral-domain OCT, the newest 
commercially available OCT model, provides differentiation of the retinal layers 
correlated with histology and allows evaluation of the optic disc and the retinal nerve 
fiber layer morphology with high reproducibility.12 RTVue-100 (Optovue Inc., Fremont, 
CA) facilitates evaluation of the macular ganglion cell complex.13 

As reported previously, the choroid is thought to be a target in the pathogenesis of 
glaucoma7; however, in vivo choroidal imaging was unsatisfactory because of 
difficulties in visualizing the choroid with conventional OCT technologies using the 
840-nm wavelength as a light source due to high scattering and consequent choroidal 
signal attenuation at the retinal pigment epithelium (RPE). The use of a long wavelength 
such as the 1-micron band allows penetration of the signal through the RPE and Bruch’s 
membrane, enabling visualization of the deep ocular tissues such as the choroid or even 
the sclera.14-17 To evaluate the choroid in living human eyes, we used a prototype 
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high-penetration OCT instrument.18,19 High-penetration OCT using a 1,060-nm light 
source allowed us to clearly measure the choroidal thickness. This new technology has 
shown that the choroidal thickness is affected by age, refractive error, and axial length.19 
Unlike the histologic studies, high-penetration OCT technology enables in vivo 
evaluation of the choroidal morphologic abnormalities. 

In the current study, we focused on morphologic changes in the choroid in highly 
myopic NTG. The choroidal thicknesses around the optic disc and fovea in patients with 
highly myopic NTG were measured and compared with those in myopic volunteers 
without glaucoma. 
 

METHODS 

Patients 

Twelve consecutive eyes of eight patients younger than 45 years of age and diagnosed 
with NTG who met the following criteria in the glaucoma clinic and high myopia clinic 
of Osaka University Hospital were enrolled. The inclusion criteria were intraocular 
pressure (IOP) below 21 mmHg, spherical equivalent refractive error between –6 and 
–12 diopters (D) to exclude extremely high myopia, and axial length exceeding 26.5 
mm. The exclusion criteria included macular abnormalities such as choroidal 
neovascularization or whitish myopic atrophy; systemic abnormalities such as vascular 
disease, hypertension, or diabetes mellitus; and a history of intraocular surgery. Three 
glaucoma specialists (S.U., A.M., and K.M.) independently evaluated the stereo-color 
fundus photographs and automated visual field analyzer to differentiate glaucomatous 
from normal eyes. Data also were collected from the normal healthy volunteer database 
in high-penetration OCT.19 Normal myopic volunteers without glaucoma were selected 
randomly from this database with matching of age, refractive error, and axial length. 

The investigational review board of Osaka University Hospital approved the use 
of the prototypical high-penetration OCT and this retrospective study. The research 
adhered to the tenets of the Declaration of Helsinki. 
 
Examination 
A technician masked to the clinical diagnosis of the patient performed all examinations 
of all patients that included measurement of the spherical equivalent refractive error, 
axial length, central corneal thickness, and corneal refraction and evaluation with the 
Humphrey visual field analyzer. The spherical equivalent refractive error and corneal 
refraction were measured by autorefractometry (ARK-700A, Nidek, Gamagori, Japan). 
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The axial length was measured by partial optical coherence inferometry (IOLMaster, 
Carl Zeiss Meditec, La Jolla, CA). The central corneal thickness was measured by 
specular microscopy (AP3000P, Topcon, Tokyo, Japan). The visual field examination 
was performed with Humphrey automated perimetry with the 30-2 program (Carl Zeiss 
Meditec, Inc.). The mean deviation and pattern standard deviation values were obtained 
from the software in the visual field analyzer. 
 
