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Abstract

We introduce the notion of Auslander-Gorenstein resolution and show
that a noetherian ring is an Auslander-Gorenstein ring if it admits an
Auslander-Gorenstein resolution over another Auslander-Gorenstein ring.

In this note, a noetherian ring A is a ring which is left and right noetherian, and
a noetherian R-algebra A is a ring endowed with a ring homomorphism R→ A,
with R a commutative noetherian ring, whose image is contained in the center
of A and A is finitely generated as an R-module. Note that a noetherian algebra
is a noetherian ring.

The main aim of this note is to provide a general method for constructing
Auslander-Gorenstein rings (see Definition 3.2) from another one. Auslander-
Gorenstein rings appear in various areas of current research. For instance,
regular 3-dimensional algebras of type A in the sense of Artin and Schelter, Weyl
algebras over fields of characteristic 0, enveloping algebras of finite dimensional
Lie algebras and Sklyanin algebras are Auslander-Gorenstein rings (see [4], [10],
[11] and [22], respectively). Also, consider the case where R is a commutative
Gorenstein local ring and A is a noetherian R-algebra with Exti

R(A,R) = 0 for
i 6= 0. In case inj dim AA = dim R, such an algebra A is called a Gorenstein
algebra and extensively studied in [16]. In particular, a Gorenstein algebra is an
Auslander-Gorenstein ring. However, even if A is an Auslander-Gorenstein ring,
it may happen that inj dim AA 6= dim R (see examples in Section 4). Although
we have many examples of Auslander-Gorenstein rings, it should be noted that
there is a lack of general methods for constructing Auslander-Gorenstein rings.

One of such methods is given by the main theorem: A noetherian ring is
an Auslander-Gorenstein ring if it admits an Auslander-Gorenstein resolution
over another Auslander-Gorenstein ring (Theorem 3.6), where the notion of
Auslander-Gorenstein resolution is introduced as follows. Let R, A be noethe-
rian rings. A right resolution 0 → A → Q0 → · · · → Qm → 0 in Mod-A is said
to be an Auslander-Gorenstein resolution of A over R if the following conditions
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are satisfied: (1) every Qi is an R-A-bimodule; (2) every Qi ∈ Mod-Rop is a
finitely generated reflexive module with Extj

R(HomRop(Qi, R), R) = 0 for j 6= 0;
(3) ⊕i≥0 HomRop(Qi, R) ∈ Mod-Aop is faithfully flat; and (4) flat dim Qi ≤ i
in Mod-A for all i ≥ 0. This notion formulates the following facts. Consider
the case where R is a commutative Gorenstein local ring and A is a noethe-
rian R-algebra with Exti

R(A,R) = 0 for i 6= 0. Set Ω = HomR(A,R). Then
proj dim AΩ <∞ and proj dim ΩA <∞ if and only if ΩA is a tilting module in
the sense of [20] (see Remark 2.1). Assume that ΩA is a tilting module. Take a
projective resolution P • → Ω in mod-Aop and set Q• = Hom•

R(P •, R). Then we
have a right resolution 0 → A→ Q0 → · · · → Qm → 0 in mod-A such that every
Qi ∈ mod-R is a reflexive module with Extj

R(HomR(Qi, R), R) = 0 for j 6= 0,
⊕i≥0 HomR(Qi, R) ∈ mod-Aop is a projective generator and proj dim Qi < ∞
in mod-A for all i ≥ 0 (Remark 2.8). Furthermore, A is an Auslander-Gorenstein
ring if proj dim Qi ≤ i in mod-A for all i ≥ 0, the converse of which holds true
if R is complete and P • → Ω is a minimal projective resolution (Proposition
2.9).

This note is organized as follows. In Section 1, we will recall several basic
facts which we need in later sections. In Section 2, we will study Auslander-
Gorenstein algebras. In case R is a commutative Gorenstein local ring and A
is a noetherian R-algebra with Exti

R(A,R) = 0 for i 6= 0, we will show that
inj dim AA ≤ dim R+ 1 if and only if inj dim AA ≤ dim R+ 1 (Theorem 2.4).
Also, we will prove the facts quoted above. In Section 3, we will introduce
the notion of Auslander-Gorenstein resolution and prove the main theorem. In
Section 4, we will provide several examples of Auslander-Gorenstein resolution.

We refer to [14] for topics on Auslander-Gorenstein rings. Also, we refer to
[13] for standard homological algebra and to [19] for standard commutative ring
theory.

1 Preliminaries

Let A be a ring. We denote by Mod-A the category of right A-modules and by
mod-A the full subcategory of Mod-A consisting of finitely presented modules.
We denote by PA (resp., Inj-A) the full subcategory of mod-A (resp., Mod-A)
consisting of projective (resp., injective) modules. We denote by Aop the oppo-
site ring of A and consider left A-modules as right Aop-modules. In particular,
we denote by HomA(−,−) (resp., HomAop(−,−)) the set of homomorphisms in
Mod-A (resp., Mod-Aop). Sometimes, we use the notation MA (resp., AM) to
stress that the module M considered is a right (resp., left) A-module. For a
module M ∈ Mod-A we denote by EA(M) an injective envelope and by rad(M)
the Jacobson radical. For each complex X• we denote by Zi(X•), Z′i(X•),
Bi(X•) and Hi(X•) the ith cycle, the ith cocycle, the ith boundary and the
ith cohomology, respectively. We denote by Hom•(−,−) (resp., − ⊗• −) the
associated single complex of the double hom (resp., tensor) complex. As usual,
we consider modules as complexes concentrated in degree zero. Finally, for an
object X of an additive category A we denote by add(X) the full subcategory

2



of A consisting of direct summands of finite direct sums of copies of X.

In this section, we recall several basic facts which are well-known but for the
benefit of the reader we include direct proofs of some facts. Throughout this
section, A stands for an arbitrary ring.

In the next lemma, we consider each complex Q• as a double complex Q••

such that Q•0 = Q• and Q•j = 0 unless j = 0. For each double complex E•• we
denote by s(E••) the associated single complex, the nth term of which is given
by ⊕i+j=n Eij .

