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We perform a lattice QCD study of the � meson decay from the Nf ¼ 2þ 1 full QCD configurations

generated with a renormalization group improved gauge action and a nonperturbatively OðaÞ-improved

Wilson fermion action. The resonance parameters, the effective � ! �� coupling constant and the

resonance mass, are estimated from the P-wave scattering phase shift for the isospin I ¼ 1 two-pion

system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice.

Our calculations are carried out at two quark masses, m� ¼ 410 MeV (m�=m� ¼ 0:46) and

m� ¼ 300 MeV (m�=m� ¼ 0:35), on a 323 � 64 (La ¼ 2:9 fm) lattice at the lattice spacing a ¼
0:091 fm. We compare our results at these two quark masses with those given in the previous works

using Nf ¼ 2 full QCD configurations and the experiment.
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I. INTRODUCTION

Recent progress of simulation algorithms, supported by
the development of computer power, has made it possible
to study hadron physics at the physical quark mass by
lattice QCD (see Ref. [1] for recent reviews), and lattice
calculations have clarified the properties of many hadrons.
The studies are mostly concentrated on stable hadrons,
however. Resonances pose an important issue both in terms
of methodologies and physical results.

Among the resonances, the � meson is an ideal case for
the lattice calculations, because the final state of the decay
is the two-pion state which can be treated on the lattice
precisely. In the early stage of studies of the � meson
decay, the transition amplitude h��j�i extracted
from the time behavior of the correlation function
h�ðtÞ�ðtÞ�ð0Þi was used to estimate the decay width, as-
suming that the hadron interaction is small enough so that

h��j�i � jh�j�ih��j��ij1=2 is satisfied [2–5].
A more realistic approach is a study from the P-wave

scattering phase shift for the isospin I ¼ 1 two-pion sys-
tem. The finite size formulas presented by Lüscher in the
center of mass frame [6] and extensions to nonzero total
momentum frames [7,8] are employed for an estimation of
the phase shift from an eigenvalue of the energy on the
lattice. The first study of this approach was carried out by
CP-PACS Collaboration using Nf ¼ 2 full QCD con-

figurations (m� ¼ 330 MeV, a ¼ 0:21 fm, La ¼ 2:5 fm)
[9]. After this work ETMC Collaboration presented
results with Nf ¼ 2 configurations at several quark masses

(m� ¼ 290, 330 MeV (La ¼ 2:5 fm), m� ¼ 420,
480 MeV (La ¼ 1:9 fm), a ¼ 0:079 fm) [10,11].
Recently Lang et al. reported results of high statistical
calculations with the Laplacian Heaviside smearing opera-
tors on a single Nf ¼ 2 gauge ensemble (m� ¼ 266 MeV,

a ¼ 0:124 fm, La ¼ 1:98 fm) [12].
In the present work we extend these studies by employ-

ing Nf ¼ 2þ 1 full QCD configurations and working on a

larger lattice volume. Our calculations are carried out with
the gauge configurations previously generated by PACS-
CS Collaboration with a renormalization group improved
gauge action and a nonperturbatively OðaÞ-improved
Wilson fermion action at � ¼ 1:9 on 323 � 64 lattice (a ¼
0:091 fm, La ¼ 2:9 fm) [13]. We choose two subsets of
the PACS-CS configurations. One of them corresponds to
the hopping parameters �ud ¼ 0:13754 for the degenerate
up and down quarks and �s ¼ 0:13640 for the strange
quark, for which the pion mass takes m� ¼ 410 MeV
(m�=m� ¼ 0:46). The other is at �ud ¼ 0:13770 and �s ¼
0:13640, corresponding to m� ¼ 300 MeV (m�=m� ¼
0:35). We extract the scattering phase shift on three
momentum frames, the center of mass and the nonzero
momentum frames with the total momentum P ¼
ð2�=LÞð0; 0; 1Þ and P ¼ ð2�=LÞð1; 1; 0Þ, to obtain the
phase shifts at various energies from a single full QCD
ensemble as in the previous works by ETMC [10,11] and
Lang et al. [12].
We note that QCDSF Collaboration calculated the scat-

tering phase shifts for the ground state in the center of mass
frame at several quark masses. (m� ¼ 240–430 MeV)
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[14]. They estimated the resonance parameters from these
results, assuming that the effective � ! �� coupling con-
stant does not depend on the quark mass. BMW
Collaboration presented their first preliminary results
with Nf ¼ 2þ 1 configurations (m� ¼ 200, 340 MeV,

a ¼ 0:116 fm) at Lattice 2010 [15]. We also refer to works
exploring an application of the stochastic Laplacian
Heaviside smearing to the two-pion states with the isospin
I ¼ 0, 1, 2 using Nf ¼ 2þ 1 configurations on the large

lattice volume in Ref. [16].
This paper is organized as follows. In Sec. II we give the

method of the calculation. The simulation parameters of
the present work are also presented. We present our results
and compare ours with those by the other works in Sec. III.
Conclusions of the present work are given in Sec. IV.
Result of a pilot study of the present work at m� ¼
410 MeV was reported at Lattice 2010 [17]. All calcula-
tions are carried out on the PACS-CS computer at Center
for Computational Sciences, University of Tsukuba.

