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Abstract: Oxidative polycondensation of 3,4-ethylenedioxythiophene and (–)-myrtenal 

was carried out with POCl3. A -conjugated system thus constructed consists of aromatic 

and quinoidal alternating structure linked via methine groups. We examined iodine doping 

effect for the resultant material with electron spin resonance spectroscopy. Circular 

dichroism spectra in chloroform solution showed blue-shift with increase of iodine 

concentration. This result indicates that the doping process can tune chiroptical activity of 

the chiral π-conjugated system. 

Keywords: poly(3,4-ethylenedioxythiophene); chiroptically active materials;  

π-conjugated materials 

 

1. Introduction 

Many kinds of conjugated polymers have been widely studied for applications, such as transparent 

conductors, light-emitting diodes, thin film transistors, and photovoltaic devices [1-9]. Low-bandgap 

conjugated polymer is of interest because of its sensitivity in optical and electrical impulsions for 

external stimuli [10-14]. Poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives are widely 

studied conjugated polymers due to their relatively low ionization potential, high electrical 

conductivity, and good stability [15-20]. A conjugated polymer which has benzenoid and quinonoid 

alternating structure in the main chain bridged via methine group (methine polymer) has been paid 

much attention because of the relatively small-bandgap [21-27]. Polycondensation between arylene 
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unit and aldehyde group in the presence of sulfuric acid has been developed [28,29]. The 

polymerization is shown in Scheme 1. We synthesized a methine oligomer (abbreviated as ME1) from 

EDOT and (–)-myrtenal, a chiral compound (Scheme 2). Chiroptical activity and doping effect for the 

resultant thus prepared is examined based on consideration of high sensitivity derived from low-bandgap. 

Scheme 1. Dehydrative polycondensation for methine type polymer. 

 

 

2. Experimental Section 

Polycondensation between aldehydes and thiophenes provides Novolac-type polymers [30]. In this 

reaction, the protonated aldehyde electrophile can sequentially react with active site ('-position) of 

thiophene. Chen and Jenekhe proved following elimination of protons at methine linkages by sulfuric 

acid for producing full π-conjugated skeleton [29].  

Polycondensation of pyrrole and 1-dodecanal was carried out for obtaining polypyrrole-methine 

type π-conjugated polymers [31]. The Rothemund type reaction for synthesis of porphyrine can be 

applied for polycondensation between EDOT and chiral aldehydes for construction of π-conjugated 

main chain [32,33]. In this case, bulky group in the substituents can prevent a formation of  

cyclic compounds.  

Scheme 2. Synthesis of methine bridged oligomer as a main product from  

3,4-ethylenedioxythiophene (EDOT) and (–)-myrtenal. 
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Chemicals were purchased from Tokyo Kasei and Aldrich and used as received. 
1
H NMR 

measurements of (–)-myrtenal and ME1 were performed in CDCl3 with ECS 400 spectrometer (JEOL) 

at room temperature. Chemical shifts are reported in ppm downfield from SiMe4, using the solvent’s 

residual signal as an internal reference. Fourier transfer infrared (FTIR) absorption spectra of ME1 and 
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(–)-myrtenal were obtained by FT/IR-300 spectrometer (Jasco), with the KBr method. Molecular 

weights of ME1 were determined by gel permeation chromatography (GPC) with MIXED-D HPLC 

column (Polymer Laboratories), PU-980 HPLC pump (Jasco) and MD-915 multiwavelength detector 

(Jasco), with THF used as the solvent, with the instruments calibrated by polystyrene standard. UV-

visible absorption spectra were recorded on V-630 UV-vis optical absorption spectrometer (Jasco). 

Circular dichroism (CD) spectra were obtained with J-720 spectrometer (Jasco). Electron spin 

resonance (ESR) spectra were taken at room temperature using JES-TE200 ESR spectrometer (JEOL) 

during in-situ vapor phase doping process with iodine.  

The target material was synthesized by dehydrative polycondensation between EDOT and  

(–)-myrtenal with POCl3. The reaction was carried out in a Schlenk tube. 

A solution of EDOT (0.50 g, 3.5 mmol), (–)-myrtenal (0.54 g, 3.6 mmol), and POCl3 (0.061 g,  

0.40 mmol) in 1,4-dioxane (5 mL) was refluxed at 80 °C for 25 h (molecular structure of EDOT and  

(–)-myrtenal are shown in Scheme 2). The reaction mixture was poured into a large amount of 

methanol. Then, aqueous ammonia was added to remove the catalyst from the resultant. The crude 

product was purified by several washes in methanol. The precipitate was filtered off and dried under 

reduced pressure to yield the desired compound as a brown color solid. 
1
H NMR (400 MHz, δ from 

TMS (ppm), CDCl3): δ 0.73–0.96, 1.23–1.42, 1.85–1.97, 2.17–2.64, 2.98, 4.13, 6.06–6.39, 6.73. GPC 

measurement evaluated that the number average molecular weight (Mn) is 900, the weight average 

molecular weight (Mw) is 1600, polydispersity (Mw/Mn) is 1.72. This result indicates that the resultant 

is an oligomer with molecular weight dispersion (Figure 1). Employment of EDOT as an arylene unit 

can be expected to avoid side reaction at  and′ positions in the oxidative polycondensation because 

these parts are protected by the ethylenedioxy group. 

Figure 1. GPC curve of ME1. 

 

3. Results and Discussion 

IR absorption spectra of (–)-myrtenal and ME1 are examined, as shown in Figure 2. An absorption 

band of CH stretching vibration of the aldehyde group of (–)-myrtenal is observed at around  

1700 cm
−1

. On the other hand, IR absorption spectrum of ME1 shows no signals at around 1700 cm
−1

. 

