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 15 

We have attempted to grow single-crystalline Co4N thin films on SrTiO3 (STO) (001) 16 

substrates by molecular beam epitaxy by the simultaneous supply of 3N-Co and 17 

radio-frequency NH3 plasma. Reflection high-energy electron diffraction and θ-2θ x-ray 18 

diffraction patterns confirmed that the epitaxial growth of Co4N films was successfully 19 
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achieved. X-ray φ-scan measurements using Co4N(301) and STO(301) diffractions revealed 20 

that the epitaxial relationship between Co4N and STO was a cube-on-cube type. 21 

Magnetization versus magnetic field curves measured at room temperature for Co4N epitaxial 22 

layers covered with a Au capping layer using a vibrating sample magnetometer showed that 23 

Co4N[110] is the axis of easy magnetization.  24 

25 
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1. Introduction 26 

Spintronics aims to achieve new functional devices utilizing the spin degree of 27 

freedom and has attracted significant attention in recent years. High efficiency spin 28 

injection from ferromagnetic materials to non-magnetic materials is of significant 29 

importance to realize new spintronics devices, such as spin transistors. Therefore, much 30 

research has been conducted to identify ferromagnetic materials with large spin polarization 31 

(P) from both a theoretical and experimental aspect. Iron nitrides, which consist of 32 

abundantly available nontoxic atoms, are regarded as promising materials for application in 33 

magnetic recording media. Among them, Fe4N has been extensively studied over the past 34 

few years. A large P value of electrical conductivity (σ) due to up and down spins at the 35 

Fermi level, given by (σ↑ - σ↓) / (σ↑ + σ↓), was theoretically predicted to be −1.0 [1]. We 36 

have confirmed from point contact Andreev reflection measurements that Fe4N layers 37 

grown by molecular beam epitaxy (MBE) on MgO(001) substrates have a distinctly larger 38 

P than that of α-Fe [2]. We also evaluated the spin and orbital magnetic moments of Fe4N 39 

epitaxial thin films from X-ray magnetic circular dichroism measurements [3]. In contrast, 40 

there have been no reports on the formation of Co4N single-crystalline epitaxial films, nor 41 

their magnetic properties. Co4N has a cubic perovskite lattice structure, where one N atom 42 

is located at the body-center of fcc-Co, and the lattice constant is reported to be 0.3738 nm 43 

[4]. There have been only a limited number of reports on the growth of cobalt nitride 44 
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(Co-N) films by sputtering [5-7]. Very recently, Imai et al. calculated that the P value of the 45 

density of states (D) for up and down spins at the Fermi level, described by (D↑ - D↓) / (D↑ 46 

+ D↓), reaches approximately −0.88, and this value is larger than that of Fe4N (−0.67) [8]. 47 

Therefore, Co4N is also considered as a promising material for application to spintronics 48 

devices. The formation and characterization of high-quality Co4N epitaxial films is 49 

necessary to confirm the theoretically predicted features of Co4N.  50 

In this study, we attempted to grow Co4N epitaxial films on SrTiO3 (STO) (001) 51 

substrates by MBE. Furthermore, magnetization versus magnetic field (M-H) curves were 52 

measured using a vibrating sample (VSM) and superconducting quantum interface device 53 

(SQUID) magnetometers, and the saturation magnetization (Ms), coercive field (Hc) and 54 

magnetic anisotropy of Co4N thin films were evaluated. There have been no reports so far on 55 

the epitaxial growth of Co4N thin films by MBE, so that the magnetic anisotropy of Co4N has 56 

yet to be clarified. 57 

 58 

2. Experimental procedures 59 

An ion-pumped MBE system equipped with a high-temperature Knudsen cell for 60 

3N–Co and a radio-frequency (RF) 5N–NH3 plasma for N was used. Co4N layers were grown 61 

by MBE with simultaneous supply of solid Co and NH3 plasma on the STO(001) substrate. 62 