II. METHODS

A. Finite size formula

In order to calculate the P-wave scattering phase shift
for the isospin I ¼ 1 two-pion system at various energies
from a single full QCD ensemble, we consider three mo-
mentum frames, the center of mass frame (CMF), the
nonzero momentum frames with total momentum P ¼
ð2�=LÞð0; 0; 1Þ (MF1) and P ¼ ð2�=LÞð1; 1; 0Þ (MF2).
These frames have been also considered in the previous
works by ETMC [10,11] and Lang et al. [12]. In these
momentum frames the P-wave state is decomposed as

frame PL=ð2�Þ g �

CMF ð0; 0; 0Þ Oh T�
1

MF1 ð0; 0; 1Þ D4h A�
2 þ E�

MF2 ð1; 1; 0Þ D2h B�
1 þ B�

2 þ B�
3

; (1)

where P is the total momentum, g is the rotational group in
each momentum frame on the lattice and � is the irreduc-
ible representation of the rotational group. In the present
work we consider four irreducible representations: T�

1 in
the CMF,A�

2 and E� in the MF1, and B�
1 in the MF2. The

ground and the first excited states of these representations
with the isospin ðI; IzÞ ¼ ð1; 0Þ, ignoring the hadron inter-
actions, are shown in Table I.
The scattering phase shift is related to an eigenvalue of

the energy on the lattice by the finite size formula. The
formula in the CMF was presented by Lüscher [6], that in
the MF1 by Rummukainen and Gottlieb [7], and the MF2
by ETMC [8]. The formulas for the representations con-
sidered in the present work are written by

1

tan�ðkÞ ¼

8>>>>>><
>>>>>>:

V00 for T�
1 inCMF

V00 � V20 for E� inMF1

V00 þ 2V20 for A�
2 inMF1

V00 � V20 þ
ffiffiffi
6

p
V22 for B�

1 inMF2

; (2)

with the P-wave scattering phase shift �ðkÞ. The real
function Vlm is defined by

Vlmðk;PÞ¼ 1

�qlþ1

1

�3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1

p e�im�=4 �Zlmð1;q;dÞ; (3)

with d ¼ PL=ð2�Þ and q ¼ kL=ð2�Þ, where P is the total
momentum and k is the two-pion scattering momentum

defined from the invariant mass
ffiffiffi
s

p
by

ffiffiffi
s

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � jPj2p ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

p
with the energy E in the nonzero momentum

frame. In (3) � is the Lorentz boost factor from the nonzero
momentum frame to the center of mass frame given by � ¼
E=

ffiffiffi
s

p
. The function Zlmð1;q;dÞ in (3) is an analytic con-

tinuation of

Zlmðs; q;dÞ ¼
X

r2DðdÞ
YlmðrÞ � ðjrj2 � q2Þ�s; (4)

which is defined for ReðsÞ> ðlþ 3Þ=2, where YlmðrÞ is a
polynomial related to the spherical harmonics through
YlmðrÞ ¼ jrjl � Ylmð�Þ with � the spherical coordinate
for r. The convention of Ylmð�Þ is that of [18]. The
summation for r in (4) runs over the set,

DðdÞ ¼ frjr ¼ �̂�1ðnþ d=2Þ;n 2 Z3g: (5)

The operation �̂�1 is the inverse Lorentz transformation:
�̂�1x ¼ xjj=�þ x?, where xjj ¼ ðx � dÞd=d2 is the paral-

lel component and x? ¼ x� xjj is the perpendicular

TABLE I. The ground and the first excited states with the isospin ðI; IzÞ ¼ ð1; 0Þ for the irreducible representations considered in the
present work, ignoring the hadron interactions. P is the total momentum, g is the rotational group in each momentum frame on the
lattice and � is the irreducible representation of the rotational group. The vectors in parentheses after (��) and � refer to the momenta
of the two pions and the � meson in unit of 2�=L. We use a notation ð��Þðp1Þðp2Þ ¼ �þðp1Þ��ðp2Þ � ��ðp1Þ�þðp2Þ for the two-
pion states. An index j for the T�

1 representation takes j ¼ 1, 2, 3 and k for the E� takes k ¼ 1, 2.

frame PL=ð2�Þ g �

CMF (0, 0, 0) Oh T�
1 �jð0Þ ð��ÞðejÞð�ejÞ

MF1 (0, 0, 1) D4h E� �kð0; 0; 1Þ ð��Þðe3 þ ekÞð�ekÞ � ð��Þðe3 � ekÞðekÞ
MF1 (0, 0, 1) D4h A�

2 �3ð0; 0; 1Þ ð��Þð0; 0; 1Þð0; 0; 0Þ
MF2 (1, 1, 0) D2h B�

1 ð�1 þ �2Þð1; 1; 0Þ ð��Þð1; 1; 0Þð0; 0; 0Þ
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component of the vector x in the direction d. Zlmð1; q;dÞ
can be evaluated by the method described in Ref. [19].

B. Extraction of energies

In Fig. 1 we show values of the invariant mass
ffiffiffi
s

p
divided by the � meson mass m� for the states tabulated

in Table I on our gauge configurations at m� ¼ 410 MeV
(upper panel) and m� ¼ 300 MeV (lower panel). Here we
ignore the hadron interactions and use the values ofm� and

m� obtained in the previous work in Ref. [13]. For the T�
1

and the E� representation, we only calculate the scattering
phase for the ground state in the present work. From Fig. 1
the energies of these states are expected to be much smaller
than those of the excited states, even if the hadron inter-
action is switched on. Thus, we extract the energies of
these states by a single exponential fit for the time corre-
lation functions of the � meson as carried out in a usual
study of the hadron spectrum. We use the local � meson
operator for the sink and a smeared operator for the source
as discussed later.

For the A�
2 and the B�

1 representation, we also calculate
the scattering phase shift for the first excited state. In order
to extract the energies of the lower two states for these
representations, we use the variational method [20] with a
matrix of the time correlation function,

GðtÞ ¼ h0jð��ÞyðtÞð��ÞðtsÞj0i h0jð��ÞyðtÞ ��ðtsÞj0i
h0j�yðtÞð��ÞðtsÞj0i h0j�yðtÞ ��ðtsÞj0i

 !
;

(6)

for each representation. The energies are extracted from
two eigenvalues �nðtÞ (n ¼ 1, 2) of the matrix,

MðtÞ ¼ GðtÞG�1ðtRÞ; (7)

with some reference time tR.

