1	1 Ubiquitin promoter-terminator	cassette
2	2 promotes genetically stable expressio	n of the
3	3 taste-modifying protein miracul	in in
4	4 transgenic lettuce	
5	5	
6	6 Tadayoshi Hirai†·Abdullah Mohammad Shohael†,*·You-Wang F	Kim• Megumu
7	7 Yano · Hiroshi Ezura	
8	8	
9	9 T.Hirai · A. M. Shohael · YW. Kim · M. Yano · H. Ezura	
10	10 Graduate School of Life and Environmental Sciences, University	v of Tsukuba,
11	11 Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan.	
12	12 Tel.: +81-29-853-7723	
13	13 Fax: +81-29-853-7723	
14	14	
15	15 †These authors contributed equally to this work.	
16	16 * Current address: Department of Biotechnology and Genetic Engineering	g, Jahangirnagar
17	17 University, Savar, Dhaka-1342, Bangladesh.	
18 10	18 10 Corresponding outbor: Hinschi Eguna	
19	19 Corresponding author, Illroshi Ezura	
20	20 E-mail address: ezura@gene.tsukuba.ac.jp	
21	21 Tel.: +81-29-853-7263	
22	22 Fax: +81-29-853-7263	
$\frac{23}{24}$	23	

1 Abstract

2

3 Lettuce is a commercially important leafy vegetable, one that is cultivated 4 worldwide and a target crop for a plant factory. In this study, lettuce was selected $\mathbf{5}$ as an alternative platform for recombinant miraculin production because of its 6 fast growth, agronomic value, and wide availability. The taste-modifying protein 7miraculin is a glycoprotein extracted from the red berries of the West African 8 native shrub Richadella dulcifica. Because of its limited natural availability, 9 many attempts have been made to produce this protein in suitable alternative 10 hosts. We produced transgenic lettuce with miraculin gene driven either by the 11 ubiquitin promoter/terminator cassette from lettuce and a 35S promoter/nos 12terminator cassette. Miraculin gene expression and miraculin accumulation in 13both cassettes were compared by real-time polymerase chain reaction, Western 14blotting, and enzyme-linked immunosorbent assay. The expression level of 15miraculin gene and protein in transgenic lettuce was higher and more genetically 16stable in the ubiquitin promoter/terminator cassette than in the 35S 17promoter/nos terminator cassette. The results suggest the utility of the ubiquitin 18 promoter/terminator cassette as an efficient platform for the genetically stable 19expression of miraculin protein in lettuce and hence for recombinant miraculin 20production on a commercial scale.

21

22 Keywords miraculin stable expression transgenic lettuce ubiquitin promoter 35S23 promoter

24

25 Abbrevations Ubi, ubiquitin; MIR, miraculin; NOS, nopaline synthase

1 Introduction

 $\mathbf{2}$

Lettuce is a popular and easy-to-grow leafy vegetable cultured worldwide. Lettuce is a typical crop that is commercially cultivated in a plant factory, which is a cultivation system with a controlled light period, light intensity, temperature, and CO2 concentration for mass production of target plants (Hirai et al. 2010). In a plant factory, we can harvest lettuce over 20 times per year. Thus, if we can stably express a target protein of interests, lettuce will be an alternative platform for mass production of recombinant proteins in plant factory.

9 Many attempts have been made to produce transgenic lettuces, and a number of useful 10 traits have been introduced into the crop (Torres et al., 1993; Curtis et al., 1994; McCabe et al., 11 1999; Park et al., 2005; Sun et al., 2006). A high degree of transgene silencing in lettuce is a major 12barrier to commercializing transgenic lettuce. For example, research on miraculin production in 13transgenic lettuce using a 35S promoter failed to obtain stable expression of the miraculin gene in 14successive generations (Sun et al., 2006). Transgene silencing occurred in transgenic lettuce when 15the miraculin gene failed to express under the 35S promoter in the T_1 and later generations. For 16this reason, it is important to develop a strategy for stably expressing transgenes in target genome.

17Genetic engineering is an important tool for inserting genes of interest into selected plant 18 genomes. Expression efficiency depends on the stability of the inserted gene expression in 19successive generations of the host. Until now, a major drawback in transformation experiments has 20been the instability of the transgene or transgene silencing. Gene silencing occurs at transcriptional 21and post-transcriptional levels (Stam et al., 1997; Fagard and Vaucheret et al., 2000). After 22integration of a foreign gene into a host genome, transgene instability or transgene silencing can 23occur within a few generations, illustrating the inherent defense mechanisms of plants against $\mathbf{24}$ foreign DNA invasion and expression (Matzke et al., 1996; Kumpatla et al., 1997; Demeke et al., 251999). The promoter is a major factor influencing the level and stability of transgene expression. 26Curtis et al. (1994) compared several promoter-gus gene fusions in transgenic lettuce plants and 27found that the petE promoter gave higher expression than the MAS (Teeri et al., 1989), Mac 28(Comai et al., 1990), or CaMV 35S promoters in first seed generation (T_1) plants. The choice of 29promoter and T-DNA construct is important for long-term expression of transgenes in lettuce 30 (McCabe et al., 1999). Unstable gene expression is also often related to the integration of multiple 31copies of the transgene in the plant genome (Muller et al., 1996), to position effects (Weiler and 1 Wakimoto, 1995), and to the extent of methylation in the transgene loci (Srivastava et al., 1996).