The absence of the aldehyde signal in the IR absorption spectrum of ME1 indicates completion of the 

polycondensation reaction [34,35]. Characteristic absorption bands at 1089 cm
−1

 and 1360–1490 cm
−1
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of ME1 are attributable to C–O–C asymmetric stretching vibration and CC stretching vibration of 

EDOT, respectively. 
1
H NMR measurements of ME1 and (–)-myrtenal were also performed for 

verification of completion of the reaction. NMR signals of ME1 were totally broadened. Typical signal 

at 9–10 ppm attributed to aldehyde group disappears after the reaction. This can be due to the fact that 

the polycondensation between the aldehyde group and arylene units was successfully carried out. The 

characteristic signals of EDOT (4.16 ppm, –O–CH2–CH2–O–) and (–)-myrtenal (0.7–2.9 ppm, each 

alkyl group) were observed in ME1 spectrum except aldehyde signal [36]. This result agrees with the 

IR measurements.  

Figure 2. IR spectra of ME1 and (–)-myrtenal. 

 

 

Figure 3. CD spectra of ME1 and (–)-myrtenal in CHCl3 solution. 

 

 

UV-vis absorption measurements of ()-myrtenal and ME1 in CHCl3 were examined (Figure 3). A 

broad absorption band of ME1 indicates that the -conjugation length of the backbone is developed. 

An optical bandgap of ME1 calculated from the absorption spectrum is to be 2.8 eV. Therefore, ME1 

is considered to be a semiconducting organic material. Although the previously reported methine type 

polymers exhibited extended -conjugation and low-bandgap because of benzenoid and quinonoid 

alternating structure in the main chain, the bandgap value in the present study is relatively large [28,37]. 
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This is mainly because of the low degree of the polycondensation. Besides, bulky (–)-myrtenal 

moieties in the side chain might decrease the coplanarity of the main chain. 

CD absorption spectra of ME1 and (–)-myrtenal were obtained in CHCl3 solution, as shown in 

Figure 3. Both spectra show clear CD curves. Broad CD signal of ME1 indicates that the backbone of 

ME1 individually shows chiroptical activity. After the polycondensation, chiroptical activity of the 

side chain remains and it induces chiroptical activity for the entire system. Such oxidative 

polycondensation can be simple and convenient method to introduce chiroptical activity for conjugated 

materials. We examined a doping effect of iodine (electron acceptor) for ME1 with UV-vis optical 

absorption, CD, and ESR. Figure 4 shows CD and UV-vis absorption spectra of ME1 in CHCl3 with 

various iodine doping levels in solution. As for UV-vis spectra, clear changes in UV-vis absorption 

spectrum of ME1 were observed upon progress of the doping. New absorption peaks at 295 nm and 

355 nm appeared with progress of the iodine doping. These two peaks indicate an occurrence of 

oxidation of ME1 by the doping. Furthermore, broad absorption band at 600800 nm appeared 

gradually. This suggests generation of radical cations (charge species, polarons) for ME1 [38]. CD 

spectra of ME1 by the iodine doping show blue shift at short wavelengths and decrease of the 

intensities by the iodine doping. The blue shift implies that the short helical form induced by the chiral 

substituent is released by the doping. Color change of ME1 in solution with various iodine doping 

levels is shown in Figure 5. Original color of iodine in a solution is purple. However, addition of 

iodine leads changes in color for the material from orange to dark green. This result suggests that the 

iodine doping tunes the color and chiroptical activity of ME1. Commission Internationale de 

l’Eclairage (International Commission on Illumination, CIE) color space confirms the color in the 

solution, as shown in Figure 6. 

Figure 4. CD and UV-vis absorption spectra of ME1 in CHCl3 with various iodine  

doping levels. 
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Figure 5. Color change of ME1 in CHCl3 solution from orange to green with iodine doping. 

 

 

Figure 6. Change in CIE color space coordination diagram of ME1 with iodine doping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In-situ ESR spectra of ME1 with vapor phase iodine doping were measured (Figure 7). As prepared 

oligomer shows weak ESR signal, indicating incomplete dedoping of POCl3 with aqueous ammonia 

treatment, or doping with oxygen in the air. The spin concentration increased rapidly upon the doping. 

This indicates a generation of radical cations along the main chain. Figure 8 shows g-value, intensity, 

and peak width (Hpp) plots vs. the doping time. The peak width and g-value are constant upon the 

doping. However, the intensity is increased by the doping, indicating that the doping is effectively 

carried out and charge species are generated along the main chain [39]. 
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Figure 7. In-situ ESR spectra during vapor phase iodine doping. 

 

 

Figure 8. g-value, intensity, and peak width (Hpp) of ME1 with vapor phase iodine 

doping for 0–10 min. 

 

 

4. Conclusions 

A new methine -conjugated oligomer was synthesized from EDOT and (–)-myrtenal. This shows a 

broad absorption band and a CD signal in the long wavelengths. The chiral side chain induces helical 

conformation of the main chain to exhibit chiroptical activity. Iodine doping for the oligomer was 

examined, and the doped state was monitored with the UV-vis optical absorption, the CD, and the ESR 

spectroscopy. The UV-vis absorption and the ESR measurements confirm the formation of radical 

cations. CD spectra of the oligomer show blue shift of the CD signal during the doping. This suggests 

that the change in electronic structure upon doping tunes its chiroptical activity. 
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