Here we comment on the discussion of the generalized
eigenvalue problem (GEVP) by ALPHA Collaboration in
Ref. [21]. In a 2� 2 matrix case of GðtÞ, they proved that
the effective mass of the eigenvalue �nðtÞ (n ¼ 1, 2) of the
matrix MðtÞ in (7) can be written as

En þOðe�ðEm�EnÞtÞ ðn ¼ 1; 2; m � 3Þ; (8)

in a large time region with the eigenvalue of the energy Ei

(i ¼ 1; 2; � � � ). Here it should be noted that their proof was
given only for the case whereGðtÞ is a Hermitian matrix. In
our case we use different operators for the sink and source
inGðtÞ as explained later. ThereforeGðtÞ is not a Hermitian
matrix and the discussion of GEVP cannot be applied to
our case. In the present work we assume that the lower two
states dominate GðtÞ in a large time region. This is ex-
pected to be a good approximation, because the second
excited state takes a much higher value (E3=E2 > 1:3 in the
absence of hadron interactions for both quark masses
studied in the present work). With this assumption, the
second term of (8) does not appear for a general case of
GðtÞ, and the energy for the ground and the first excited
states can be extracted by a single exponential fit for the
eigenvalue �nðtÞ (n ¼ 1, 2) in a large t region.
In (6) the operator �ðtÞ is given by

�ðtÞ ¼ X3
j¼1

pj � �jðp; tÞ=jpj; (9)

where �jðp; tÞ is the local operator for the neutral � meson

at the time slice t with the momentum p. The momentum
takes p ¼ ð2�=LÞð0; 0; 1Þ for the A�

2 and p ¼ ð2�=LÞ�
ð1; 1; 0Þ for the B�

1 representation. Hereafter we assume
that the momentum p takes one of these two values de-
pending on the representation.
In (6) ð��ÞðtÞ is an operator for the two pions with the

momentum 0 and p, which is defined by

ð��ÞðtÞ ¼ 1ffiffiffi
2

p ð�þð0; t1Þ��ðp; tÞ

� ��ð0; t1Þ�þðp; tÞÞ � em��ðt1�tÞ; (10)

where ��ðp; tÞ is the local pion operator with the momen-
tum p at the time slice t. The time slice of the pion with the
zero momentum is fixed at t1 � t, and the time slice of the
other pion t runs over the whole time extent. An exponen-
tial time factor in (10) is introduced so that the operator has
the same time behavior as that of the usual Heisenberg
operator, i.e.,

h0jð��ÞyðtÞ ¼ h0jð��Þyð0Þe�Ht for t1 � t; (11)

with the Hamiltonian H.
In the previous works the time slices of the two operators

for the pion in the sink operator (10) are set equal t1 ¼ t,
and they simultaneously run over some time interval. In
that case we need to repeat solving quark propagators for
the time slices in that time interval. This computer-time

FIG. 1.
ffiffiffi
s

p
=m� for states tabulated in Table I on our gauge

configurations at m� ¼ 410 MeV (upper panel) and m� ¼
300 MeV (lower panel).
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consuming procedure can be avoided by fixing the time
slice of one of the pion at t1 as done in the present work.
But we need to set t1 � t to avoid contamination from
higher energy states produced by the operator at t1 in this
method.

Two operators ð��ÞðtsÞ and ��ðtsÞ are used for the
sources in (6), which are given by

ð��ÞðtsÞ ¼ 1ffiffiffi
2

p ð�þð0; tsÞ��ðp; tsÞ � ��ð0; tsÞ�þðp; tsÞÞ;

(12)

��ðtsÞ ¼ 1

N�

X
z2�

1ffiffiffi
2

p ð �Uðz; tsÞ�pUðz; tsÞ

� �Dðz; tsÞ�pDðz; tsÞÞeip�z; (13)

where �p ¼ P
3
j¼1 pj � �j=jpj. The operator Qðz; tsÞ

(Q ¼ U, D) is a smeared operator for the up or the down
quark given by

Qðz; tsÞ ¼
X
x

qðx; tsÞ ��ðjx� zjÞ; (14)

where qðx; tsÞ (q ¼ u, d) is the up or the down quark
operator at the position x and the time ts. We adopt the
same smearing function �ðjxjÞ as in Ref. [13], i.e.,
�ðjxjÞ ¼ A expð�BjxjÞ with �ð0Þ ¼ 1 and the smearing
parameters: ðA; BÞ ¼ ð1:2; 0:17Þ for m� ¼ 410 MeV and
ðA; BÞ ¼ ð1:2; 0:09Þ form� ¼ 300 MeV. The operator (14)
is used after fixing gauge configurations to the Coulomb
gauge, assuming that an ambiguity of the gauge fixing does
not cause a significant systematic error in the time corre-
lation function. In (13) a summation over z is taken to
reduce a statistical error and

� ¼ fzjz ¼ ðL=2Þ � ðn1; n2; n3Þ; nj ¼ 0 or 1; N� ¼ 8g
(15)

is chosen in the present work. The smeared operator (13) is
also used to extract the energy of the ground state for the

T�
1 and the E� representation, setting the momentum

p ¼ 0 and p ¼ ð2�=LÞð0; 0; 1Þ, respectively.
Here we note that the operator ð��ÞðtÞ in (10) is not an

eigenstate under exchange of the momenta of the two
pions. Thus it has no definite parity and does not belong
to the irreducible representation of the D4h for p ¼
ð2�=LÞð0; 0; 1Þ and the D2h for p ¼ ð2�=LÞð1; 1; 0Þ. It is
actually a linear combination of components of two irre-
ducible representations A�

2 þAþ
1 for the D4h and B�

1 þ
Aþ

1 for theD2h. The other operators inGðtÞ in (6), however,
belong to the irreducible representationA�

2 or B�
1 depend-

ing on the momentum p. Therefore, it is not necessary to
worry about mixing to other irreducible representations in
GðtÞ in (6).