2 Ubiquitin is a small, highly conserved protein, consisting of 76 amino acid residues, 3 present in all eukaryotes. The ubiquitins are encoded by gene families that contain two types of 4 structures: polyubiquitin genes and ubiquitin extension protein genes (Monia et al., 1990; $\mathbf{5}$ Ozkaynak et al., 1987). Both types of genes are translated as polyprotein precursors and then 6 proteolytically processed to ubiquitin monomers (Callis and Vierstra, 1989). Polyubiquitin genes 7are constitutively expressed in all kinds of plant tissues, with increased levels in young tissues 8 (Burke et al., 1988; Cornejo et al., 1993). Various promoters from ubiquitin genes have been tested 9 for their potential use in driving expression of foreign genes in plant transformation systems. 10 Ubiquitin promoters have been successfully used to transfer selected genes in many plants, 11 including monocots and dicots (e.g., Arabidopsis, sunflower, potato; Callis et al., 1990; Garbarino 12et al., 1992; Wang et al., 2000).

13Miraculin is plant protein that can transform a sour taste into a sweet taste. This unique 14protein is extracted from the pulp of the red miracle fruit berry (Richadella dulcifica), a native 15shrub in West Africa. Miraculin itself is not sweet, but the human tongue, once exposed to it, 16perceives ordinarily sour foods, such as lemons and citrus, as sweet for up to an hour afterward. 17Because of its ability to transform a sour taste into a sweet one, this fruit is known as "miracle 18 fruit." Along with miraculin, six other sweet-tasting proteins have been discovered to date; all 19were extracted from tropical fruits and are low molecular mass compounds (~6-22 kDa; reviewed 20by Faus, 2000). The amino acid sequence of miraculin was predicted and consists of 191 amino 21acids, with an N-linked oligosaccharide (Theerasilp et al., 1989). The nucleotide sequence of 22miraculin was determined, and the deduced amino acid sequence suggests that a precursor of 23miraculin is composed of 220 amino acid residues, including 29 amino acids in a signal sequence $\mathbf{24}$ (Masuda et al., 1995). Market demands and research interest in the miracle fruit, fruit product, and 25recombinant miraculin have increased. Fresh miracle fruit, dried fruit powder, and miracle fruit 26pulp in tablet form are available on the world market, including in Japan. These products are being 27purchased by diabetics and dieters in many countries. Miraculin also has great potential as an 28alternative low-calorie sweetener. However, the natural source of this protein is limited. Thus, 29attempts have been made to produce miraculin in foreign hosts, such as Escherichia coli (Kurihara, 30 1992; Matsuyama et al., 2009), yeast, transgenic tobacco (Kurihara and Nirasawa, 1997), lettuce 31(Sun et al., 2006), tomato (Sun et al., 2007) and strawberry (Sugaya et al., 2008). Among these

plant species, tomato was a suitable platform for producing recombinant miraculin in genetically
 stable manner (Yano et al., 2010), whereas transgene silencing occurred in transgenic lettuce when
 the miraculin gene was driven under the 35S promoter.

To achieve stable miraculin expression in lettuce, we compared the CaMV 35S promoter/nos terminator cassette with the ubiquitin promoter/terminator cassette from lettuce. In this paper, we report that expression of the miraculin gene under the endogenous ubiquitin promoter/terminator cassette in transgenic lettuce was more efficient than that in the 35S promoter/nos terminator cassette.

9

10

11 Materials and methods

12

13 Plasmid construction and transformation of lettuce

14

15Two different cassettes were used to express the miraculin gene. One was the miraculin 16 gene with the CaMV 35S promoter and terminated by a nos terminator, named 35S-MIR; the other 17was the miraculin gene with the lettuce ubiquitin promoter and terminator, named Ubi-MIR. The 1835S MIR expression vector construct was described in Sun et al. (2006). To construct the Ubi-MIR 19 expression vector we used a pUC18-based lettuce ubiquitin promoter and terminator cassette 20provided by Dr. H. Fukuoka of the National Institute of Vegetables and Tea Science, Japan 21(unpublished data). The 1.9-kb ubiquitin promoter region was cloned as follows. The ubiquitin 22promoter region was amplified by PCR to introduce a XhoI site and was inserted into the pGEM-T 23PCR forward, 5' easy vector. primers used were 5' 24CTCGAGGGCGCGCCAAGCTTGCATGCGAAAC-3'; and reverse, ACATAAGGGACTGACCACCCGGGCT-3'. The 1.9-kb ubiquitin promoter from the pGEM-T 2526easy vector was digested with XhoI and XbaI; there is one XbaI site downstream in the 3' region, -27311 bp, in the promoter region. The digested 1.6-kb ubiquitin promoter fragment was cloned into 28the XhoI and XbaI sites in a modified pBI121, and replaced the 35S promoter. The ubiquitin 29terminator in pUC18 was amplified using PCR to introduce SacI and EcoRI sites (forward, 5' 30 5' GAGCTCATTGCTACCGAGCTCTGGTTTGGTG-3'; reverse, 31GAATTCGGCGCGCCAGAATTCAACGCGGGCT-3'). The ubiquitin terminator fragment was

 $\mathbf{5}$

1 cloned into 35S-MIR (Sun et al., 2006) between the SacI and EcoRI sites, and the vector was $\mathbf{2}$ digested with XbaI and EcoRI; the fragment contained the miraculin gene and the ubiquitin 3 terminator fragment and was inserted into the modified pBI121 containing the ubiquitin promoter. 4 These Ubi-MIR (Fig. 1A) and 35S-MIR (Fig. 1D) constructs were transferred to Agrobacterium $\mathbf{5}$ tumefaciens GV2260 (Deblaere et al., 1985) using the method of Shen and Forde (Shen et al., 6 1989). Surface-sterilized lettuce (Lactuca sativa cv Kaisar) seeds were germinated and grown on 7Murashige and Skoog (1962) medium with 2% (w/v) sucrose and 0.2% (w/v) Gelrite. 8 Transformation of the lettuce was performed according to Sun et al. (2006).