High-Penetration Optical Coherence Tomography and Measurement of Choroidal 
Morphologic Parameters 
The detailed profile of our prototype high-penetration OCT was described previously.17 
This OCT is swept-source instrument with a scan speed of 50,000 A-scan/second. A 
6x6-mm retinal region was scanned by a horizontal fast raster protocol, and the A-scan 
density was 512 lines (horizontal) x 255 lines (vertical). The scan time was 2.7 seconds. 
The center wavelength of the probe beam was 1,060 nm, and bandwidth was ≧ 80 nm. 
The axial resolution was 11 microns in tissue. This long wavelength probe enables deep 
penetration to the choroid. 

The choroidal thicknesses were measured from the images obtained by 
high-penetration OCT at the fovea and five locations (2 mm superior, temporal, and 
inferior to the center of the optic nerve head and 2 mm superior (superotemporally) and 
2 mm inferior (inferotemporally) to the temporal location (Figure 1). The choroidal 
thickness was measured according to the method previously described.19 The choroidal 
thickness was defined as the distance between the hyper-scattering line of the RPE and 
that of the chorioscleral interface. The RPE and chorioscleral interface were clearly 
identified in all cases. 
 
Statistical Analysis 
The data were analyzed using the unpaired t-test and multiple stepwise regression 
analysis (JMP statistical software package, version 8.0; SAS Institute Inc., Cary, NC). 
The receiver operating characteristic (ROC) curve was drawn using JMP software. The 
cut-off value was calculated from this curve. In any analysis, P<0.05 was considered to 
be statistically significant. 

RESULTS  

Patient Demographic Data 
The patient demographic data are shown in Table 1. The mean age, spherical equivalent 
refractive error, axial length, central corneal thickness, and corneal refraction were 
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similar between the highly myopic NTG and myopic volunteers without glaucoma 
groups.  

The glaucoma parameters also were compared between the groups (Table 2). The 
average mean deviation value was significantly lower (P<0.05) and the pattern standard 
deviation value was significantly higher (P<0.001) in the highly myopic NTG group. 
The IOP did not differ significantly between the two groups (P=0.63). 
 
Choroidal Thickness  
Figure 2 shows representative choroidal images in the myopic NTG group (left) and 
myopic volunteers without glaucoma group (right) with similar refractive errors and 
axial lengths. The choroidal thickness in the eyes with myopic NTG was thinner at the 
fovea and temporal to the optic disc than in the myopic eyes without glaucoma.  

Table 3 shows the mean choroidal thickness at the fovea and 2 mm superior, 2 mm 
temporal, and 2 mm inferior to the optic disc and 2 mm superior (superotemporally) and 
2 mm inferior (inferotemporally) to the temporal location in the highly myopic NTG 
and myopic volunteers without glaucoma groups measured by high-penetration OCT. 
The mean choroidal thickness in the NTG group was significantly thinner at the 
superior (P<0.05), superotemporal (P<0.01), temporal (P<0.01), and inferotemporal 
(P<0.05) locations around the optic disc and at the fovea (P<0.001) compared with the 
myopic volunteers without glaucoma group.  
 
Stepwise Multiple Regression Analysis 
Stepwise multiple regression analysis was performed to determine the parameter with 
the greatest effect among age, spherical equivalent refractive error, axial length, central 
corneal thickness, corneal refraction, and the choroidal thicknesses at various locations. 
The choroidal thickness at the fovea was the parameter that had the highest correlation 
with the development of highly myopic NTG.  
 
Receiver Operating Characteristic Curve  
Because the subfoveal choroidal thickness was the factor that had the highest correlation 
with the development of myopic NTG in normal myopic eyes, we drew the ROC curve 
to evaluate the usefulness of this parameter and the cut-off value in a clinical setting. 
The area under the ROC curve was 0.88, a favorable indicator, and the cut-off value 
determined by the ROC curve was 227 microns (Figure 3, Table 3). 
 

DISCUSSION 
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In the Tajimi Study, a population-based eye study of Japanese subjects, the prevalence 
of open-angle glaucoma (OAG) was 3.9% among patients aged 40 years of age or older. 
The IOP in 92% of these subjects was under 21 mmHg, resulting in an overall 
prevalence of NTG of 3.6%.20 The Japanese population is about 100 million individuals; 
therefore, about 3 to 4 million people have NTG. Furthermore, myopia was a significant 
risk factor for development of OAG in that survey. The number of patients with myopic 
NTG is increasing; thus, an understanding the mechanisms or disease processes of 
highly myopic NTG is critical. 