C. Calculation of GðtÞ
The quark contractions of the components of the matrix

of the time correlation function GðtÞ in (6) are shown in
Fig. 2. The time runs upward in the diagrams. The vertices
refer to the pion or the � meson operator with the momen-
tum at the time slice specified in the diagrams. The
momentum p takes p ¼ ð2�=LÞð0; 0; 1Þ for the A�

2 and
p ¼ ð2�=LÞð1; 1; 0Þ for the B�

1 representation. The � me-
son operators at ts are the smeared operators and the other
is the local operator.
We calculate the quark contractions in Fig. 2 by the

source method and the stochastic noise method as in the
previous work by CP-PACS [9]. We introduce aUð1Þ noise
�jðxÞ which satisfies

XNR

j¼1

�y
j ðxÞ�jðyÞ ¼ �3ðx� yÞ for NR ! 1; (16)

where NR is the number of noises. We calculate the follow-
ing four types of quark propagators:

QABðx; tjq; ts; �jÞ ¼
X
y

ðD�1ÞABðx; t; y; tsÞ � ½eiq�y�jðyÞ�;

(17)

FIG. 2. Quark contractions of �� ! ��, �� ! � and � ! �� components of the matrix of the time correlation functionGðtÞ. The
time runs upward in the diagrams. The vertices refer to the pion or the �meson operator with the momentum at the time slice specified
in the diagrams. The momentum p takes p ¼ ð2�=LÞð0; 0; 1Þ for the A�

2 and p ¼ ð2�=LÞð1; 1; 0Þ for the B�
1 representation.
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WABðx; tjk; tajq; ts;�jÞ¼
X
y

X
C

ðD�1ÞACðx;t;y; taÞ

� ½eik�y�5Qðy;tajq; ts;�jÞ�CB; (18)

�QABðx; tjz; tsÞ¼
X
y

ðD�1ÞABðx; t;y;tsÞ � ½�ðjy�zjÞ�; (19)

�WABðx; tjk; tajz; tsÞ ¼
X
y

X
C

ðD�1ÞACðx; t; y; taÞ

� ½eik�y�5
�Qðy; tajz; tsÞ�CB; (20)

where A, B and C refer to color and spin indices, and
�ðjxjÞ is the smearing function in (14). The square bracket
is used as the source for the inversion of the Dirac operator
D. The propagators for the smeared quarks ( �Q and �W) are
solved on the gauge configurations fixed to the Coulomb
gauge, while the gauge is not fixed for those of the
stochastic quarks (Q and W).

The function G��!��ðtÞ for the first diagram in Fig. 2
can be calculated by introducing an another Uð1Þ noise
	jðxÞ having the same property as �jðxÞ in (16),

G½1st�
��!��ðtÞ ¼

XNR

j¼1

X
x;y

hQyðx; t1j0; ts; 	jÞ

�Qðx; t1j0; ts; 	jÞiem��ðt1�tÞe�ip�y

� hQyðy; tj0; ts; �jÞQðy; tjp; ts; �jÞi; (21)

where the bracket means trace for the color and the spin
indices. The exponential time factor comes from the defi-
nition of the operator for the two pions in (10). The
G��!��ðtÞ for the second diagram is given by exchanging
the momentum and the time slice of the sink in (21).

The function G��!��ðtÞ for the 3rd to 6th diagrams can
be obtained by

G½3rd�
��!��ðtÞ ¼

XNR

j¼1

X
x

e�ip�xhWyðx; tj0; t1j0; ts; �jÞ

�Wðx; tj0; tsjp; ts; �jÞiem��ðt1�tÞ;

G½4th�
��!��ðtÞ ¼

XNR

j¼1

X
x

e�ip�xhWyðx; tj0; t1j0; ts; �jÞ

�Wðx; tjp; tsj0; ts; �jÞiem��ðt1�tÞ;

G½5th�
��!��ðtÞ ¼

XNR

j¼1

X
x

e�ip�xhWðx; tj0; t1j0; ts; �jÞ

�Wyðx; tj0; tsj � p; ts; �jÞiem��ðt1�tÞ;

G½6th�
��!��ðtÞ ¼

XNR

j¼1

X
x

e�ip�xhWðx; tj0; t1j0; ts; �jÞ

�Wyðx; tj � p; tsj0; ts; �jÞiem��ðt1�tÞ: (22)

The function G��!�ðtÞ for two diagrams in Fig. 2 can be

similarly calculated by

G½1st�
��!�ðtÞ ¼

XNR

j¼1

X
x

e�ip�xhWyðx; tj � p; tsj0; ts; �jÞ

� ð�5�pÞQðx; tj0; ts; �jÞi;

G½2nd�
��!�ðtÞ ¼

XNR

j¼1

X
x

e�ip�xhQyðx; tj0; ts; �jÞ

� ð�5�pÞWðx; tjp; tsj0; ts; �jÞi; (23)

where �p ¼ P
3
j¼1 pj � �j=jpj.

We can obtain the function G�!��ðtÞ for two diagrams

in Fig. 2 by

G½1st�
�!��ðtÞ ¼ � 1

N�

X
z2�

eip�z
X
x

e�ip�xh �Qyðx; tjz; tsÞ

� �Wðx; tj0; t1jz; tsÞð�5�pÞiem��ðt1�tÞ;

G½2nd�
�!��ðtÞ ¼ � 1

N�

X
z2�

eip�z
X
x

e�ip�xh �Wyðx; tj0; t1jz; tsÞ

� �Qðx; tjz; tsÞð�5�pÞiem��ðt1�tÞ; (24)

where � and N� are defined by (15). The component
G�!�ðtÞ is given by the �Q-type propagators as the usual

time correlation function for the � meson,

G�!�ðtÞ ¼ � 1

N�

X
z2�

eip�z
X
x

e�ip�xh �Qyðx; tjz; tsÞ

� ð�5�pÞ �Qðx; tjz; tsÞð�5�pÞi: (25)

We calculate the Q-type propagators (17) for combina-
tions of q and Uð1Þ noise:

ðq; noiseÞ ¼ fð0; �Þ; ð0; 	Þ; ðp; �Þ; ð�p; �Þg; (26)

and W-type propagators (18) for combinations of k, ta
and q:

ðk;tajqÞ¼fðp;tSj0Þ;ð�p;tSj0Þ;ð0;tSjpÞ;ð0;tSj�pÞ;ð0;t1j0Þg;
(27)

using the same Uð1Þ noise � in common. The �Q-type (19)
and the �W-type propagator (20) for ðk; taÞ ¼ ð0; t1Þ are
solved for the set z 2 �.