Lemma 1.1. Let m ≥ 0 be an integer. Let M ∈ Mod-A and M → Q• a right
resolution with Qi = 0 unless 0 ≤ i ≤ m. Let Q• → E•• be a homomorphism
of double complexes with Eij = 0 unless 0 ≤ i ≤ m and j ≥ 0. Assume that
Qi → Ei• is an injective resolution for all 0 ≤ i ≤ m. Then the canonical
homomorphism M → s(E••) is an injective resolution.

Proof. We may assume that m ≥ 1. We make use of induction. In case m = 1,
s(E••) is the (−1)-shift of the mapping cone of E0• → E1• and the assertion is
obvious. Assume that m > 1. Denote by Q′• the complex such that Q′i = Qi

unless m−1 ≤ i ≤ m, Q′m−1 = Zm−1(Q•) and Q′m = 0, and by E′•• the double
complex such that E′i• = Ei• for i < m − 1, E′m−1• is the (−1)-shift of the
mapping cone of Em−1• → Em• and E′i• = 0 for i ≥ m. Then we have a right
resolution M → Q′• and a homomorphism of double complexes Q′• → E′••,
so that by induction hypothesis M → s(E′••) is an injective resolution. Since
s(E′••) ∼= s(E••), the assertion follows.

Definition 1.2 ([20]). A module T ∈ Mod-A is said to be a tilting module if
for some integer m ≥ 0 the following conditions are satisfied:

(1) T admits a projective resolution 0 → P−m → · · · → P−1 → P 0 → T → 0
in Mod-A with P−i ∈ PA for all i ≥ 0.

(2) Exti
A(T, T ) = 0 for i 6= 0.

(3) A admits a right resolution 0 → A → T 0 → T 1 → · · · → Tm → 0 in
Mod-A with T i ∈ add(T ) for all i ≥ 0.

We refer to [21] for tilting complexes and derived equivalences.

Lemma 1.3. For any tilting module T ∈ Mod-A the following hold:

(1) Take a projective resolution 0 → P−m → · · · → P−1 → P 0 → T → 0 with
P−i ∈ PA for all 0 ≤ i ≤ m. Then the complex P • is a tilting complex
and ⊕i≥0 P

−i ∈ Mod-A is a projective generator.

(2) Set B = EndA(T ). Then T ∈ Mod-Bop is a tilting module with A ∼=
EndBop(T )op canonically and proj dim BT = proj dim TA.
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Proof. (1) Note that a module M ∈ mod-A is a tilting module if and only
if it admits a projective resolution Q• → M with Q• a tilting complex (see
e.g. [1, Proposition 3.9]). Let M ∈ Mod-A with HomA(P−i,M) = 0 for all
i ≥ 0. Then Exti

A(T,M) = 0 for all i ≥ 0. Since we have a right resolution
0 → A→ T 0 → T 1 → · · · → Tm → 0 in Mod-A with T i ∈ add(T ) for all i ≥ 0,
applying HomA(−,M) we have M ∼= HomA(A,M) = 0.

(2) See [20, Theorem 1.5] for the first assertion. Set m = proj dim TA. By
symmetry, it suffices to show that proj dim BT ≤ m. We have a projective
resolution 0 → P−m → · · · → P−1 → P 0 → T → 0 in Mod-A with P−i ∈
PA for all i ≥ 0 and hence, applying HomA(−, T ), we have a right resolution
0 → B → T 0 → T 1 → · · · → Tm → 0 in Mod-Bop with T i ∈ add(T ) for
all i ≥ 0. Since Exti

Bop(T, T ) = 0 for i 6= 0, applying HomBop(T,−) we have
Exti

Bop(T,B) = 0 for i > m, so that proj dim BT ≤ m.

Remark 1.4. Every projective generator is faithfully flat. Conversely, a finitely
presented module is a projective generator if it is faithfully flat.

Lemma 1.5. For any I ∈ Inj-A and Q ∈ mod-Aop we have a bifunctorial
isomorphism

ψI,Q : I ⊗A Q
∼→ HomA(HomAop(Q,A), I), a⊗ x 7→ (h 7→ ah(x)).

Proof. Obviously, ψI,Q is an isomorphism if Q ∈ PAop . Since both I ⊗A − and
HomA(HomAop(−, A), I) are right exact, it follows that ψI,Q is an isomorphism
for all Q ∈ mod-Aop.

Lemma 1.6. Assume that A is a left noetherian ring. Then for any I ∈ Inj-A
we have flat dim IA ≤ inj dim AA, where the equality holds if I is an injective
cogenerator.

Proof. It follows by Lemma 1.5 that TorA
i (I,X) ∼= HomA(Exti

Aop(X,A), I) for
all i ≥ 0 and X ∈ mod-Aop.

Definition 1.7 ([7]). A module M ∈ Mod-A is said to be reflexive if the
canonical homomorphism

M → HomAop(HomA(M,A), A), x 7→ (f 7→ f(x))

is an isomorphism. In case A is a noetherian ring, a module M ∈ mod-A
is said to have Gorenstein dimension zero if it is reflexive and Exti

A(M,A) =
Exti

Aop(HomA(M,A), A) = 0 for i 6= 0.

Lemma 1.8. Assume that A is a noetherian ring. Then for any M ∈ mod-A
the following hold:

(1) Assume that inj dim AA <∞. Then M has Gorenstein dimension zero if
Exti

A(M,A) = 0 for i 6= 0.

(2) Assume that inj dim AA <∞. Then M has Gorenstein dimension zero if
it is reflexive and Exti

Aop(HomA(M,A), A) = 0 for i 6= 0.
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Corollary 1.9. Assume that A is a noetherian ring and that inj dim AA <∞.
Let A→ I• be a minimal injective resolution in Mod-A. Then ⊕j≥0 I

j ∈ Mod-A
is an injective cogenerator.

Proof. For any M ∈ mod-A with HomA(M, Ij) = 0 for all j ≥ 0, since we have
Extj

A(M,A) = 0 for all j ≥ 0, it follows by Lemma 1.8(1) that M = 0.