9

10 PCR analysis

11

12Lettuce genomic DNA was extracted from fresh full-expanded leaf tissue of putative 13transgenic and non-transgenic plants using the Maxwell 16 DNA purification kits according to the 14manufacturer' s protocol (Promega, Tokyo, Japan). PCR was used to confirm the presence of the 15miraculin gene and neomycin phosphotransferase genes (NPTII) in the transgenic plants using 16 miraculin-specific primers (forward, 5' TTTTCTAGAATGAAGGAATTAACAATGCT 3'; reverse, 175' TTTGAGCTCTTAGAAGTATACGGTTTTGT 3') and NPTII-specific primer (forward, 5'-185'-ATGATTGAACAAGATGGATTGCACGC-3';. reverse, 19TCAGAAGAACTCGTCAAGAAGGCG-3'). A total of 100-200 ng genomic DNA was used as 20the template in a 25 µl PCR reaction mix, using an Applied BioSystems 2720 thermal cycler. The 21PCR conditions were 94°C for 3 min; followed by 35 cycles of 94°C for 30 s, 55°C for 30 s, and 2272°C for 1 min; followed by a final incubation of 72°C for 8 min. PCR products were 23electrophoresed on a 1.0% agarose gel and observed under UV light after staining with 0.1% 24ethidium bromide.

25

26 Southern blot analysis

27

Total genomic DNA (10 μ g) from transgenic and non-transgenic plants was digested with the restriction enzyme *Xba*I, which cuts at a single site within the T-DNA. Digested DNA from each line was separated on 0.8 % agarose gels at 50 V for 3 h, and fragments were transferred to a nylon membrane (Hybond-N; GE Healthcare UK Ltd., Amersham, Buckinghamshire, UK) and cross linked to the membrane by UV using a UV Hybrilinker (HL-2000 UVP, LLC, Canada).
 Thermostable alkaline phosphatase-labeled miraculin gene-specific probes were generated using a
 CDP Star AlkPhos Direct Labeling Kit, according to the manufacturer's protocol (GE Healthcare
 UK Ltd.). The membrane was hybridized overnight at 65°C with the probes, and the hybridization
 signals were detected by chemiluminescence using CDP-Star (Roche Diagnostics, Mannheim,
 Germany), followed by exposure in the LAS 4000 Mini Image Analyzer (Fujifilm Co. Ltd., Tokyo,
 Japan).

8

9 Isolation of total RNA and quantitative reverse transcription PCR (real-time PCR) analysis 10

11 The miraculin gene expression levels in transgenic lettuce plants were determined using 12real-time PCR. Total RNA was isolated from 100 mg expanded fresh leaf of transgenic and non-13transgenic lettuce by the RNeasy Plant Mini Kit (Qiagen, Tokyo, Japan) using RNase-free DNase 14(Qiagen, Tokyo, Japan), according to the manufacturer's protocol. The first-strand cDNA was 15synthesized from extracted total RNA (0.5 µg) using the SuperSript III VILO cDNA synthesis kit 16(Invitrogen). Real-time-PCR was performed with the Thermal Cycler Dice Real Time System 17TP800 (Takara-Bio Inc.) using SYBR Premix Ex Taq (Takara-Bio Inc., Otsu, Japan). The cycling 18 parameters were 95°C for 10 min to denature, 40 cycles of 95°C for 30 s, 55°C for 10 s, and 72°C 19 for 60 s. Relative quantification of miraculin gene expression was calculated using the lettuce actin 20gene (DY975577) as an internal control. The experiments were repeated at least three times. 21Primer sequences were as follows: miraculin forward, 5' CCACCCAGAGTTGTCCAAAC 3'; 22TGATGTTGAGATCGGTGGAG 5' miraculin reverse. 5' 3': Actin forward. 23AGAAAATGGCCGACACTGAG 3'; Actin reverse, 5' CTAGGAAACACTGCCCTTGG 3'.

24

25 Protein extraction, Western blot analysis, and ELISA

26

The miraculin accumulation level in transgenic lettuce plants were assessed immunologically. Lettuce leaf (100 mg) was ground to a fine powder in liquid nitrogen and homogenized in two volumes of protein extraction buffer consisting of 20 mM Tris-HCl (pH 8.0), 500 mM NaCl, and 2% polyvinylpolypyrrolidone. The extracts were centrifuged (12000 rpm, 20 min, 4°C), and the resulting supernatants were subjected to Western blot analysis and ELISA. The

1 protein concentrations of the extracts were determined using a BCA Protein Assay Kit (Pierce, $\mathbf{2}$ Rockford, IL, USA). The extracted proteins (3.3 mg fresh weight equivalents of lettuce leaf) 3 were resolved by SDS-PAGE on 12% gels and then transferred to Hybond-P membrane (GE 4 Healthcare UK Ltd.). After blocking with 5% skim milk, the blots were reacted with an affinity- $\mathbf{5}$ purified anti-miraculin antibody and an anti LHCII type chlorophyll a/b binding protein (Lhcb2) 6 (Agrisera AB, Sweden) as an internal control, followed by incubation with anti-rabbit 7 immunoglobulin G, coupled to horseradish peroxidase. Immunoreactive signals were detected 8 using an Immun-Blot Assay Kit (Nacalai Tesqu, Kyoto, Japan), according to the manufacturer's 9 protocol. The amounts of miraculin in the transgenic lettuce plants were determined using ELISA 10 according to the procedure of Kim et al. (2010). 11 1213Results 14 15Development of transgenic lettuce with miraculin gene and confirmation of transgene in 16transgenic plants by Southern blot analysis 1718 Putative transgenic lettuce plants with Ubi-MIR or 35S-MIR genes were generated by 19Agrobacterium-mediated genetic transformation. The plants obtained were acclimatized in the 20growth room and subjected to genomic DNA polymerase chain reaction (PCR) to confirm the 21presence of the miraculin and NPTII genes. PCR analysis confirmed the presence of transgenes in 22all lines of putative transgenic lettuces with Ubi-MIR (Fig. 1B) and with 35S-MIR (Fig. 1E). In 23the Ubi-MIR transgenic lettuce line 4, the band of NPTII gene was not amplified. It might be a 24miss-integration of NPTII gene into lettuce genome.