D. Simulation parameters

Calculations in the present work employ Nf ¼ 2þ 1

full QCD configurations previously generated by PACS-CS
using a renormalization group improved gauge action and a
nonperturbatively OðaÞ-improved Wilson fermion action
at � ¼ 1:9 on 323 � 64 lattice (a ¼ 0:091 fm, La ¼
2:9 fm) [13]. We choose two subsets of the PACS-CS
configurations. One of them corresponds to the hopping
parameters �ud ¼ 0:13754 for the degenerate up and down
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quarks and �s ¼ 0:13640 for the strange quark, for which
the pion mass takes m� ¼ 410 MeV (m�=m� ¼ 0:46).

The total number of configurations analyzed every 10
trajectories is 440. We estimate the statistical errors by
the jackknife method with bins of 400 trajectories. The
other set is at �ud ¼ 0:13770 and �s ¼ 0:13640, corre-
sponding to m� ¼ 300 MeV (m�=m� ¼ 0:35). The total

number of configurations of this set is 400 and the mea-
surements are done every 20 trajectories. The statistical
errors are estimated by the jackknife method with bins of
800 trajectories.

The periodic boundary conditions are imposed for both
spatial and temporal directions in configuration genera-
tions. We impose the Dirichlet boundary condition for
the temporal direction at t ¼ 0 and t ¼ T in calculations
of the quark propagators, to avoid the unwanted thermal
contributions produced by propagating two pions in oppo-
site directions in a time. For both quark masses, we set the

source operators ð��ÞðtsÞ in (12) and ��ðtsÞ in (13) at ts ¼
12 to avoid effects from the temporal boundary, and the
zero momentum pion in the sink operator ð��ÞðtÞ in (10) at
t1 ¼ 42.

In order to see effects from the Dirichlet boundary, we
calculate the time correlation functions of the single meson
channels setting the source at ts ¼ 12 with the Dirichlet
boundary condition. We compare these with those obtained
with the periodic boundary condition in the previous work
in Ref. [13], and find no difference beyond statistical
fluctuations between them. This shows that ts ¼ 12 is
sufficiently large to avoid effects from the boundary for
the single meson channels. We assume from this that ts ¼
12 and t1 ¼ 42 (22 away from the boundary) are safe
distances to avoid effects from the boundary also for the
time correlation functions of the two-pion state. We find
that the effective mass of the time correlation function for
the pion with the zero momentum reaches plateau after
t� ts ¼ 12 for the both quark masses. We can expect from
this that the eigenvalues �nðtÞ (n ¼ 1, 2) of the matrixMðtÞ
in (7) have a single exponential behaviors in a time range
t 	 t1 � 12 ( ¼ 30).

In a pilot study of the present work at m� ¼ 410 MeV,
calculations of the phase shift were carried out only for
three representations, T�

1 , E
� and A�

2 , setting the number

of the random noise NR ¼ 10 in (16). The results on this
pilot study have been reported in Ref. [17]. We found from
this study that errors from a finiteness of the number of the
random noise are small enough compared with the statis-
tical error for three representations even if we takeNR ¼ 2.
Assuming that this observation applies also for both quark
masses and all representations in the present work, we set
NR ¼ 2 for all calculations after this pilot study.

In order to reduce the statistical error, we carry out
additional measurements shifting the time slice of the
source operators ts, the zero momentum pion in the sink
operator t1 and the Dirichlet boundary condition by a time

shift �t simultaneously, and average over these measure-
ments. For m� ¼ 410 MeV, the measurement of the pilot
study for the three representations was done without shift-
ing the time slices. We carry out additional measurements
for all representations with the time shift �t ¼ T=2 and
T=4. We average over these two measurements for the B�

1

representation and all three measurements for three repre-
sentations, T�

1 , E� and A�
2 . For m� ¼ 300 MeV, the

measurements for all representations are carried out with
the time shift �t ¼ 0 and T=2, and are averaged.

III. RESULTS

A. Time correlation function

In Fig. 3 we show the real part of the diagonal compo-
nents (�� ! �� and � ! �) and imaginary part of the
off-diagonal components (� ! �� and �� ! �) of
the matrix of the time correlation function GðtÞ in (6) for
the A�

2 and the B�
1 representation at m� ¼ 410 MeV. We

FIG. 3 (color online). Four components of the matrix of the
time correlation function GðtÞ at m� ¼ 410 MeV for the A�

2

(upper panel) and for the B�
1 representation (lower panel). Same

symbols for the components are used in both panels. The source

operators ð��ÞðtsÞ and ��ðtsÞ are located at ts ¼ 12. The pion
with the zero momentum in the sink operator ð��ÞðtÞ in (10) is
set at t1 ¼ 42.
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note that the diagonal components are real and the off-
diagonal components are pure imaginary by P and CP
symmetry. Choosing tR ¼ 23 as the reference time of the
variational method for the matrixMðtÞ in (7), we obtain the
two eigenvalues �1ðtÞ and �2ðtÞ of the matrix, which cor-
responds to the correlation function for the ground and the
first excited state,, respectively, for each representation.

