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Abstract 

 

For tumor cells to proliferate, blood vessels are necessary to supply sufficient nutrition and 

oxygen. Folkman has suggested that tumor growth is angiogenesis-dependent (Folkman 1990). 

Vascular endothelial growth factor (VEGF) is an important factor in tumor angiogenesis and growth. 

VEGF is overexpressed in tumor cells compared to other normal organs. Hypoxia in tumor triggers 

tumor cells to secrete VEGF which induces angiogenesis by signaling to the VEGF receptor 

(VEGFR) in normal blood vessels surrounding the tumor. Chemotherapeutic agents have been used 

for a long time for cancer therapy. However, they have caused severe side-effects because the 

activity of the chemotherapeutic agents was not specific to tumors. Recently many molecular 

targeted agents, which are specific to molecular targets genetically amplified or overexpressed in 

tumor cells, were discovered to reduce side-effects and to improve the efficacy of cancer therapy. 

These molecular targeted agents were now used with conventional therapies to improve the response. 

Bevacizumab (BV) is the first molecular targeted agent for VEGF. In this study I investigated the 

role of VEGF-VEGFR signaling in tumor growth suppression and angiogenesis using BV in human 

cancer xenograft models. 

BV is used worldwide in combination with standard chemotherapies for patients with colorectal 

cancer, lung cancer and breast cancer. It has been reported that BV in combination with paclitaxel 

(PTX) significantly prolonged progression-free survival compared with PTX alone in initial 

treatment for metastatic breast cancer. However, it is not clear why BV enhances the efficacy of the 

chemotherapeutic agents. To understand the mechanisms of the effects of combination treatments, I 

tried to establish animal model showing antitumor activity of BV alone and in combination with 

chemotherapeutic agents such as capecitabine (Cape) or capecitabine plus oxaliplatin (Cape-Oxali). 

Tumor-inoculated nude mice were treated with BV, Cape, and oxaliplatin alone or in combination, 

after tumor growth was confirmed. Tumor volume and microvessel density (MVD) in tumor were 

evaluated. I measured thymidine phosphorylase (TP) and VEGF levels, which were determinants for 

efficacy of Cape and BV, respectively. BV alone showed significant antitumor activity as in three 

xenograft models (COL-16-JCK, COLO 205, and CXF280). The MVD in tumors treated with BV 

was lower than that of the control. Antitumor activity of BV in combination with Cape was 

significantly higher than that of each agent alone (COL-16-JCK, COLO 205). Furthermore, the 

antitumor activity of BV in combination with Cape-Oxali was significantly superior to that of 

Cape-Oxali (COL-16-JCK). TP and VEGF levels were not increased by BV alone and Cape alone, 

respectively, suggesting there were other potentially efficacious mechanisms involved.  

There was a hypothesis that the reduction in vascular permeability in the tumors, which was 

increased by overexpressed VEGF, induced decrease of interstitial fluid pressure and, consequently, 
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chemotherapeutic agents were transferred abundantly to tumor cells in combination therapy of BV 

with chemotherapeutic agents (Jain, 2001; Gerber and Ferrara, 2005). However, there have been no 

reports that verify the entire processes actually occur. Therefore, I attempted to investigate that point 

using my animal models. In an MX-1 human breast cancer xenograft model which shows 

synergistic antitumor activity, the antitumor activity of BV at 5 mg/kg in combination with PTX at 

30 mg/kg was significantly higher than that of either agent alone. I measured the PTX concentration 

in tumors to see whether BV enhances the activity by increasing the tumor concentration of PTX. 