We have recently utilized the same growth method and succeeded in the epitaxial growth of 63 
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Fe4N thin films [9]. Prior to the growth of Co4N, the STO(001) substrates were immersed into 64 

a buffered HF (HF = 5 wt%, NH4F = 35 wt%) solution to obtain an atomically flat surface 65 

[10]. The growth conditions for sample preparation are summarized in Table 1. Co4N thin 66 

films (samples A−C) were grown at 450, 400 and 350 °C, respectively. During the growth of 67 

Co4N, the deposition rate of Co was kept constant at approximately 0.5 nm/min. The flow rate 68 

of NH3 was fixed at 1.0 sccm, and the input power to the RF plasma was 150 W. The pressure 69 

inside the chamber was approximately 1×10-4 Torr during film growth. For the preparation of 70 

sample D, the Co4N layer was capped with a 7 nm thick Au layer by MBE to prevent 71 

oxidation of the surface.  72 

The crystalline qualities of the samples were characterized by reflection high-energy 73 

electron diffraction (RHEED) and θ-2θ X-ray diffraction (XRD) measurements. The surface 74 

roughnesses of Co4N layers were observed using atomic force microscopy (AFM). The 75 

epitaxial face relationship between Co4N and STO was determined by φ-scan XRD using 76 

Co4N(301) and STO(301) diffractions. Cu Kα X-rays were used for XRD measurements. M-H 77 

curve measurements were performed on sample D using the VSM and SQUID at room 78 

temperature. An external magnetic field (H) was applied parallel to sample surfaces. 79 

 80 

3. Results and discussion 81 

Figures 1(a) and 1(b) show RHEED patterns of sample B for the electron beam 82 
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incident along the [100] and [110] directions of STO, respectively. Similar RHEED patterns 83 

were also observed for Co4N layers in other samples. Predicted transmission electron 84 

diffraction patterns for Co4N are also shown for comparison. Spotty RHEED patterns indicate 85 

that the surface of the grown layer is rough, probably due to the large lattice mismatch of 86 

4.3% between Co4N and STO. The experimentally obtained RHEED patterns resemble the 87 

predicted diffraction patterns. X-ray φ-scan measurements indicated that the grown layers 88 

were not fcc-Co, but Co4N, which is discussed in detail later. At the present stage, it can at 89 

least be stated from the RHEED patterns that the grown layers have a single crystalline 90 

nature. 91 

Figure 2 shows the θ-2θ XRD patterns of samples A–C. No diffraction peaks 92 

corresponding to fcc-Co or Co-N, other than c-axis oriented Co4N, were observed. There was 93 

no significant difference in crystalline qualities such as RHEED and XRD among samples 94 

A–C. The c-axis lattice constant of Co4N in sample B was determined to be 0.3524 nm. To 95 

reduce the measurement error, lattice constants deduced from Co4N(002) and Co4N(004) peak 96 

positions were first plotted against cotθ after canceling zero offset error by adjusting the 97 

measured peak position of STO with the theoretical peak position. The peak positions were 98 

determined by Gaussian fitting. The c-axis lattice constant of Co4N was then extrapolated 99 

from the intersection of the straight line passing through the above two points at cotθ  = 0. 100 

This value of 0.3524 nm is slightly smaller than the reported value of 0.3738 nm, which 101 
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indicates that the grown Co4N film is under tensile strain along the in-plane direction. This is 102 

due to a larger lattice constant of STO than that of Co4N. The lattice constant of fcc-Co 103 

(0.3544 nm) [6] is very close to that of Co4N films on glass slides (0.3586 nm) [5]; thus, it is 104 

difficult to state that the grown film is Co4N solely from the peak positions in the XRD 105 

pattern shown in Fig. 2. However, we can exclude the possibility of fcc-Co by considering the 106 

φ-scan XRD measurement shown in Fig. 3(a).  107 

φ-scan XRD measurement was performed to investigate the epitaxial face 108 

relationship between Co4N and STO. Figure 3(a) shows the φ-scan XRD pattern for 109 

Co4N(301) and STO(301) diffraction peaks measured on sample B. The peaks of both 110 