Lemma 1.10. Let R be a noetherian ring and M an R-A-bimodule such that
M ∈ Mod-Rop is finitely generated reflexive and Exti

R(HomRop(M,R), R) = 0
for i 6= 0. Then for any X ∈ Mod-R we have

flat dim (X ⊗R M)A ≤ flat dim XR + flat dim MA.

Proof. We may assume that flat dim XR = m <∞ and flat dim MA = n <∞.
Take a projective resolution P • → HomRop(M,R) in mod-R. Then we have
a right resolution M → Hom•

R(P •, R) in mod-Rop and hence TorR
j (X,M) ∼=

TorR
j+m(X,Zm(Hom•

R(P •, R))) = 0 for j > 0. Next, let N ∈ Mod-Aop and
Q• → N a projective resolution. Then we have a left resolution in Mod-Rop

· · · →M ⊗A Q−n−1 →M ⊗A Q−n → Z′−n(M ⊗•
A Q•) → 0.

Note that for any j 6= 0, since TorR
j (X,M) = 0, TorR

j (X,M ⊗AQ
−i) = 0 for all

i ≥ n. Thus applying X ⊗R − we have

TorA
k (X ⊗R M,N) ∼= H−k(X ⊗•

R M ⊗•
A Q•)

∼= TorR
k−n(X,Z′−n(M ⊗•

A Q•))
= 0

for k > m+ n.

Definition 1.11 ([8]). A family of idempotents {eλ}λ∈Λ in A is said to be
orthogonal if eλeµ = 0 unless λ = µ. An idempotent e ∈ A is said to be local if
eAe ∼= EndA(eA) is local. A ring A is said to be semiperfect if 1 = Σn

i=1ei in A
with the ei orthogonal local idempotents.

Throughout the rest of this section, R is a commutative noetherian ring and
A is a noetherian R-algebra.

Lemma 1.12. Assume that R is a complete local ring. Then every noetherian
R-algebra A is semiperfect.

We denote by Spec(R) the set of prime ideals of R. For each p ∈ Spec(R)
we denote by (−)p the localization at p and for each M ∈ Mod-R we denote by
SuppR(M) the set of p ∈ Spec(R) with Mp 6= 0.

Lemma 1.13. For any p, q ∈ SuppR(A) with p 6= q we have

add(HomR(A,ER(R/p))) ∩ add(HomR(A,ER(R/q))) = {0}

in Mod-A.
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Lemma 1.14. Assume that R is a local ring with the maximal ideal m. Then
HomR(A,ER(R/m)) ∈ Mod-A is artinian.

Remark 1.15. For any module M ∈ mod-R with Rp Gorenstein for all p ∈
SuppR(M), the following are equivalent:

(1) M is maximal Cohen-Macaulay.

(2) Exti
R(M,R) = 0 for i 6= 0.

(3) M has Gorenstein dimension zero.

2 Auslander-Gorenstein algebras

Throughout this section, R is a commutative noetherian ring with a minimal
injective resolution R → I• and A is a noetherian R-algebra such that Rp is
Gorenstein for all p ∈ SuppR(A) and Exti

R(A,R) = 0 for i 6= 0. Set Ω =
HomR(A,R).

In this section, assuming R being a complete Gorenstein local ring, we will
provide a necessary and sufficient condition for A to be an Auslander-Gorenstein
ring (see Definition 3.2 below). We refer to [9] for commutative Gorenstein rings.

Remark 2.1. The following hold:

(1) A has Gorenstein dimension zero as an R-module, i.e., A ∼→ HomR(Ω, R)
and Exti

R(Ω, R) = 0 for i 6= 0.

(2) A ∼→ EndA(Ω) and A ∼→ EndAop(Ω)op canonically.

(3) Exti
A(Ω,Ω) = Exti

Aop(Ω,Ω) = 0 for i 6= 0.

(4) If proj dim ΩA < ∞ and proj dim AΩ < ∞, then ΩA is a tilting module
with proj dim AΩ = proj dim ΩA.

Proof. (1) For any p ∈ SuppR(A), since Exti
Rp

(Ap, Rp) ∼= Exti
R(A,R)p = 0 for

i 6= 0, by Lemma 1.8(1) Ap ∈ mod-Rp has Gorenstein dimension zero, so that
A ∈ mod-R has Gorenstein dimension zero.

(2) and (3) We have an injective resolution Ω → Hom•
R(A, I•) in Mod-A, so

that for any i ≥ 0 we have

Exti
A(Ω,Ω) ∼= Hi(Hom•

A(Ω,Hom•
R(A, I•)))

∼= Hi(Hom•
R(Ω, I•))

∼= Exti
R(Ω, R).

Similarly, Exti
Aop(Ω,Ω) ∼= Exti

R(Ω, R) for all i ≥ 0.
(4) According to (2), (3) above, the first assertion follows by [20, Proposition

1.6]. The last assertion follows by Lemma 1.3(2).

Lemma 2.2. The following are equivalent:
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(1) proj dim ΩA ≤ 1.

(2) proj dim AΩ ≤ 1.

(3) ΩA is a tilting module with proj dim AΩ = proj dim ΩA ≤ 1.

Proof. Obviously, (3) ⇒ (1) and (2).
(2) ⇒ (1). Let M ∈ mod-A. We claim that Ext2A(Ω,M) = 0. It suf-

fices to show that Ext2A(Ω,M)p
∼= Ext2Ap

(Ωp,Mp) = 0 for all p ∈ SuppR(A).
We have Exti

Rp
(Ap, Rp) ∼= Exti

R(A,R)p = 0 for i 6= 0, Ωp
∼= HomRp(Ap, Rp)

and proj dim Ap
Ωp ≤ 1 for all p ∈ SuppR(A), so that we may assume that

R is a Gorenstein local ring with the maximal ideal m. Denote by (−̂) the
m-adic completion. Since R̂ is faithfully flat over R, it suffices to show that
Ext2A(Ω,M)⊗RR̂ ∼= Ext2

Â
(Ω̂, M̂) = 0. Since Exti

R̂
(Â, R̂) ∼= Exti

R(A,R)⊗RR̂ = 0
for i 6= 0, Ω̂ ∼= HomR̂(Â, R̂) and proj dim ÂΩ̂ ≤ 1, we may assume that R is com-
plete. Then by Bongartz’s Lemma (see [12, Section 2]) there exists T ∈ mod-Aop

with Ω ⊕ T a tilting module, so that by [18, Proposition 4.9] AΩ is a tilting
module. Thus by Remark 2.1(2) and Lemma 1.3(2) ΩA is a tilting module with
proj dim AΩ = proj dim ΩA ≤ 1.