The effective masses of the time correlation functions
for six states considered in the present work at m� ¼
410 MeV are plotted in Fig. 4. We can find plateaus in
the time region t � 23. The results of the energies E
extracted by a single exponential fit for these time corre-
lation functions are tabulated in Table II, together with
adopted fitting ranges. We choose smaller value for the
maximum time of the fitting range for the A�

2 and the B�
1

representation than those for the others to avoid contami-
nation from higher energy states produced by the zero

momentum pion at t1 ¼ 42 in the sink operator ð��ÞðtÞ in
(10). In Fig. 4 the results of the fitting with 1 standard
deviation error band are also expressed by solid lines. The
dotted line for the A�

2 and B�
1 representation in the figure

indicates the energy of the two free pions for each
representation.
The components of the matrix of the time correlation

function GðtÞ at m� ¼ 300 MeV are plotted in Fig. 5 and
the effective masses in Fig. 6, where tR ¼ 23 is also chosen
as the reference time. The statistics is less than that at
m� ¼ 410 MeV, but we also see plateaus in the effective
masses for t � 23. The results of the energies E extracted
by a single exponential fit are tabulated in Table III.
In the previous work by CP-PACS, carried out at the

lattice spacing a ¼ 0:21 fm, they found a large violation of
the continuum dispersion relation for the single pion state
due to the discretization error on their gauge configura-
tions. The discretization error also affects calculations of
the invariant mass

ffiffiffi
s

p
and the scattering momentum k for

the two-pion system since they are evaluated from the

energy E. The continuum relation is given by
ffiffiffi
s

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � jPj2p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

p
, while there are several alterna-

tives on the lattice, e.g.,

coshð ffiffiffi
s

p Þ ¼ coshðEÞ � 2
X3
j¼1

sin2ðPj=2Þ; (28)

2 � sin2ðk=2Þ ¼ coshð ffiffiffi
s

p
=2Þ � coshðm�Þ: (29)

The two-pion scattering momentum cannot be uniquely
defined due to the breaking of the translational and rota-
tional symmetries in the finite lattice spacing as mentioned
in Ref. [7]. The momentum k given by (29) is just one of
the choices of the momentum, thus the discretization error
cannot be fully avoided by using (28) and (29). In the work
by CP-PACS, they regarded the difference of the final
results for the choice of the relations as the systematic
error from the discretization error.
We also monitor the validity of the continuum dispersion

relation for the single pion state and find that the violation
is negligible in the present work, one reason being that our
lattice spacing a ¼ 0:091 fm is much smaller than that for
the CP-PACS case. We compare the energy E extracted
from the the time correlation function with that given by

the dispersion relation Eeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpj2 þm2

�

p
from the mass

m� and the momentum p. The results for m� ¼ 410 MeV
are E=Eeff ¼ 0:9988ð15Þ for p ¼ ð2�=LÞð0; 0; 1Þ and
0.9988(63) for p ¼ ð2�=LÞð1; 1; 0Þ. Those for m� ¼
300 MeV are 0.9924(81) and 0.984(16). Therefore, the
violation of the dispersion relation for the single pion state
is not seen on our gauge configurations. We also evaluateffiffiffi
s

p
for the two-pion state by (28), but we see no difference

over the statistics from that given by the relation in the
continuum. From this we calculate

ffiffiffi
s

p
and k from E by the

relation in the continuum, avoiding ambiguities possibly

FIG. 4 (color online). Effective masses of the ground state for
the T�

1 and the E� representation, and the ground and first

excited states for the A�
2 and B�

1 representation at m� ¼
410 MeV. The source operators ð��ÞðtsÞ and ��ðtsÞ are located
at ts ¼ 12. For the A�

2 and B�
1 representation, we set the pion

with the zero momentum in the sink operator ð��ÞðtÞ in (10) at
t1 ¼ 42 and the reference time of the variational method at tR ¼
23. The results of the fitting with 1 standard deviation error band
are expressed by solid lines. The dotted lines for the the A�

2 and

B�
1 representation indicate the energies of the two free pions.
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TABLE II. Results at m� ¼ 410 MeV. P is the total momentum and � is the irreducible representation of the rotational group on the
lattice. E is the energy extracted by fitting the time correlation function with the fitting range in a line of ‘‘Fit Range’’.

ffiffiffi
s

p
is the

invariant mass and k is the scattering momentum, which are related by
ffiffiffi
s

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � jPj2p ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

p
. �ðkÞ is the P-wave scattering

phase shift given by the finite size formulas in (2). We use the value of the lattice spacing given in the previous work in Ref. [13],
a ¼ 0:907ð13Þ fm (1=a ¼ 2:176ð31Þ GeV), to obtain the values in the physical unit, where the error of the lattice spacing is not
included.

am� 0.18897(79)

m�ðMeVÞ 411.2(1.7)

frame CMF MF1 MF1 MF2

PL=ð2�Þ (0, 0, 0) (0, 0, 1) (0, 0, 1) (1, 1, 0)

� T�
1 E� A�

2 B�
1

Fit Range 23–36 23–36 24–30 24–30 24–30 24–30
aE 0.4200(49) 0.4622(53) 0.4426(24) 0.4774(27) 0.4891(30) 0.5364(60)

a
ffiffiffi
s

p
0.4200(49) 0.4184(58) 0.3967(27) 0.4352(30) 0.4027(37) 0.4589(70)

ðakÞ2ð�10�3Þ 8.4(1.1) 8.1(1.2) 3.63(41) 11.63(57) 4.83(80) 16.9(1.5)ffiffiffi
s

p ðMeVÞ 914(11) 911(13) 863.2(5.9) 946.9(6.4) 876.2(8.1) 999(15)

sðGeV2Þ 0.835(19) 0.829(23) 0.745(10) 0.897(12) 0.768(14) 0.997(30)

a2k3= tan�=
ffiffiffi
s

p ð�10�3Þ �1:872ð19Þ �2:120ð22Þ 5.79(85) �15:5ð1:7Þ 2.36(49) �28ð11Þ
k3= tan�=

ffiffiffi
s

p ð�10�2 GeV2Þ �0:8865ð88Þ �1:004ð11Þ 2.74(40) �7:34ð80Þ 1.11(23) �13:0ð5:2Þ

FIG. 5 (color online). Same as Fig. 3 for m� ¼ 300 MeV. FIG. 6 (color online). Same as Fig. 4 for m� ¼ 300 MeV.
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caused by the choice of the relations. The results given by
this way are tabulated in Table II and III.