Transgenic lines were subjected to genomic Southern analysis to confirm the copy number of the transgene. The restriction enzyme *Xba*I was chosen to produce fragments of the T-DNA in DNA extracted from selected lines. Only one *Xba*I site exists outside the miraculin gene in the binary vector (Fig. 1A, D), so that the number of obtained bands reflects the number of insertion events in the transgenic plants. The Ubi-MIR transgenic lettuces of 6 of the plants (lines no. 1, 2, 4, 7, 8, 20) carried one copy of the miraculin gene, 9 of plant (3, 5, 10, 11, 13, 14, 15, 16, 19) carried two copies of the miraculin gene and 7 of plant (6, 9, 12, 17, 18, 21, 22) carried multi copies of the miraculin gene (Fig. 1C). The 35S-MIR transgenic lettuces of 9 of the plants (lines no. 1, 2, 6, 11,
12, 13, 14, 15, 16) carried one copy of the miraculin gene, 4 of plant (4, 7, 8, 10) carried two
copies of the miraculin gene and 3 of plant (3, 5, 9) carried multi copies of the miraculin gene (Fig.
1F).

 $\mathbf{5}$

Miraculin expression and accumulation in transgenic lettuce plants with the Ubi-MIR and
 35S-MIR gene in T₀ generation

8

9 The miraculin expression level was measured with real time PCR. In Ubi-MIR transgenic 10 lettuce, miraculin gene was expressed in all transgenic lettuces except two transgenic lines (line no. 11 18 and 21) which had multi copies of miraculin gene (Fig. 2A). Miraculin accumulation and 12accumulation level was measured with Western blot analysis and ELISA, respectively. The band of 13miraculin was detected in all transgenic lettuces expected two lines (Line no. 18 and 21), and 14miraculin band of transgenic lettuce size was almost same as homodimer form of purified 15miraculin (Fig. 2B). The accumulation level of miraculin was about 3.0-9.0 µg per mg total 16soluble protein (Fig. 2C).

17In 35S-MIR transgenic lettuce, miraculin gene was expressed in all transgenic lettuce had 18 single copy of miraculin gene and only one transgenic lettuce (line no. 7) had two copies of 19miraculin gene, while miraculin gene expression was not detected in other transgenic lettuce had 20two copies and multi copies of miraculin gene (Fig. 3A). The transgenic lettuce in which the 21miraculin gene expression was detected by RT-PCR were detected the accumulation of miraculin 22protein using Western blot analysis in the T₀ generation (Fig. 3B). Miraculin accumulation level of 23miraculin detected transgenic lettuce was 1.5-3.0 µg per mg total soluble protein except line 14 24accumulating 7.0 µg miraculin per mg total soluble protein (Fig. 3C).

25The average of miraculin expression level () in Ubi-MIR transgenic lettuce with26a single copy of miraculin gene was higher than that () in 35S-MIR transgenic27lettuce and the average of miraculin accumulation level () in Ubi-MIR transgenic28lettuce with a single copy of miraculin gene was higher than that () in 35S-MIR29transgenic lettuce, according to????? test.

30

31 Miraculin gene inheritance into T₁ generation of Ubi-MIR and 35S-MIR

 $\mathbf{2}$ All transgenic lettuce line was self-pollinated, but several lines did not set a seed. Three lines 3 of lettuce seeds with a single copy of transgene was sown for each construction and cultivated in 4 growth room. In T_1 generation of Ubi-MIR transgenic lettuce, the inheritance, expression level of $\mathbf{5}$ the miraculin gene and accumulation level of miraculin protein were analyzed in lines 1, 7, and 8 6 using genomic DNA PCR, real-time PCR, Western blot analysis and ELISA, respectively (Fig. 4A, 7B, C). The results showed a good correlation between genomic PCR, real-time PCR and ELISA. 8 The miraculin expression and accumulation level in T_1 generation was higher than in the T_0 9 generation.

In T₁ generation of 35S-MIR transgenic lettuce, the results of genomic PCR showed the
 segregation of miraculin gene (Fig. 5A). Among these transgenic lettuces with miraculine gene,
 miraculin protein was not detected by Western blot analysis, demonstrating that miraculin gene
 was not translated into miraculin protein.

14

1

15 Miraculin gene inheritance into T₂ generation of Ubi-MIR and 35S-MIR

16

17 T_2 generation seeds were harvested from self-pollinated T_1 generation of transgenic lettuce. 18 The seeds of transgenic lettuce line was sown on soil and cultivated in growth room. The 19 homozygous lines for miraculin gene were selected by genomic real-time PCR (data not shown).

20In all T₂ generation of Ubi-MIR transgenic lettuce, miraculin gene and miraculin protein was 21detected with genomic PCR and Western blot analysis, respectively (Fig. 6A, B). Expression level 22of miraculin gene measured using RT-PCR and concentration of miraculin protein measured using 23ELISA was not significant difference among individual plant in each transgenic line. Miraculin $\mathbf{24}$ concentration in line No. 1 was highest (about 14 µg miraculin per mg total soluble protein) and 25line No. 8 was lowest (about 8 µg miraculin per mg total soluble protein) in each transgenic lettuce. 26In T₂ generation of 35S-MIR transgenic lettuce, miraculin gene was detected with genomic 27PCR among all individual plant in each transgenic lettuce but miraculin protein was not detected 28in all transgenic lettuce lines (Fig. 5B). In addition, miraculin gene expression was not detected in 29all transgenic lettuce lines with 35S-MIR in T₁ and T₂ generations (data not shown).