(1) ⇒ (2). By symmetry.
(2) ⇒ (3). Since (2) ⇒ (1), the assertion follows by Remark 2.1(4).

Lemma 2.3. Assume that R is a Gorenstein local ring. Then we have

inj dim AA = proj dim ΩA + dim R.

Proof. It follows by Lemma 1.13 that we have a minimal injective resolution
Ω → HomR(A, I•) in Mod-A. We claim first that inj dim AA < ∞ implies
proj dim ΩA < ∞. Assume that inj dim AA < ∞. Then by Lemma 1.6 we
have flat dim HomR(A, Ii)A ≤ inj dim AA < ∞ for all i ≥ 0. It follows that
proj dim ΩA = flat dim ΩA <∞.

Next, assume that proj dim ΩA = m < ∞. Setting d = dim R, we claim
that inj dim AA = m+d. Take a projective resolution P • → Ω in mod-A. Then
by Remark 2.1(1) we have a right resolution A → Hom•

R(P •, R) in mod-Aop.
Also, we have an injective resolution HomR(P−j , R) → Hom•

R(P−j , I•) in
Mod-Aop for each 0 ≤ j ≤ m. It follows by Lemma 1.1 that we have an injective
resolution A → Hom•

R(P •, I•) in Mod-Aop, so that inj dim AA ≤ m + d. To
prove the equality, it suffices to show that

∂ = (∂′ ∂′′) : HomR(P−m, Id−1) ⊕ HomR(P−m+1, Id) → HomR(P−m, Id)

is not a split epimorphism. By Lemma 1.13 ∂ is a split epimorphism if and only
if so is ∂′′. Suppose to the contrary that ∂′′ is a split epimorphism. In case R
is complete, we have a commutative diagram

P−m ∼−−−−→ HomR(HomR(P−m, Id), Id)y yHomR(∂′′,Id)

P−m+1 ∼−−−−→ HomR(HomR(P−m+1, Id), Id)
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and hence P−m → P−m+1 is a split monomorphism, a contradiction. Next, let
m be the maximal ideal of R and denote by (−̂) the m-adic completion. Then
Extm

Â
(Ω̂, Â) ∼= Extm

A (Ω, A) ⊗R R̂ 6= 0, so that proj dim Ω̂Â = proj dim ΩA.
Thus inj dim ÂÂ = m + d and by Lemma 1.14 there exists a simple module
S ∈ mod-Âop with Extm+d

Âop (S, Â) 6= 0. Note that S is an R̂/mR̂-module. Since
R̂/mR̂ ∼= R/mR, S has finite length as an R-module, so that S ∼= Ŝ and
hence Extm+d

Aop (S,A) ⊗R R̂ ∼= Extm+d

Âop (S, Â) 6= 0. Thus Extm+d
Aop (S,A) 6= 0 and

inj dim AA = m+ d.

Theorem 2.4. Assume that R is a Gorenstein local ring. Then the following
are equivalent:

(1) inj dim AA ≤ dim R+ 1.

(2) inj dim AA ≤ dim R+ 1.

Proof. (2) ⇒ (1). By Lemma 2.3 proj dim ΩA ≤ 1, so that by Lemma 2.2
proj dim AΩ ≤ 1. Thus applying Lemma 2.3 to Aop we have inj dim AA ≤
dim R+ 1.

(1) ⇒ (2). By symmetry.

Every ring B derived equivalent to A is a noetherian R-algebra ([21, Propo-
sition 9.4]), but it may happen that Exti

R(B,R) 6= 0 for some i ≥ 1 (see [1,
Examle 4.7]).

Corollary 2.5. Assume that R is a Gorenstein local ring. Let B be a ring
derived equivalent to A and with Exti

R(B,R) = 0 for i 6= 0. If inj dim BB ≤
dim R+ 1, then inj dim AA = inj dim AA <∞.

Proof. By [17, Proposition 1.7(2)] inj dim AA < ∞. Next, since by Theorem
2.4 inj dim BB <∞, and since by [21, Proposition 9.1] Aop and Bop are derived
equivalent, again by [17, Proposition 1.7(2)] inj dim AA < ∞. The assertion
now follows by [23, Lemma A].

Lemma 2.6. For any module T ∈ mod-A with Exti
A(T, T ) = Exti

R(T,R) = 0
for i 6= 0, setting B = EndA(T ), we have Exti

R(B,R) = 0 for i 6= 0.

Proof. Localizing at each p ∈ SuppR(A), we may assume that R is a Gorenstein
local ring with d = dim R. Take a projective resolution P • → T in mod-A and
apply HomA(−, T ). Then we have a right resolution B → T • in mod-Bop with
T i ∈ add(T ) for all i ≥ 0, so that Exti

R(B,R) ∼= Exti+d
R (Zd(T •), R) = 0 for

i ≥ 1.

Proposition 2.7. Let 0 → K
g→ P

f→ Ω → 0 be an exact sequence in mod-A.
Set T = P ⊕K and B = EndA(T ). Assume that P ∈ add(Ω) ∩ PA. Then the
following hold:

(1) A and B are derived equivalent.
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(2) Exti
R(B,R) = 0 for i 6= 0.

Proof. (1) Since P ∈ PA, HomA(P, f) is surjective. Also, since P ∈ add(Ω),
by Remark 2.1(3) HomA(g, P ) is surjective. It follows by [3, Lemma 1.1] that
EndA(P ⊕ Ω) and B are derived equivalent. Finally, P ∈ add(Ω) implies that
EndA(P ⊕ Ω) is Morita equivalent to EndA(Ω) ∼= A.