B. Scattering phase shift and resonance parameters

The scattering phase shift �ðkÞ obtained by substituting
the scattering momentum k and the total momentum P into
the finite size formulas in (2) are presented in the lower part
of Table II for m� ¼ 410 MeV and Table III for m� ¼
300 MeV. We use the lattice spacing determined from m�

in Ref. [13], a ¼ 0:0907ð13Þ fm (1=a ¼ 2:176ð31Þ GeV),
to get the values in the physical unit, where the error of the
lattice spacing is not included. In Fig. 7 the results of
k3=ð ffiffiffi

s
p � tan�ðkÞÞ are plotted as a function of square of

the invariant mass s for m� ¼ 410 MeV (upper panel)
and m� ¼ 300 MeV (lower panel). The finite size formu-
las for the A�

2 and the B�
1 representation are plotted by

dotted lines. Divergent point on these lines corresponds to
the square of the invariant mass of the two free pions. In the
figure the error bars of s and k3=ð ffiffiffi

s
p � tan�ðkÞÞ are plotted

regarding them as independent. But these are fully corre-
lated by the finite size formula, so the true error lies along
the dotted line corresponding to the formula. Thus, the
error bars in the figure indicate projections of the true error
bar on the finite size formula to the vertical and the
horizontal axis.

In order to extract the resonance parameters from the
results of the scattering phase shift, we try to parametrize
the resonant behavior of the P-wave phase shift in terms of
the effective � ! �� coupling constant g��� as

k3

tan�ðkÞ =
ffiffiffi
s

p ¼ 6�

g2���
ðm2

� � sÞ; (30)

wherem� is the resonance mass and g��� is defined though

the effective � ! �� Lagrangian as

Leff ¼ g���
X

abc

�abcðk1 � k2Þ
�a

ðpÞ�bðk1Þ�cðk2Þ: (31)

This parametrization has been widely used in the previous
works of the � meson decay. The � meson decay width at
the physical quark mass is related to the coupling constant
by

�� ¼ g2���

6�

ðkphÞ3
m

ph
�

¼ 4:237 MeV� g2���; (32)

where mph
� ¼ 775:5 MeV is the actual � meson mass and

ðkphÞ2 ¼ ðmph
� Þ2=4� ðmph

� Þ2 (mph
� ¼ 135 MeV).

By chi-square fitting of the scattering phase shifts with
the fit function (30), we obtain,

g��� ¼ 5:52� 0:40; am� ¼ 0:4103� 0:0026;

m� ¼ 892:8� 5:5� 13 MeV; (33)

for m� ¼ 410 MeV, where the first error of m� is the

statistical and the second is the systematic uncertainty for
the determination of the lattice spacing. In the fitting, we
define the chi-square for each data point by squaring the
ratio of the distance from the data point to the fitting line
(30) along the finite size formula and the true statistical
error calculated along the finite size formula. The errors of
the resonance parameters g��� and m� are estimated by

the jackknife method as for the other values. In the upper
panel of Fig. 7 we draw a fitting line by a solid line. We can
find that the fitting with the function (30) goes well in the
large energy region at m� ¼ 410 MeV.
For m� ¼ 300 MeV the statistics of our data is not

enough to discuss a quality of the fitting with the fit
function (30) as shown in Fig. 7. Improving the statistic
by using some efficient smearing techniques for the two-
pion operator may be necessary for an investigation of a
reliability of (30). We must leave this issue to studies in the
future. Here we carry out the chi-square fitting as done at
m� ¼ 410 MeV, assuming that the function (30) also
works well in our energy region at m� ¼ 300 MeV. The
results of the fitting are given by

TABLE III. Same as Table II for m� ¼ 300 MeV.

am� 0.1355(15)

m�ðMeVÞ 294.9(3.3)

frame CMF MF1 MF1 MF2

PL=ð2�Þ (0, 0, 0) (0, 0, 1) (0, 0, 1) (1, 1, 0)

� T�
1 E� A�

2 B�
1

Fitting Range 23–36 23–36 24–30 24–30 24–30 24–30
aE 0.400(13) 0.452(12) 0.3658(40) 0.4511(85) 0.4377(80) 0.492(18)

a
ffiffiffi
s

p
0.400(13) 0.407(13) 0.3086(47) 0.4061(95) 0.338(10) 0.406(22)

ðakÞ2ð�10�3Þ 21.7(2.5) 23.0(2.7) 5.45(59) 22.9(1.9) 10.3(1.9) 22.8(4.5)ffiffiffi
s

p ðMeVÞ 871(28) 885(29) 672(10) 884(21) 736(23) 883(48)

sðGeV2Þ 0.758(48) 0.783(50) 0.451(14) 0.781(37) 0.542(33) 0.780(84)

a2k3= tan�=
ffiffiffi
s

p ð�10�3Þ 2.1(1.9) 1.4(1.6) 25(11) �6:60ð97Þ 4.1(4.3) �12:3ð3:7Þ
k3= tan�=

ffiffiffi
s

p ð�10�2 GeV2Þ 1.00(90) 0.68(76) 12.0(5.4) �3:13ð46Þ 19(21) �5:8ð1:7Þ
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g��� ¼ 5:98� 0:56; am� ¼ 0:396� 0:010;

m� ¼ 863� 23� 12 MeV; (34)

where the second error of m� is the systematic uncertainty

for the determination of the lattice spacing. We draw a
fitting line by a solid line in the lower panel of Fig. 7.