There is increasing evidence of ocular blood flow abnormalities in the 
pathogenesis of NTG. Flammer et al. reviewed blood studies in glaucoma and forwarded 
the following hypothesis.21 Hemodynamic alterations may be partially responsible in 
patients with glaucoma because of vascular dysregulation, not artherosclerosis, which 
causes both low perfusion pressure and insufficient autoregulation. This leads to 
unstable ocular perfusion pressure, and reduced ocular blood flow often precedes 
damage to the retinal nerve fibers. The investigators concluded that the vast majority of 
studies have reported reduced ocular perfusion in patients with glaucoma. 

Because the choroid accounts for 85% of the total ocular blood flow, we evaluated 
in vivo the choroidal thickness in patients with glaucoma using high-penetration OCT, 
which enabled detection of the chorioscleral interface and allowed measurement of the 
full choroidal thickness around the optic disc and at the fovea.  

The choroidal thickness was significantly thinner in the eyes with myopic NTG 
than in the eyes of normal myopic volunteers without glaucoma. This raised the 
question about why the choroid is thinner in eyes with NTG? One explanation is that 
choroidal thinning leads to reduced choroidal circulation, which in turn may cause a 
circulatory problem in the prelaminar region, because the prelamina is supplied mainly 
by branches from recurrent choroidal arterioles and short posterior ciliary arteries.22-27 
Furthermore, the perfusion to the lamina cribrosa may decrease because the major direct 
blood flow also is supplied by the posterior ciliary arteries, a branch of the ophthalmic 
arterial circle of Zinn-Haller, which originates from the short posterior ciliary 
arteries.22-27 A possible reason for the lower choroidal circulation may be narrowing of 
the posterior ciliary arteries by axial length elongation in myopic NTG, because the 
choroid has little autoregulation and changes in the perfusion pressure affect the blood 
flow.28,29 Thus, reduced circulation to the lamina cribrosa may underlie choroidal 
thinning. However, it is uncertain how the anatomic choroidal thinning and blood flow 
are related. Doppler OCT technology30 is a future modality to measure the blood flow, 
and this type of study is needed to confirm if the choroidal blood flow actually 
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decreases in myopic NTG. 
Another possibility is that mechanical stretching affects the optic nerve and lamina 

cribrosa. It is well known that the incidence of NTG increases in myopic eyes, 
indicating that the IOP level may not be solely responsible for development of glaucoma. 
Extreme choroidal thinning may indicate a dynamic effect on the optic neurons by the 
stretched sclera, which may somehow mechanically affect and consequently damage the 
lamina cribrosa. The thicknesses of the lamina cribrosa and peripapillary sclera 
decreased significantly with axial length and glaucoma.31 The lamina cribrosa also 
becomes thinner with progression of glaucoma.32,33 IOP is also an important factor 
because the fragile lamina cribrosa is easily exposed to severe damage by the IOP, even 
IOP that is within the normal range.34 Thus, not only circulation but also mechanical 
stress may be related to choroidal thinning in myopic NTG. 

The mean choroidal thickness at the fovea is 354 ± 111 microns in healthy 
Japanese volunteers without high myopia.19 In the current study, the mean choroidal 
thickness at the fovea in highly myopic eyes without glaucoma was 276.1 ± 74.1 
microns and in highly myopic NTG the mean choroidal thickness was 166.7 ± 40.9 
microns. In the current study, patients under 45 years of age with an IOP under 21 
mmHg, a spherical equivalent refractive error between –6 and –12 D, and axial length 
exceeding 26.5 mm were enrolled to exclude as many factors as possible that could 
affect the results. Healthy subjects matched for age-, spherical equivalent refractive 
error, and axial length were compared with patients with glaucoma, because previous 
reports had suggested that the central choroidal thickness was associated with these 
factors.35-37 The number of patients enrolled was limited; however, we compared two 
groups with highly myopic NTG and myopic without glaucoma that were matched for 
age, spherical equivalent refractive error, axial length, central corneal thickness, corneal 
refraction, and IOP. 