(2) We claim first that Exti
A(T, T ) = 0 for i 6= 0. We have Exti

A(P, T ) = 0
for i 6= 0. Applying HomA(−, P ), we have Exti

A(K,P ) = 0 for i 6= 0. Also,
applying HomA(Ω,−), we have Exti

A(Ω,K) = 0 for i ≥ 2. Thus applying
HomA(−,K) we have Exti

A(K,K) = 0 for i 6= 0. Next, applying HomR(−, R),
we have Exti

R(K,R) = 0 for i 6= 0, so that Exti
R(T,R) = 0 for i 6= 0. Thus the

assertion follows by Lemma 2.6.

In the proposition above, T ∈ mod-A is not a tilting module in general.
Also, if proj dim ΩA ≤ 1, then by Lemmas 2.2, 1.3(1) T ∈ mod-A is a projective
generator, so that B is Morita equivalent to A.

Throughout the rest of this section, we assume that R is a Gorenstein lo-
cal ring with d = dim R and that proj dim AΩ = proj dim ΩA = m < ∞.
Then by Lemma 2.3 inj dim AA = inj dim AA = m + d. Take a projec-
tive resolution P • → Ω in mod-Aop and set Q• = HomR(P •, R). Then we
have a right resolution 0 → A → Q0 → · · · → Qm → 0 in mod-A with
Qi = HomR(P−i, R) ∈ add(Ω) for all i ≥ 0.

Remark 2.8. The following hold:

(1) Every Qi ∈ mod-R is a reflexive module with Extj
R(HomR(Qi, R), R) = 0

for j 6= 0.

(2) ⊕i≥0 HomR(Qi, R) ∈ mod-Aop is a projective generator.

(3) proj dim Qi <∞ in mod-A for all i ≥ 0.

Proof. Obviously, (3) holds. By Remark 2.1(1) ΩA has Gorenstein dimension
zero, so that (1) holds. Also, by Remark 2.1(4) AΩ is a tilting module, so that
by Lemma 1.3(1) ⊕i≥0 P

−i ∈ Mod-Aop is a projective generator. Thus, since
HomR(Qi, R) ∼= P−i for all i ≥ 0, (2) holds.

In the following, we assume further that R is complete and that P • → Ω is
a minimal projective resolution (cf. Lemma 1.12). Let A → E• be a minimal
injective resolution in Mod-A. Then, since by Lemma 1.1 we have an injective
resolution A→ Hom•

R(P •, I•) in Mod-A, we have

Hom•
R(P •, I•) ∼= E• ⊕ (⊕n≥0 C(idZn)[−n− 1]),

where C(idZn) is the mapping cone of the identity mapping of Zn which is a
direct summand of Homn

R(P •, I•) = ⊕i+j=n HomR(P−i, Ij).
In the next proposition, the implication (1) ⇒ (2) holds true without the

completeness of R.
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Proposition 2.9. The following are equivalent:

(1) proj dim Qi ≤ i in mod-A for all i ≥ 0.

(2) flat dim En ≤ n in Mod-A for all n ≥ 0.

Proof. (1) ⇒ (2). By Lemmas 1.5 and 1.10.
(2) ⇒ (1). For any 0 ≤ i ≤ m and any indecomposable direct summand P

of P−i, we claim that I = HomR(P, Id) ∈ add(Ed+i). Suppose to the contrary
that I 6∈ add(Ed+i). Then either C(idI)[−d−i−1] ∈ add(⊕n≥0 C(idZn)[−n−1])
or C(idI)[−d − i] ∈ add(⊕n≥0 C(idZn)[−n − 1]). Thus by Lemma 1.13 either
C(idI)[−i − 1] ∈ add(Hom•

R(P •, Id)) or C(idI)[−i] ∈ add(Hom•
R(P •, Id)), so

that either C(idP )[i + 1] ∈ add(P •) or C(idP )[i] ∈ add(P •), which contra-
dicts to the minimality of P •. Thus for any i ≥ 0 we have HomR(P−i, Id) ∈
add(Ed+i) and flat dim HomR(P−i, Id)A ≤ d + i. Since by Lemma 1.5 we
have HomR(P−i, Id) ∼= Id ⊗R Qi, it suffices to show that flat dim Id ⊗R Qi =
d + flat dim Qi in Mod-A. Set r = flat dim Qi and J = rad(A), the Jacobson
radical of A. By Lemma 1.10 we have flat dim Id ⊗R Q

i ≤ d+ r. Take minimal
projective resolutions Q′• → Qi in mod-A and P ′• → A/J in mod-Aop. We
have TorA

r (Qi, A/J) ∼= Q′−r ⊗A A/J 6= 0. Also, we have an exact sequence

0 → TorA
r (Qi, A/J) → Z′−r(Qi ⊗A P ′•) → B−r+1(Qi ⊗A P ′•) → 0

and hence, applying HomR(−, R), we have an epimorphism

Extd
R(Z′−r(Qi ⊗A P ′•), R) → Extd

R(TorA
r (Qi, A/J), R).

Since TorA
r (Qi, A/J) is semisimple as an R-module, Extd

R(TorA
r (Qi, A/J), R) ∼=

TorA
r (Qi, A/J) 6= 0. Note that we have a left resolution in mod-R

· · · → Qi ⊗A P ′−r−1 → Qi ⊗A P ′−r → Z′−r(Qi ⊗A P ′•) → 0.

Since by Remark 2.1(1) TorR
k (Id,Ω) ∼= HomR(Extk

R(Ω, R), Id) = 0 for k 6= 0,
for any j ≥ r we have TorR

k (Id, Qi ⊗A P ′−j) = 0 for k 6= 0 and hence

TorA
d+r(I

d ⊗R Qi, A/J) ∼= H−d−r(Id ⊗•
R Qi ⊗•

A P ′•)
∼= TorR

d (Id,Z′−r(Qi ⊗A P ′•))
∼= HomR(Extd

R(Z′−r(Qi ⊗A P ′•), R), Id)
6= 0,

so that flat dim Id ⊗R Qi = d+ r.

In the proposition above, the condition (2) is left-right symmetric (see Propo-
sition 3.1 below) and hence so is the condition (1).