30

1 Discussion

 $\mathbf{2}$

3 Transgenic plants have emerged as a promising technology for the production of recombinant 4 biopharmaceutical proteins and vaccines. They offer many advantages, and their potential for used $\mathbf{5}$ as bioreactors for the production of therapeutic molecules is an active area of research (Lindbo, 6 2007). A wide variety of complex and valuable foreign proteins can be expressed efficiently in 7transgenic plants (Arntzen et al., 2005). Production of recombinant proteins in transgenic plants is 8 economical compared with transgenic animals or the mammalian cell culture systems. The use of 9 plant expression systems for recombinant protein production should be at least as economical as 10 traditional industrial facilities (fermentation processes, bioreactor systems; Obregon et al., 2006). 11 For low-cost and commercially applicable plant expression systems, the stability of the transgene 12expression in the target plant species is a key. Thus, it is important to develop stable transgene-13expressing lines. The promoter and terminator are key factors that influence the stability of the 14transgene expression in the host genome, although the interaction between promoters and plant 15species is variable.

16 The present study describes the production of the commercially important protein 17 miraculin in a plant expression system. The demand for and research interest in this protein for 18 dieters and diabetics are increasing. A limited natural availability is a major barrier to the 19 commercialization of this protein (Witty, 1998). Lettuce is a widely consumed leafy vegetable, one 20 that is grown worldwide and commercially cultivated in a plant factory. For this reason, lettuce 21 was chosen as a simple and readily available platform for the commercial production of 22 recombinant miraculin.

23The stability of miraculin gene expression in lettuce was compared between the lettuce $\mathbf{24}$ ubiquitin promoter/terminator cassette and the 35S promoter/nos terminator cassette. Transgenic 25lettuce expressing biologically active miraculin was first reported by Sun et al. (2006), but stable 26transgene expression was not achieved. Their results showed that transgene silencing occurred 27when the 35S promoter was used to drive miraculin expression. All transgenic lettuce lines with 28the miraculin gene under the control of the 35S and EL2-35S- Ω promoter showed lower 29expression in the T_1 generation, and few transgenic plants expressed the miraculin gene in the T_1 30 generation (Sun et al., 2006). These results prompted us to use a different promoter for stable 31miraculin gene expression. The 35S promoter has been widely and successfully used for

transformation studies in many crops. In tomatoes, stable expression of the miraculin gene was successfully achieved and stably inherited using the 35S promoter (Sun et al., 2007, Yano et al., 2010). This problem with using the 35S promoter in lettuce transformation emphasizes that expression instability is a species-specific issue. Indeed, the rates and causes of instability vary widely across species, environments, and transformation systems (Meza et al., 2001; Kohli et al., 2003). Similar situations have been reported with genetic transformation in lettuce using the 35S promoter (Curtis et al., 1994; McCabe et al., 1999).

8 In this study, transgenic lettuce plants using the 35S promoter showed complete silencing 9 of miraculin gene expression in the T_2 generation. These results were supported by real-time PCR, 10 ELISA, and Western blot analyses. The T₁ progenies from these lines had no significant level of 11 miraculin gene expression (only one line expressed). We suggest that gene silencing occurred 12during seed formation in T₀ plants. Transgene silencing is frequently observed in transformation 13systems, although the mechanisms are not fully understood. This result suggests that the viral 35S 14promoter was more vulnerable than the ubiquitin promoter to inactivation following integration 15into the lettuce genome. Many reports have shown that the methylation of promoters directing 16transgene expression in transgenic plants is related to loss of transgene expression. Transgenic 17petunia plants carrying a 35S promoter-driven maize A1 gene failed to exhibit the expected red 18 flower color because of the hypermethylated state of the promoter (Meyer et al., 1992). 19Transcriptional gene silencing is often associated with the hypermethylation of cytosine residues in 20promoter regions (Finnegan et al., 2001). According to Fukuoka (personal communication), 35S-21promoter was subjected to DNA methylation and resulted in the transgene silencing, while 22ubiquitin promoter was not subjected to DNA methylation in transgenic lettuce.

23The present study indicates that the use of the endogenous lettuce ubiquitin promoter to $\mathbf{24}$ drive the miraculin gene in a transformation system could overcome the transgene silencing 25problem. We found that all single-insert primary transgenic lines using the ubiquitin promoter 26expressed the miraculin gene in the T_0 generation at a high level compared with using 35S 27promoter. The expression of miraculin was also clear and stable in the T₁ and T₂ generations, as 28revealed by real-time PCR, Western blotting, and ELISA. The transgenic lines showed stable 29expression and inheritance of the miraculin gene for up to three generations. Moreover, these 30 results show that the transgene under the control of the CaMV 35S promoter was silenced in the T_1 31and subsequent generations, whereas the ubiquitin promoter-driven miraculin gene was stably expressed in the T_1 and T_2 generation. The effectiveness of the maize ubiquitin promoter was reported by Chen et al. (1998, 1999). Chen et al. (1998) reported 35S derived gene was silenced in T_1 genaretion of transgenic maize and maize ubiquitin promoter derived gene was expressed in T_1 generation of transgenic maize.