Stepwise multiple regression analysis showed that the choroidal thickness at the 
fovea was more important than the other parameters. In the current study, the area under 
the ROC curve was relatively high even with an average mean deviation of -4.2 decibels 
in relatively early glaucoma. The choroidal thickness in advanced highly myopic 
glaucoma remains unknown, whereas choroidal thinning might be an important risk 
factor in highly myopic glaucoma that is progressing. The ROC curve indicated that the 
subfoveal choroidal thickness can help differentiate NTG from myopia without 
glaucoma. However, conventional automatic perimetry and observation of the optic 
nerve head are also important for diagnosing myopic NTG. In addition, this study 
included only cases of early disease, which suggested that the conclusion drawn from 
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this study may be limited to early cases and may not apply to intermediate or advanced 
glaucoma. 

In summary, the choroidal thickness measurement, which is typically done by 
conventional methods, is a supplemental examination to help establish the diagnosis of 
highly myopic NTG. 
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FIGURE LEGENDS 
FIGURE 1. The six locations of the choroidal thickness measurements (indicated by x). 
Five locations are around the optic disc: 2 mm superior, temporal, or inferior to the 
center of the optic nerve head and 2 mm superior (superotemporally) and 2 mm inferior 
(inferotemporally) to the temporallocation and the fovea. 
 
FIGURE 2. Representative choroidal images of highly myopic normal tension glaucoma 
(NTG) and control eyes (myopic eyes without glaucoma) by high-penetration optical 
coherence tomography (OCT). Various examination results from eyes with highly 
myopic NTG (left) and myopic volunteers without glaucoma (right). Color fundus 
photographs from a patient with myopic NTG (top left) and a fundus from a myopic 
volunteer without glaucoma (top right). The results of the C-30-2 Humphrey visual field 
analyzer show superior asymmetrical visual field abnormalities in an eye with myopic 
NTG (top left) and a normal field from a myopic volunteer without glaucoma (top right). 
High-penetration OCT images of the macula in an eye with myopic NTG (middle left) 
and an eye of a myopic volunteer without glaucoma (middle right) show a full-thickness 
choroid in both cases. The black arrowheads indicate the position of the inner and outer 
border of the choroid and the location at which the choroidal thickness was measured. 
The choroid is somewhat thicker in the eye of a myopic volunteer without glaucoma. 
The high-penetration OCT image temporal to the optic nerve disc in an eye from a 
patient with myopic NTG (bottom left) and an eye of a myopic volunteer without 
glaucoma (bottom right) shows a full-thickness choroid in both cases. The black 
arrowheads indicate the position of the inner and outer border of the choroid and the 
location at which the choroidal thickness was measured. The choroid and subfoveal 
choroid are somewhat thicker in an eye of a myopic volunteer without glaucoma.  
 