10



3 Auslander-Gorenstein resolution

In this section, formulating Remark 2.8 and Proposition 2.9, we will introduce
the notion of Auslander-Gorenstein resolution and show that a noetherian ring
is an Auslander-Gorenstein ring if it admits an Auslander-Gorenstein resolution
over another Auslander-Gorenstein ring.

We start by recalling the Auslander condition. In the following, Λ stands
for an arbitrary noetherian ring.

Proposition 3.1 (Auslander). For any n ≥ 0 the following are equivalent:

(1) In a minimal injective resolution Λ → I• in Mod-Λ, flat dim Ii ≤ i for
all 0 ≤ i ≤ n.

(2) In a minimal injective resolution Λ → J• in Mod-Λop, flat dim J i ≤ i for
all 0 ≤ i ≤ n.

(3) For any 1 ≤ i ≤ n + 1, any M ∈ mod-Λ and any submodule X of
Exti

Λ(M,Λ) ∈ mod-Λop we have Extj
Λop(X,Λ) = 0 for all 0 ≤ j < i.

(4) For any 1 ≤ i ≤ n + 1, any X ∈ mod-Λop and any submodule M of
Exti

Λop(X,Λ) ∈ mod-Λ we have Extj
Λ(M,Λ) = 0 for all 0 ≤ j < i.

Proof. See e.g. [15, Theorem 3.7].

Definition 3.2 ([11]). We say that Λ satisfies the Auslander condition if it
satisfies the equivalent conditions in Proposition 3.1 for all n ≥ 0, and that Λ is
an Auslander-Gorenstein ring if inj dim ΛΛ = inj dim ΛΛ <∞ and if it satisfies
the Auslander condition.

Definition 3.3. We denote by GΛ the full subcategory of mod-Λ consisting of
reflexive modules M ∈ mod-Λ with Exti

Λop(HomΛ(M,Λ),Λ) = 0 for i 6= 0.

Throughout the rest of this section, R and A are noetherian rings. We do
not require the existence of a ring homomorphism R→ A. Also, even if we have
a ring homomorphism R → A with R commutative, the image of which may
fail to be contained in the center of A (cf. [2]).

Definition 3.4. A right resolution 0 → A → Q0 → · · · → Qm → 0 in Mod-A
is said to be a Gorenstein resolution of A over R if the following conditions are
satisfied:

(1) Every Qi is an R-A-bimodule.

(2) Qi ∈ GRop in Mod-Rop for all i ≥ 0.

(3) ⊕i≥0 HomRop(Qi, R) ∈ Mod-Aop is faithfully flat.

(4) flat dim Qi <∞ in Mod-A for all i ≥ 0.
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Definition 3.5. A Gorenstein resolution 0 → A → Q0 → · · · → Qm → 0 of A
over R is said to be an Auslander-Gorenstein resolution if the following stronger
condition is satisfied:

(4)′ flat dim Qi ≤ i in Mod-A for all i ≥ 0.

Theorem 3.6. Assume that A admits a Gorenstein resolution

0 → A→ Q0 → · · · → Qm → 0

over R and that inj dim RR = inj dim RR = d <∞. Then the following hold:

(1) For an injective resolution R → I• in Mod-R we have an injective reso-
lution A→ E• in Mod-A such that

En =
⊕

i+j=n

Ij ⊗R Qi

for all n ≥ 0. In particular, inj dim AA = inj dim AA ≤ m+ d and

flat dim En ≤ sup{flat dim Ij + flat dim Qi | i+ j = n}

for all n ≥ 0.

(2) If R is an Auslander-Gorenstein ring, and if A → Q• is an Auslander-
Gorenstein resolution, then A is an Auslander-Gorenstein ring.

Proof. (1) For each 0 ≤ i ≤ m, since Qi ∈ GRop and HomRop(Qi, R) ∈ Mod-Aop

is flat, and since by Lemma 1.5 Hom•
R(HomRop(Qi, R), I•) ∼= I• ⊗•

R Qi as
complexes over Mod-A, we have an injective resolution Qi → I• ⊗•

R Qi in
Mod-A. Thus by Lemma 1.1 we have an injective resolution A → E• with
En = ⊕i+j=n Ij ⊗R Qi for all n ≥ 0. In particular, inj dim AA ≤ m+ d. Also,
by Lemma 1.10 flat dim En ≤ sup{flat dim Ij + flat dim Qi | i + j} < ∞. It
only remains to see that inj dim AA = inj dim AA. By Lemma 1.6, it suffices
to show that ⊕n≥0 E

n ∈ Mod-A is an injective cogenerator. Let M ∈ Mod-A
with HomA(M, Ij ⊗R Qi) = 0 for all i, j. Note that for any i, j we have

HomR(M ⊗A HomRop(Qi, R), Ij) ∼= HomA(M,HomR(HomRop(Qi, R), Ij))
∼= HomA(M, Ij ⊗R Qi)
= 0

and that by Corollary 1.9 ⊕j≥0 I
j ∈ Mod-R is an injective cogenerator. Thus

M ⊗A HomRop(Qi, R) = 0 for all i and hence, since ⊕i≥0 HomRop(Qi, R) is
faithfully flat, we have M = 0.

(2) We have flat dim Ij + flat dim Qi ≤ i+ j for all i, j.

In case m = 0, a Gorenstein resolution of A over R is just an R-A-bimodule
Q such that Q ∼= A in Mod-A, Q ∈ GRop in Mod-Rop and HomRop(Q,R) ∈
Mod-Aop is faithfully flat. In particular, if A is a Frobenius extension of R in
the sense of [2], then both A itself and HomR(A,R) are Gorenstein resolutions
of A over R, where A ∼= HomR(A,R) in Mod-A but A � HomR(A,R) as R-A
bimodules in general.
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4 Examples

In this section, we will provide several examples of Auslander-Gorenstein reso-
lution.