5 In conclusion, the miraculin gene was successfully expressed with a ubiquitin promoter, 6 linked with a ubiquitin terminator, in T_0 , T_1 and T_2 transgenic lettuce and showed an expression 7 level similar to that of native miraculin and miraculin stably expressed in tomatoes, and miraculin 8 gene expression was failed using 35S promoter/nos terminator cassette transgenic lettuce in T_1 and 9 T_2 generation. We conclude that the endogenous lettuce ubiquitin promoter, linked with a ubiquitin 10 terminator, is a suitable driver for stable foreign gene expression in lettuce and overcomes the gene 11 silencing problem.

12

13

14 Acknowledgments

15

We express our thanks to Dr. Hiroyuki Fukuoka, National Institute of Vegetables and Tea Science, Japan, for providing the ubiquitin promoter construct. We are also thankful to members of the Ezura laboratory for their technical support and cooperation. We thank members of the Ezura laboratories for helpful discussions. We appreciate the support of the Japan Society for the Promotion of Science (JSPS) through a postdoctoral fellowship for foreign researchers to A.M. Shohael.

22

23

24 References

25

Arntzen C, Plotkin S, Dodet B (2005) Plant-derived vaccines and antibodies: potential and
limitations. Vaccine 23:1753–1756. doi: 10.1016/j.vaccine.2005.01.090

28

29 Binet MN, Weil JH, Tessier LH (1991) Structure and expression of sunflower ubiquitin genes.

30 Plant Mol. Biol. 17:395–407. doi: 10.1007/BF00040634

1	
2	Burke TJ, Callis J, Viestra RD (1988) Characterization of a polyubiquitin gene from Arabidopsis
3	thaliana. Mol. Gen. Genet. 213:435-443. doi: 10.1007/BF00339613
4	
5	Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana. J.
6	Biol. Chem. 265:12486–12493.
7	
8	Callis J, Vierstra RD (1989) Ubiquitin and ubiquitin genes in higher plants. Oxford Surv Plant Mol.
9	Biol. 6:1–30.
10	
11	Chen WP, Chen PD, Liu DJ, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S, Gill BS (1999)
12	Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively
13	express a rice thaumatin-like protein gene. Theor. Appl. Genet. 99:755-760. doi:
14	10.1007/s001220051294
15	
16	Chen WP, Gu X, Liang GH, Muthukrishnan S, Chen PD, Liu DJ. Gill BS (1998) Introduction and
17	constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the
18	bar gene as a selectable marker. Theor. Appl. Genet. 97:1296–1306. doi: 10.1007/s001220051022
19	
20	Comai L, Moran P, Maslyar D (1990) Novel and useful properties of a chimeric plant promoter
21	combining CaMV 35S and MAS elements. Plant Mol. Biol. 15:373-381. doi:
22	10.1007/BF00019155
23	
24	Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize
25	ubiquitin promoter in transgenic rice. Plant Mol. Biol. 23:567-581. doi: 10.1007/BF00019304
26	
27	Curtis IS, Power JB, Blackhall NW, de Laat AMM, Davey MR (1994) Genotype-independent
28	transformation of lettuce using Agrobacterium tumefaciens. J. Exp. Bot. 45:1441-1449. doi:
29	10.1093/jxb/45.10.1441
30	
31	Deblaere R, Bytebier B, Degreve H, Schell J, van Montagu M, Leemans J (1985) Efficient

1	octopine Ti plasmid-derived vectrs for Agrobacterium-mediated gene-transfer to plants. Nucleic
2	Acids Res. 13:4777-4788. doi: 10.1093/nar/13.13.4777
3	
4	Demeke T, Hucl P, Baga M, Caswell K, Leung N, Chibbar RN (1999) Transgene inheritance and
5	silencing in hexaploid spring wheat. Theor. Appl. Genet. 99:947-953. doi:
6	10.1007/s001220051401
7	
8	Fagard M, Vaucheret H (2000) (Trans)gene silencing in plants: how many mechanisms? Annu. Rev.
9	Plant Physiol. Plant Mol. Biol. 51:167–194. doi: 10.1146/annurev.arplant.51.1.167
10	
11	Faus I (2000) Recent developments in the characterization and biotechnological production of
12	sweet-tasting proteins. Appl. Microbiol. Biotechnol. 53:145-151. doi: 10.1007/s002530050001
13	
14	Finnegan EJ, Wang M, Waterhouse P (2001) Gene silencing: fleshing out the bones. Curr. Biol.
15	11:R99-R102. doi: 10.1016/S0960-9822(01)00039-2
16	
17	Garbarino JE, Rockhold DR, Belknap WR (1992) Expression of stress responsive ubiquitin genes
18	in potato tubers. Plant Mol. Biol. 20:235-244. doi: 10.1007/BF00014491
19	
20	Hirai T, Fukukawa G, Kakuta H, Fukuda N, Ezura H (2010) Mass production of recombinant
21	miraculin using transgenic tomatoes in a closed cultivation system. J Agric. Food Chem. 58, 6096-
22	6101. doi:10.1021/jf100414v
23	
24	Kawalleck P, Somssich IE, Feldbrugge M, Hahlbrock B, Weisshaar B (1993) Polyubiquitin gene
25	expression and structural properties of the ubi4-2 gene in Petroselium crispum. Plant. Mol. Biol.
26	21:673-684. doi: 10.1007/BF00014550
27	
28	Kim YW, Kato K, Hirai T, Hiwasa-Tanase K, Ezura H (2010) Spatial and development pro filing of
29	miraculin accumulation in transgenic tomato fruits expressing the miraculin gene constitutively. J
30	Agric Food Chem 58:282–286. doi: 10.1021/jf9030663