When given in combination with BV, the level of PTX in tumor increased. PTX at 30 mg/kg with 

BV showed a similar tumor concentration to PTX alone at either 60 or 100 mg/kg, with a similar 

degree of tumor growth inhibition. In addition, terminal half-life (T1/2) of PTX in the paclitaxel plus 

bevacizumab (PTX-BV) group was prolonged compared to that in the PTX alone group. No 

remarkable differences in PTX concentration in plasma or liver were observed between the PTX 

alone group and the PTX-BV group. In the same MX-1 breast cancer model, vascular permeability 

in tumor was significantly decreased by treatment with BV. There was no difference in MVD 

between the BV alone group and the combination group. These results suggest that the synergistic 

antitumor activity of PTX and BV can be attributed to the increase in PTX concentration in tumors 

caused by the decrease of vascular permeability and possibly by the T1/2 prolongation of PTX. There 

are two possible explanations as to why the T1/2 of PTX is prolonged. One is the decrease of MVD 

caused by BV, which in turn lessens the PTX return to the vessels and therefore increases the 

concentration of PTX in tumor cells. The second is the decrease of lymphatic vessel. Although it has 

long been considered that stimulation of VEGFR-3 induces the formation of the lymphatic vessel 

system, a recent report has suggested that VEGF-A, VEGFR-2 and neuropilin also function in 

lymphatic vessel formation (Cueni and Detmar, 2006). Because BV binds to and inactivate VEGF-A, 

lymphatic vessel formation in tumor should be decreased in the presence of BV and less PTX 

returns to the vessels. Further experiments are necessary to investigate these possibilities. 
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Abbreviations 
 

BC breast cancer 

BV bevacizumab 

Cape capecitabine 

Cape-BV capecitabine plus bevacizumab 

Cape-Oxali capecitabine plus oxaliplatin 

Cmax maximum drug concentration 

CRC colorectal cancer 

EGFR epidermal growth factor receptor  

FGF fibroblast growth factor 

FITC fluorescein isothiocyanate 

FOLFOX4 5-fluorouracil, leucovorin plus oxaliplatin 

5-FU 5-fluorouracil 

HPLC high-performance liquid chromatography 

HuIgG human immunoglobulin G 

IFP interstitial fluid pressure  

i.p. intraperitoneally 

i.v. intravenously 

MTD maximum tolerant dose 

MVD microvessel density 

NSCLC non-small cell lung cancer 

Oxali oxaliplatin 

p.o. per os 

PTX paclitaxel  

PTX-BV paclitaxel plus bevacizumab 

T1/2 terminal half-life time 

TGI% percentage of tumor growth inhibition 

Tmax maximum drug concentration time 

TP thymidine phosphorylase 

VEGF vascular endothelial growth factor 

VEGFR vascular endothelial growth factor receptor 

VPF vascular permeability factor 
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General Introduction 
 

The number of cancer patients is increasing every year. Although the total number of patients 

was ranked 4th out of all diseases in Japan, cancer deaths ranked first and reached   approximately 

340,000 in 2008 according to the Health, Labour and Welfare Ministry report 

(http://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei08/). How to treat cancer is one of the major 

issues still to be resolved in modern medicine. Generally, patients with cancer undergo excision of 

the tumor in the first treatment and they are given radiation therapy, chemotherapy and hormone 

treatment in the metastasis phase. Conventional cancer treatments such as cytotoxic chemotherapy 

and radiation therapy have been developed based upon the observation that malignant cells divide at 

a more rapid rate than normal cells. For example, radiation induces DNA damage that, upon 

multiple cell divisions, may lead to errors in transcription and translation resulting in cell death 

(Rydberg, 2001). The use of chemotherapeutic agents against malignant tumors is successful in 

many patients but suffers from major drawbacks such as the lack of selectivity to tumor, which 

sometimes leads to severe side-effects and may limit efficacy. 