Co4N(301) and STO(301) were observed at the same φ positions with 90° intervals; 111 

therefore, the epitaxial face relationship between these two materials is a cube-on-cube type, 112 

as shown in Fig. 3(b). According to the X-ray extinction law, the diffraction peak of 113 

fcc-Co(301) is forbidden; however, that of Co4N(301) is allowed. Therefore, we can state 114 

that the grown layers are not fcc-Co, but Co4N. On the basis of these experimental results, 115 

we have concluded that c-axis oriented Co4N epitaxial films were successfully grown, for 116 

the first time, on STO(001) substrates.  117 

Figure 4 shows the growth temperature dependence of root-mean-square (RMS) 118 

values of surface roughness in samples A–C. RMS values of the surface roughness slightly 119 

increased with increasing growth temperature of Co4N layers. But there was no significant 120 
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difference in RMS roughness value between samples B and C. Thus, we chose the growth 121 

temperature of 400 °C and prepared sample D for magnetic measurements.  122 

Figure 5(a) and 5(b) show M-H curves and incident H angle dependence of the ratio 123 

of remanent magnetizations (Mr) to Ms measured for sample D, respectively. Vertical axis in 124 

Fig. 5(a) is the magnetization (M) normalized by the Ms of sample D. Hc is approximately 25 125 

Oe, which indicates that Co4N is a soft magnetic material. The crystalline magnetic anisotropy 126 

was observed as shown in Fig. 5(b). Mr differed depending on the directions of applied 127 

external H. Mr/Ms was equivalent to 1.0 when the external H was parallel to Co4N[110]. In 128 

contrast, Mr/Ms decreases to approximately 0.75 when the external H was applied parallel to 129 

Co4N[100] and [010]. These results indicate that the in-plane [110] direction is an easy 130 

magnetization axis of c-axis-oriented Co4N film, as it is for fcc-Co [11]. The Ms value was 131 

calculated to be approximately 1300 emu/cc at 300 K using a SQUID magnetometer, 132 

corresponding to approximately 1.6 µB per Co atom. This value is close to that theoretically 133 

predicted [8]. 134 

 135 

4. Conclusions 136 

Single-crystalline c-axis-oriented epitaxial Co4N thin films were successfully grown 137 

on STO(001) substrates by MBE with the simultaneous supply of solid Co and RF-NH3. Co4N 138 

thin films on STO are under slight tensile strain, where the in-plane lattice is extended. A 139 
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cube-on-cube epitaxial relationship was confirmed between Co4N and STO(001) from φ-scan 140 

XRD measurements using Co4N(301) and STO(301) diffraction peaks. Co4N[110] was found 141 

to be an easy axis of magnetization from M-H measurements obtained using a VSM.  142 

 143 
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Fig. 1. RHEED patterns for grown layers of sample B measured from the (a) [100] and (b) 174 

[110] azimuths of STO. Lower patterns are predicted transmission electron diffraction 175 

patterns.  176 

 177 

Fig. 2. θ-2θ XRD patterns for samples A–C. 178 

 179 

Fig. 3. (a)φ-scan XRD patterns for Co4N(301) and STO(301) in sample B. (b) Epitaxial 180 

relationship between Co4N and STO. 181 

 182 

Fig. 4. The growth temperature dependence of RMS values of surface roughness in samples 183 

A–C. 184 

 185 

Fig. 5. (a)M-H curves and (b)incident H angle dependence of Mr/Ms for samples D measured 186 

at 300 K. External H were applied to the [010] and [110] azimuths of Co4N parallel to the 187 

sample surface. 188 
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Table 1 Growth conditions used for sample preparation. Samples A–D were grown on STO 

substrates. The Co4N layer was covered with a 7-nm-thick Au capping layer in sample D. 

Sample 

 

Substrate Growth 

temperature (°C) 

Co4N layer 

(nm) 

Au layer 

(nm) 

A 

 

STO(001) 450 13 - 

B 

 

STO(001) 400 14 - 

C 

 

STO(001) 350 13 - 

D 

 

STO(001) 400 9 7 
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