From (33) and (34) we find that the g��� at the two

quark masses are consistent within the statistical error and
also with the experiment g��� ¼ 5:874� 0:014 given

from the experimental result of the decay width �� ¼
146:2� 0:7 MeV [22] by (32). This suggests a weak quark
mass dependence of the coupling constant. But our calcu-
lations are carried out only at the two quark masses and a
reliability of (30) is assumed in the analysis at m� ¼
300 MeV, so high statistical calculations at more quark
masses are necessary to obtain a definite conclusion for the
quark mass dependence. We also leave this issue to studies
in the future.

C. Comparison with other works

In Fig. 8 we compare our results (PACS-CS) obtained in
2þ 1 flavor QCD with those by ETMC [10,11] and Lang
et al. [12] in 2 flavor QCD. The upper panel shows the
effective coupling constant g��� and the lower panel dis-

plays the resonance mass m� as a function of m2
�. Here the

systematic uncertainty for the determination of the lattice
spacing is added to the statistical error in quadrature. A
good agreement between our result and ETMC is observed
for g���. The result for the coupling constant by Lang

et al. takes a slightly smaller value, but it is almost con-
sistent with other works.
We see, however, large discrepancy for the resonance

massm� in the lower panel of Fig. 8. One of possible reason

for this discrepancy is the systematic error from the deter-
mination of the lattice spacing which is used to obtain m�

and m� in the physical unit. In the present work the lattice
spacing a ¼ 0:0907ð13Þ fm determined from m� in
Ref. [13] is used as explained before. ETMC used a ¼
0:079ð2Þð�2Þ fm given from the pion decay constant f� in

FIG. 7 (color online). k3=ð ffiffiffi
s

p � tan�ðkÞÞ as a function of square
of the invariant mass s at m� ¼ 410 MeV (upper panel) and
m� ¼ 300 MeV (lower panel). Same symbols for four represen-
tations are used in both panels. Dotted lines are the finite size
formulas for the A�

2 and the B�
1 representation. A solid line for

each quark mass is a fitting line by (30).

FIG. 8 (color online). Comparison of our results (PACS-CS)
obtained in 2þ 1 flavor QCD with those by ETMC and Lang
et al. in 2 flavor QCD. Upper panel shows the effective coupling
constant g��� and lower is the resonance mass m�. The system-

atic uncertainty for the determination of the lattice spacing is
added to the statistical error in quadrature.
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Ref. [23]. In the work by Lang et al., the authors determined
it to be a ¼ 0:1239ð13Þ fm from the Sommer scale r0 ¼
0:48 fm as input. In order to avoid a spurious systematic
error from the determination of lattice spacing, it is appro-
priate to compare our results with other works in terms of
dimensionless quantities. In Fig. 9 we plot r0m� as a

function of ðr0m�Þ2 with the Sommer scale r0. The value
of r0 for the PACS-CS configurations has been reported as
r0=a ¼ 5:427ð51Þðþ81Þð�2Þ [13] and that for ETMC as
r0=a ¼ 5:32ð5Þ [23]. In the figure the statistical error and
the systematic uncertainty for the determination of r0 are
added in quadrature. We see that the discrepancy between
ours and ETMC tends to be smaller, but it still remains for
the large quark mass. The result by Lang et al. takes a
smaller value than those of the two works. The finite size
effect can be considered as a possible reason of their small
value of m� as commented by themselves in their paper.

Their lattice extent La ¼ 1:98 fmmay not be large enough
for their quark mass m� ¼ 266 MeV. The three groups
worked at a single lattice spacing, therefore the another
possible reason of the discrepancy is the discretization error
due to the finite lattice spacing. We can also consider
several other reasons, the dynamical strange quark effect,
the isospin breaking effect, the reliability of the parametri-
zation of the scattering phase shift by (30) and so on, but a
definite conclusion can not be given here. A precise deter-
mination of the resonance mass m� by the calculation near

or on the physical point closer to the continuum limit is an
important work reserved for the future.

IV. CONCLUSIONS

We have reported on a calculation of the P-wave scat-
tering phase shift for the isospin I ¼ 1 two-pion system
and estimations of the resonance parameters of the �
meson from the Nf ¼ 2þ 1 full QCD configurations

with a large lattice volume. The calculations are carried
out at two quark masses, which correspond to m� ¼
410 MeV and 300 MeV.
In order to extract the resonance parameters from the

scattering phase shift, we parametrize the resonant behav-
ior of the P-wave phase shift in terms of the effective
coupling constant g��� and the resonance mass m�. We

find that this parametrization works well in the large en-
ergy region for our data at m� ¼ 410 MeV and obtain
g��� ¼ 5:52� 0:40.

For m� ¼ 300 MeV the statistics of our data is not
enough to discuss the reliability of the parametrization.
We leave an investigation on this point to the studies in the
future. We carry out the fitting assuming that this parame-
trization also works in our energy region at m� ¼
300 MeV. Our result is g��� ¼ 5:98� 0:56, which agrees

with the coupling constant at m� ¼ 410 MeV and the
experiment g��� ¼ 5:874� 0:014 within the statistical

error. This suggests a weak quark mass dependence of
the coupling constant. The studies at more quark masses
are necessary to obtain a definite conclusion for the quark
mass dependence, however.
We find a discrepancy for the resonance massm� among

three lattice studies. Although a part of the discrepancy
seems to be explained by different choices of the scale
setting, other sources such as the discretization error due to
the finite lattice spacing, the dynamical strange quark
effect, the isospin breaking effect and the reliability of
the parametrization of the scattering phase shift may be
needed to resolve this discrepancy. Calculations near or on
the physical point closer to the continuum limit are neces-
sary for a precise determination of the resonance mass
from lattice QCD. We leave this issue to studies in the
future.
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FIG. 9 (color online). Comparison of our results (PACS-CS)
with those by ETMC and Lang et al. for dimensionless value
r0m� as a function of ðr0m�Þ2 with the Sommer scale r0. The

error of r0 is added to the statistical error in quadrature.
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