Example 4.1. Let R be a commutative noetherian ring and A a noetherian R-
algebra such that Rp is Gorenstein for all p ∈ SuppR(A) and Exti

R(A,R) = 0 for
i 6= 0. Set Ω = HomR(A,R) and assume that Ω admits a projective resolution
0 → P−1 → P 0 → Ω → 0 in mod-Aop with P 0 ∈ add(Ω). Then applying
HomR(−, R) we have a right resolution 0 → A → Q0 → Q1 → 0 in mod-A
with Q0 ∈ add(Ω), where Qi = HomR(P−i, R) for 0 ≤ i ≤ 1, which must be an
Auslander-Gorenstein resolution of A over R because by Lemmas 2.2 and 1.3(1)
P 0 ⊕ P−1 ∈ mod-Aop is a projective generator.

Example 4.2 (cf. [6]). Let R be a complete Gorenstein local ring of dimension
one and Λ a noetherian R-algebra with Exti

R(Λ, R) = 0 for i 6= 0. Denote by LΛ

the full subcategory of mod-Λ consisting of modules X with Exti
R(X,R) = 0

for i 6= 0. It should be noted that LΛ is closed under submodules. Assume that
LΛ = add(M) with M ∈ mod-Λ non-projective and set A = EndΛ(M). Since A
is a subalgebra of EndR(M), and since EndR(M) is embedded in a finite direct
sum of copies of M , we have Exti

R(A,R) = 0 for i 6= 0.
We claim first that gl dim A = 2. Set F = HomΛ(M,−) : LΛ

∼→ PA and
SX = FX/rad(FX) for each indecomposable X ∈ LΛ. If X ∈ PΛ, then we have
an exact sequence

0 → F (rad(X)) → FX → SX → 0,

so that proj dim SX ≤ 1. Assume that X /∈ PΛ. There exists f : Y → X in LΛ

such that FY
Ff→ FX → SX → 0 is a minimal projective presentation. Thus,

setting Z = Ker f ∈ LΛ, we have an exact sequence

0 → FZ
Fg→ FY

Ff→ FX → SX → 0

and proj dim SX ≤ 2. Since HomA(FΛ, SX) = 0, HomA(FΛ, Ff) is surjective
and so is HomΛ(Λ, f). Thus f is an epimorphism. If proj dim SX ≤ 1, then Fg
is a split monomorphism and so is g, so that f is a split epimorphism and so is
Ff , a contradiction.

Next, set D = HomR(−, R) and Ω = DA. It then follows by Lemmas 2.2
and 2.3 that ΩA is a tilting module with proj dim ΩA = proj dim AΩ = 1.
Take a minimal projective presentation P−1 → P 0 → DM → 0 in mod-Λop.
Applying F ◦D, we have an exact sequence in mod-A

0 → A→ F (DP−1)
f→ F (DP 0).

We have D(M ⊗Λ P
−1) ∼= F (DP−1) and hence DF (DP−1) ∼= M ⊗Λ P

−1 ∼=
HomΛ(HomΛop(P−1,Λ),M) ∈ PAop . Thus, setting Q0 = F (DP−1) and Q1 =
Im f , we have an Auslander-Gorenstein resolution of A over R.
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Throughout the rest of this section, R stands for an arbitrary noetherian
ring. We refer to [5, Chapter II] for the way to construct an extension ring A
of R by a quiver with relations.

Example 4.3. Let n ≥ 2 be an integer and A = Tn(R), the ring of n×n upper
triangular matrices over R. Namely, A is a free right R-module with a basis
B = {eij | 1 ≤ i ≤ j ≤ n} and the multiplication in A is defined subject to the
following axioms: (A1) eijekl = 0 unless j = k and eijejk = eik for all i ≤ j ≤ k;
and (A2) xv = vx for all x ∈ R and v ∈ B. Set ei = eii for all i. Then A is
a noetherian ring with 1 = Σn

i=1ei, where the ei are orthogonal idempotents.
We consider R as a subring of A via the injective ring homomorphism ϕ : R→
A, x 7→ x1. Denote by B∗ = {e∗ij | 1 ≤ i ≤ j ≤ n} the dual basis of B for the
left R-module HomR(A,R), i.e., we have a = Σv∈Bvv

∗(a) for all a ∈ A. It is
not difficult to check the following:

(1) e1A
∼→ HomR(Aen, R), a 7→ e∗1na as R-A-bimodules.

(2) For each 2 ≤ i ≤ n, setting f : e1A→ HomRop(Aei−1, R), a 7→ e∗1,i−1a and
g : eiA→ e1A, a 7→ e1ia, we have an exact sequence of R-A-bimodules

0 → eiA
g→ e1A

f→ HomR(Aei−1, R) → 0.

(3) HomRop(HomR(Aei, R), R) ∼= Aei as A-R-bimodules for all 1 ≤ i ≤ n.

Consequently, we have an exact sequence of R-A-bimodules

0 → A→
n
⊕ e1A→

n
⊕

i=2
HomR(Aei−1, R) → 0,

which is an Auslander-Gorenstein resolution of A over R.

Example 4.4. Define a ring A by a quiver

•
1 α //•

2 γ //•
3

δ
oo

β
oo

with relations αβ = 0, αγ = 0, δγ = 0, δβ = 0 and βα − γδ = 0 over R.
Namely, A is a free left R-module with a basis B = {e1, e2, e3, α, β, γ, δ, w} and
the multiplication in A is defined subject to the following axioms: (A1) eiej = 0
unless i = j and eiei = ei for all i; (A2) α = e1αe2, β = e2βe1, γ = e2γe3 and
δ = e3δe2; (A3) αβ = αγ = δβ = δγ = 0 and w = βα = γδ; and (A4) xv = vx
for all x ∈ R and v ∈ B. It is not difficult to see that A is a noetherian ring
with 1 = Σ3

i=1ei, where the ei are orthogonal idempotents. We consider R as
a subring of A via the injective ring homomorphism ϕ : R → A, x 7→ x1. Set
Ω = HomRop(A,R) and denote by B∗ = {e∗1, e∗2, e∗3, α∗, β∗, γ∗, δ∗, w∗} the dual
basis of B for the right R-module Ω, i.e., we have a = Σv∈Bv

∗(a)v for all a ∈ A.
We have Ω ∼= ⊕3

i=1HomRop(eiA,R) as A-R-bimodules and the following hold:

(1) Ae2
∼→ HomRop(e2A,R), a 7→ aw∗ as A-R-bimodules.
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(2) Set f : Ae2 → HomRop(e1A,R), a 7→ aα∗ and g : Ae3 → Ae2, a 7→ aδ.
Then we have an exact sequence of A-R-bimodules

0 → Ae3
g→ Ae2

f→ HomRop(e1A,R) → 0.