1	Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration,
2	organization and interaction in plants. Plant Mol. Biol. 52:247-258. doi:
3	10.1023/A:1023941407376
4	
5	Kumpatla SP., Teng W, Buchholz WG, Hall TC (1997) Epigenetic transcriptional silencing and 5-
6	azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol. 115:361-373. doi:
7	10.1104/pp.115.2.361
8	
9	Kurihara Y (1992) Characteristics of antisweet substances, sweet proteins, and sweetness-inducing
10	proteins. Crit. Rev. Food Sci. Nutr. 32:231-252. doi: 10.1016/0924-2244(94)90069-8
11	
12	Kurihara Y, Nirasawa S (1997) Structures and activities of sweetness-inducing substances
13	(miraculin, curculin, strogin) and the heat-stable sweet protein, mabinlin. FFI J. Japan, 174:67–74.
14	
15	Lindbo JA (2007) High-efficiency protein expression in plants from agroinfection-compatible
16	Tobacco mosaic virus expression vectors. BMC Biotech. 7:52. doi: 10.1186/1472-6750-7-52.
17	
18	Masuda Y, Nirasawa S, Nakaya K, Kurihara Y (1995) Cloning and sequencing of a cDNA
19	encoding a taste-modifying protein, miraculin. Gene, 161:175-177. doi: 10.1016/0378-
20	1119(95)00198-F
21	
22	Matsuyama T, Satoh M, Nakata R, Aoyama T, Inoue H (2009) Functional expression of miraculin,
23	a taste-modifying protein in Escherichia coli. J Biochem. 145:445-450. doi: 10.1093/jb/mvn184
24	
25	Matzke MA, Matzke JM, Eggleston WB (1996) Paramutation and transgene silencing: a common
26	response to invasive DNA? Trends Plant Sci. 1:382-388. doi: 10.1016/S1360-1385(96)80313-X
27	
28	McCabe MS, Schepers F, van der Arend, A, Mohapatra U, de Laat AMM, Power JB, Davey MR
29	(1999) Increased stable inheritance of herbicide resistance in transgenic lettuce carrying a petE
30	promoter-bar gene compared with a CaMV 35S-bar gene. Theor. Appl. Genet. 99:587-592. doi:
31	10.1007/s001220051272

1	
2	Meyer P, Linn F, Heidmann I, Meyer zAH, Niedenhof I, Saedler H (1992) Endogenous and
3	environmental factors influence 35S promoter methylation of a maize A1 gene construct in
4	transgenic petunia and its colour phenotype. Mol. Gen. Genet. 231:345-352. doi:
5	10.1007/BF00292701
6	
7	Meza TJ, Kamfjord D, Håkelien AM, Evans I, Godager LH, Mandal A, Jakobsen KS, Aalen RB
8	(2001) The frequency of silencing in Arabidopsis thaliana varies highly between progeny of
9	siblings and can be influenced by environmental factors. Transgenic Res. 10:53-67. doi:
10	10.1023/A:1008903026579
11	
12	Monia BP, Ecker DJ, Crooke ST (1990) New perspectives on the structure and function of
13	ubiquitin. Biotechnology, 8:209-215. doi: 10.1038/nbt0390-209
14	
15	Muller E, Lorz H, Lutticke S (1996) Variability of transgene expression in clonal cell lines of
16	wheat. Plant Sci. 114:71-82. doi: 10.1016/0168-9452(95)04312-8
17	
18	Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco
19	tissue culture. Physiol. Plant. 15:473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x
20	
21	Obregon P, Chargelegue D, Drake PMW, Prada A, Nuttall J, Frigerio L, Ma JK-C (2006) HIV-1
22	p24-immunoglobulin fusion molecule: a new strategy for plant-based protein production. Plant
23	Biotech. J. 4:195–207. doi: 10.1111/j.1467-7652.2005.00171.x
24	
25	Ozkaynak E, Finley D, Solomon MJ, Varhavsky A (1987) The yeast ubiquitin genes: a family of
26	natural gene fusions. EMBO J. 6:1429–1439.
27	
28	Park BJ, Liu Z, Kanno A, Kameya T (2005) Increased tolerance to salt- and water-deficit stress in
29	transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant Growth Reg.
30	45:165–171. doi: 10.1007/s10725-004-7924-y

- Shen WJ, Forde BG (1989) Efficient transformation of Agrobacterium spp. by high voltage
 electroporation. Nucleic Acids Res. 17:8385.
- 3

4 Srivastava V, Vasil V, Vasil IK (1996) Molecular characterization of the fate of transgenes in
5 transformed wheat (*Triticum aestivum* L.). Theor. Appl. Genet. 92:1031–1037. doi:
6 10.1007/BF00224045

- 7
- 8 Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann. Bot. 79:3–12.
 9 doi: 10.1006/anbo.1996.0295
- 10
- Sugaya T, Yano M, Sun HJ, Hira, T, Ezura H (2008) Transgenic strawberry expressing a tastemodifying protein, miraculin. Plant Biotech. 25:329-333.
- 13
- 14 Sun HJ, Cui ML, Ma B, Ezura H (2006) Functional expression of the taste-modifying protein,
- 15 miraculin, in transgenic lettuce. FEBS Lett. 580:620–626. doi: 10.1016/j.febslet.2005.12.080
- 16
- 17 Sun HJ, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miraculin,
- 18 a new type of alternative sweetener, in transgenic tomato plants. Plant Biotech. J. 5:768–777. doi:
- 19 10.1111/j.1467-7652.2007.00283.x
- 20
- 21 Teeri TH, Lehvaslaiho H, Frank M, Uotila J, Heino P, Palva ET, Montagu VM, Herrera-Estrella L
- (1989) Gene fusions to lac Z reveal new expression patterns of chimeric genes in transgenic plants.
 EMBO J. 8:343–350.
- 24
- Theerasilp S, Hitotsuya H, Nakajo S, Nakaya K, Nakamura Y, Kurihara Y (1989) Complete amino
 acid sequence and structure characterization of the taste-modifying protein, miraculin. J. Biol.
 Chem. 264:6655–6659.
- 28
- Torres AC, Cantliffe DJ, Laughner B, Bienie M, Nagata R, Ashraf M, Ferl RJ (1993) Stable
 transformation of lettuce cultivar South Bay from cotyledon explants. Plant Cell Tissue Org. Cult.
 34:279–285. doi: 10.1007/BF00029717