FIGURE 3. The receiver operating characteristic (ROC) curve for discriminating highly 
myopic NTG from healthy high myopia based on the subfoveal choroidal thickness. The 
area under the ROC curve of the choroidal thickness at the fovea is 0.88. 
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FIGURE 1. The six locations of the choroidal thickness measurements (indicated by x). 
Five locations are around the optic disc: 2 mm superior, temporal, or inferior to the 
center of the optic nerve head and 2 mm superior (superotemporally) and 2 mm inferior 
(inferotemporally) to the temporallocation and the fovea. 
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photographs from a patient with myopic NTG (top left) and a fundus from a myopic 
volunteer without glaucoma (top right). The results of the C-30-2 Humphrey visual field 
analyzer show superior asymmetrical visual field abnormalities in an eye with myopic 
NTG (top left) and a normal field from a myopic volunteer without glaucoma (top right). 
High-penetration OCT images of the macula in an eye with myopic NTG (middle left) 
and an eye of a myopic volunteer without glaucoma (middle right) show a full-thickness 
choroid in both cases. The black arrowheads indicate the position of the inner and outer 
border of the choroid and the location at which the choroidal thickness was measured. 
The choroid is somewhat thicker in the eye of a myopic volunteer without glaucoma. 
The high-penetration OCT image temporal to the optic nerve disc in an eye from a 
patient with myopic NTG (bottom left) and an eye of a myopic volunteer without 
glaucoma (bottom right) shows a full-thickness choroid in both cases. The black 
arrowheads indicate the position of the inner and outer border of the choroid and the 
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location at which the choroidal thickness was measured. The choroid and subfoveal 
choroid are somewhat thicker in an eye of a myopic volunteer without glaucoma.  
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FIGURE 3. The receiver operating characteristic (ROC) curve for discriminating highly 
myopic NTG from healthy high myopia based on the subfoveal choroidal thickness. The 
area under the ROC curve of the choroidal thickness at the fovea is 0.88. 
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       Table 1.  

Comparison of patient background parameters of eyes with normal tension glaucoma and control 
  Who underwent high-penetration optical coherence tomography for choroidal thickness measurement 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

        
Parameter Highly-Myopic NTG Control P-value*

  (mean ± SD） (mean ± SD）   

        
N (eyes) 12 12  
Age (years) 33.6 ± 6.4 31.2 ± 4.1 0.33 
Gender (male/female) (8/4) (3/9) 0.10** 
Spherical Equivalent Refractive Error (diopters) -9.3 ± 1.2 -8.8 ± 1.6 0.34 
Axial Length (mm) 27.6 ± 0.5 27.2 ± 0.5 0.08 
Central Corneal Thickness (mm) 0.48 ± 0.04 0.49 ± 0.01 0.36 
Corneal Refraction (diopter) 43.9 ± 0.56 43.7 ± 0.92 0.55 
        

    
NTG= normal tension glaucoma., SD=standard deviation; *=by unpaired t-test, **=by Fisher's exact test 
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       Table 2.  

Comparison of glaucoma parameters of eyes with normal tension glaucoma and control 
  Who underwent high-penetration optical coherence tomography for choroidal thickness measurement 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
        

Parameter Highly-Myopic NTG Control P-value*
  (mean ± SD） (mean ± SD）   

        
MD (db) -4.2 ± 3.7 -1.2 ± 0.9 <0.05 
PSD (db) 5.8 ± 3.8 1.5 ± 0.2 <0.001 
IOP (mmHg) 13.7 ± 2.6 14.2 ± 2.4 0.63 
        

    
NTG= normal tension glaucoma. SD=standard deviation; MD=mean deviation, PSD=pattern standard 
deviation, IOP=intraocular pressure,  
*=by unpaired t-test    
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Table 3.  
Location of choroidal thickness measurement and the receiver operation curve (ROC) area 

 
     
  Choroidal Thickness (μm)     

Location Highly-Myopic NTG Control P-value* ROC Curve Area 
  (mean ± SD） (mean ± SD）     

          
Fovea 166.7 ± 40.9 276.1 ± 74.1 <0.001 0.88 
Disc     
   Superior 172.3 ± 77.7 241.5 ± 62.0 <0.05 0.82 
   Supero-Temporal 161.1 ± 71.9 244.8 ± 61.0 <0.01 0.83 
   Temporal 110.9 ± 40.1 161.5 ± 45.0 <0.01 0.8 
   Infero-Temporal 115.4 ± 36.1 159.9 ± 41.0 <0.05 0.78 
   Inferior 123.4 ± 44.3 162.1 ± 47.6 0.051 0.74 
          

     
NTG=Normal tension glaucoma, SD=standard deviation; *=by unpaired t-test 

 
 
 