(3) Set f ′ : Ae2 → HomRop(e3A,R), a 7→ aδ∗ and g′ : Ae1 → Ae2, a 7→ aα.
Then we have an exact sequence of A-R-bimodules

0 → Ae1
g′

→ Ae2
f ′

→ HomRop(e3A,R) → 0.

(4) eiA ∼= HomR(HomRop(eiA,R), R) as R-A-bimodules for all 1 ≤ i ≤ 3.

Consequently, we have an exact sequence of A-R-bimodules

0 → Ae1 ⊕Ae3 →
3
⊕Ae2 → Ω → 0

and applying HomR(−, R) we have an exact sequence of R-A-bimodules

0 → A→
3
⊕ e2A→ HomR(Ae1, R) ⊕ HomR(Ae3, R) → 0,

which is an Auslander-Gorenstein resolution of A over R.

Example 4.5. Define a ring A by a quiver

•
1

•α //
2

•β //
3

γ

gg

with a relation γα = 0. Namely, A is a free left R-module with a basis
B = {e1, e2, e3, α, β, γ, v13, v21, w} and the multiplication in A is defined by
the following axioms: (A1) eiej = 0 unless i = j and eiei = ei for all i; (A2)
α = e1αe2, β = e2βe1 and γ = e2γe3; (A3) γα = 0, αβ = v13, βγ = v21
and w = αβγ; and (A4) xv = vx for all x ∈ R and v ∈ B. It is not dif-
ficult to see that A is a noetherian ring with 1 = Σ3

i=1ei, where the ei are
orthogonal idempotents. We consider R as a subring of A via the injective
ring homomorphism ϕ : R → A, x 7→ x1. Let Ω = HomRop(A,R) and de-
note by B∗ = {e∗1, e∗2, e∗3, α∗, β∗, γ∗, v∗13, v

∗
21, w

∗} the dual basis of B for the
right R-module Ω, i.e., we have a = Σv∈Bv

∗(a)v for all a ∈ A. We have
Ω ∼= ⊕3

i=1HomRop(eiA,R) as A-R-bimodules and the following hold:

(1) Ae1
∼−→ HomRop(e1A,R), a 7→ aw∗ as A-R-bimodules.

(2) Set f : Ae1 → HomRop(e2A,R), a 7→ av∗21, g : Ae1 → Ae1, a 7→ aw
and h : Ae3 → Ae1, a 7→ aγ. Then we have an exact sequence of A-R-
bimodules

0 → Ae3
h−→ Ae1

g−→ Ae1
f−→ HomRop(e2A,R) → 0.
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(3) Set f ′ : Ae1 → HomRop(e3A,R), a 7→ aγ∗ and g′ : Ae2 → Ae1, a 7→ av21.
Then we have an exact sequence of A-R-bimodules

0 → Ae2
g′

−→ Ae1
f ′

−→ HomRop(e3A,R) → 0.

(4) eiA
∼−→ HomR(HomRop(eiA,R), R) as R-A-bimodules for all 1 ≤ i ≤ 3.

Consequently, we have an exact sequence of A-R-bimodules

0 → Ae3 → Ae1 ⊕Ae2 →
3
⊕Ae1 → Ω → 0

and applying HomR(−, R) we have an exact sequence of R-A-bimodules

0 → A→
3
⊕ e1A→ e1A⊕ HomR(Ae2, R) → HomR(Ae3, R) → 0,

which is an Auslander-Gorenstein resolution of A over R.

Example 4.6. Let n ≥ 3 be an integer and define a ring A by a quiver

•
1

•α1 //
2

· · ·α2 // •
αn−1 //

n

with relations αiαi+1 = 0 for 1 ≤ i < n− 1. Namely, A is a free left R-module
with a basis B = {e1, e2, · · · , en, α1, α2, · · · , αn−1} and the multiplication in A
is defined by the following axioms: (A1) eiej = 0 unless i = j and eiei = ei for
all i; (A2) αi = eiαiei+1 for all i; (A3) αiαi+1 = 0 for all i; and (A4) xv = vx
for all x ∈ R and v ∈ B. It is not difficult to see that A is a noetherian ring
with 1 = Σn

i=1ei, where the ei are orthogonal idempotents. We consider R as
a subring of A via the injective ring homomorphism ϕ : R → A, x 7→ x1. Set
Ω = HomRop(A,R) and denote by B∗ = {e∗1, e∗2, · · · , e∗n, α∗

1, α
∗
2, · · · , α∗

n−1} the
dual basis of B for the right R-module Ω, i.e., we have a = Σv∈Bv

∗(a)v for all
a ∈ A. We have Ω ∼= ⊕n

i=1HomRop(eiA,R) as A-R-bimodules and the following
hold:

(1) Aei+1
∼→ HomRop(eiA,R), a 7→ aα∗

i as A-R-bimodules for all 1 ≤ i < n.

(2) Set f : Aen → HomRop(enA,R), a 7→ ae∗n and gi : Aei → Aei+1, a 7→ aαi

for 1 ≤ i < n. Then we have an exact sequence of A-R-bimodules

0 → Ae1
g1→ Ae2

g2→ · · · gn−1−−−→ Aen
f−→ HomRop(enA,R) → 0.

(3) eiA ∼= HomR(HomRop(eiA,R), R) as R-A-bimodules for all 1 ≤ i ≤ n.

Consequently, we have an exact sequence of A-R-bimodules

0 → Ae1 → Ae2 → · · · → (
n
⊕

i=2
Aei) ⊕Aen → Ω → 0

and applying HomR(−, R) we have an exact sequence of R-A-bimodules

0 → A→ (
n−1
⊕

i=1
eiA) ⊕ en−1A→ en−2A→ · · · → e1A→ HomR(Ae1, R) → 0,

which is an Auslander-Gorenstein resolution of A over R.
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