1	
2	Wang J, Jiang J, Oard JH (2000) Structure, expression and promoter activity of two poly ubiquitin
3	genes from rice (Oryza sativa L.). Plant Sci. 156:201-211. doi: 10.1016/S0168-9452(00)00255-7
4	
5	Weiler KS, Wakimoto BT (1995) Heterochromatin and gene expression in Drosophila. Annu. Rev.
6	Genet. 29:577-605. doi: 10.1146/annurev.ge.29.120195.003045
7	
8	Witty M (1998) New technologies for taste modifying proteins. Trends Food Sci. Technol. 9:275-
9	280. doi: 10.1016/S0924-2244(98)00048-X
10	
11	Yano M, Hirai T, Kato K, Hiwasa-Tanase K, Fukuda N, Ezura H (2010) Tomato is a suitable
12	material for producing recombinant miraculin protein in genetically stable manner. Plant Sci.
13	178:469-473. doi: 10.1016/j.plantsci.2010.02.016
. .	

 $\mathbf{2}$

3 Fig. 1 Production of transgenic lettuce plants with the miraculin gene driven by the lettuce 4 ubiquitin promoter and CaMV 35S promoter. T-DNA construct of binary vector Ubi-MIR for $\mathbf{5}$ transformation (A). Detection of miraculin and NPTII genes through genomic PCR (B) and 6 Southern blot analysis (C) in 22 putative transformants. Genomic DNA (10 µg) was digested with 7XbaI. T-DNA construct of binary vector 35S-MIR for transformation (D). Detection of miraculin 8 and NPTII genes through genomic PCR (E) and Southern blot analysis (F) in 16 putative 9 transformants. Genomic DNA (10 µg) was digested with XbaI. RB, right border; LB, left border; 10 Pnos, nos promoter; Tnos, nos terminator; MIR, miraculin; Pubi, ubiquitin promoter, Tubi; 11 ubiquitin terminator; P, positive control; Wt, wild type lettuce.

12

Fig. 2 Characterization of transgene transcription and translation in T₀ generation of Ubi-MIR transgenic lettuce. Miraculin gene expression level was measured by RT-PCR (A). The soluble protein from 3.3 mg fresh weight equivalents of lettuce leaf were separated by SDS-PAGE and miraculin protein accumulation was detected by Western blot analysis (B). Miraculin protein accumulation level was measured by ELISA (C). The experiment was repeated three times. Bars indicate standard error. P, 350ng purified miraculin protein; Wt, wild type lettuce; MIR, miraculin; Lhcb2, LHCII type chlorophyll a/b binding protein.

20

Fig. 3 Characterization of transgene transcription and translation in T₀ generation of 35S-MIR transgenic lettuce. Miraculin gene expression level was measured by RT-PCR (A). The soluble protein from 3.3 mg fresh weight equivalents of lettuce leaf were separated by SDS-PAGE and miraculin protein accumulation was detected by Western blot analysis (B). Miraculin protein accumulation level was measured by ELISA (C). The experiment was repeated three times. Bars indicate standard error. P, 350ng purified miraculin protein; Wt, wild type lettuce; MIR, miraculin; Lhcb2, LHCII type chlorophyll a/b binding protein.

28

29 Fig. 4 Characterization of transgene transcription and translation in T₁ generation of Ubi-MIR

transgenic lettuce lines 1, 7, and 8. Presence of transgene was confirmed by genomic PCR and miraculin gene expression level was measured by RT-PCR (A). The soluble protein from 3.3 mg fresh weight equivalents of lettuce leaf were separated by SDS-PAGE and miraculin protein accumulation was detected by Western blot analysis (B). Miraculin protein accumulation level was measured by ELISA (C). The experiment was repeated three times. Bars indicate standard error. P, 350ng purified miraculin protein; Wt, wild type lettuce; MIR, miraculin; Lhcb2, LHCII type chlorophyll a/b binding protein.

8

9 Fig. 5 Detection of miraculin protein in T_1 (A) and T_2 (B) generations of 35S-MIR transgenic 10 lettuce lines 2, 6, and 13. Presence of transgene was confirmed by genomic PCR. The soluble 11 protein from 3.3 mg fresh weight equivalents of lettuce leaf were separated by SDS-PAGE and 12 miraculin protein accumulation was detected by Western blot analysis. P, 350ng purified miraculin 13 protein; Wt, wild type lettuce; MIR, miraculin; Lhcb2, LHCII type chlorophyll a/b binding protein.

14

15Fig. 6 Characterization of transgene transcription and translation in T₂ generation of Ubi-MIR 16transgenic lettuce lines 1, 7, and 8. Presence of transgene was confirmed by genomic PCR and 17miraculin gene expression level was measured by RT-PCR (A). The soluble protein from 3.3 mg 18 fresh weight equivalents of lettuce leaf were separated by SDS-PAGE and miraculin protein 19accumulation was detected by Western blot analysis (B). Miraculin protein accumulation level was 20measured by ELISA (C). The experiment was repeated three times. Bars indicate standard error. P, 21350ng purified miraculin protein; Wt, wild type lettuce; MIR, miraculin; Lhcb2, LHCII type 22chlorophyll a/b binding protein.