To reduce the side-effects and to improve the efficacy of cancer therapy, a lot of target based 

medicines have been developed. Several classes of proteins genetically amplified or overexpressed 

on the surface of tumor cells, such as epidermal growth factor receptor (EGFR; ErbB-1), ErbB-2, 

ErbB-3, vascular endothelial growth factor (VEGF) and so on, can be selectively targeted 

(Pérez-Soler, 2004; Normanno et al., 2003). EGFR are among the most often targeted proteins and 

their implication in the pathogenesis and evolution of cancer has been clearly established (Mass, 

2004; Ronellenfitsch et al., 2010). Antibodies and small molecule inhibitors are selectively targeted 

to block the action of growth factors. To date, a lot of agents specific to molecular targets have been 

generated (Fig. 1), including bevacizumab (BV, Avastin®) whose tumor-suppressing activity was 

investigated in this study. BV is a humanized antibody against VEGF and prevents its binding to the 

receptor (VEGFR), thereby neutralizing the VEGF activity. 

Since the early 1900’s, observation that tumor growth can be accompanied by increased 

vascularity has been reported. In 1928, the introduction by Sandison of a transparent chamber that 

could be inserted into rabbit ear to allow microscopic observation of living tissue underneath a glass 

coverslip, provided a tool for experimental and conceptual advances in the field (Sandison, 1928). In 

1939, Ide et al. used the transparent chamber and investigated the correlation between growth of 

transplanted rabbit carcinoma and vascular supply. They observed that tumor growth was 

accompanied by the rapid and extensive formation of new vessels to deliver nutrients to the growing 

tumor. They also pointed out that if blood-vessel growth did not occur, the transplanted tumor failed 

to grow (Ide et al., 1939). In 1968, it was reported that transplantation of melanoma or 
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choriocarcinoma cells prompted blood-vessel proliferation even when a filter was interposed 

between the tumor and the host (Greenblatt and Shubick, 1968; Ehrmann and Knoth, 1968), 

indicating that tumor angiogenesis was mediated by diffusible factors produced by tumor cells. 

Folkman has suggested that tumor growth is angiogenesis-dependent and proposed that 

anti-angiogenesis might be an effective therapeutic strategy to treat cancer (Folkman 1971). Then, 

isolation of tumor angiogenesis factor from human and animal tumors (Folkman et al., 1971) and 

from cultured cells (Klagsbrun et al., 1976) was reported. Several angiogenic factors, such as 

fibroblast growth factor (FGF), angiogenin, transforming growth factor, were also discovered 

(Folkman and Klagsbrun, 1987). In 1983, Sengar reported the partial purification of vascular 

permeability factor (VPF), a protein that induced vascular leakage in the skin, from the conditioned 

medium of a guinea-pig tumor cell line. In 1989, Ferrara and Henzel (1989) reported the isolation of 

VEGF, an endothelial-cell-specific mitogen, from the culture medium conditioned by bovine 

pituitary follicular cells. The amino-terminal amino-acid sequence of VEGF did not match any 

known protein in available databases. After that, Connolly et al. (1989) reported the isolation and 

sequence of human VPF. Isolation of cDNA clones for VEGF (Ferrara and Henzel, 1989), and for 

VPF (Connolly et al., 1989) revealed that VEGF and VPF were the same molecule. 

VEGF is an important factor in tumor angiogenesis and growth (Ferrara et al., 1992; Ferrara and 

Davis-Smith, 1997; Ferrara, 2004; Hoeben et al., 2004). VEGF is a heparin binding growth factor 

with a molecular weight of 45,000, and is as dimeric protein composed of two identical subunits 

(Ferrara and Henzel, 1989). Six subtypes of VEGF, VEGF-A, -B (Olofsson et al., 1996), -C (Joukov 

et al., 1996), -D (Achen et al., 1998), -E (Ogawa et al., 1998), and -F (Suto et al., 2005) and three 

receptors, VEGFR-1, -2 and -3 (Dai and Rabie, 2007; Otrock et al., 2007), are known. The human 

VEGF-A gene is organized in eight exons (Houk et al., 1991; Tischer et al., 1991). Alternative exon 

splicing results in the generation of four main VEGF isoforms, having , respectively 121, 165, 189 

and 206 amino acids following signal sequence cleavage (VEGF121, VEGF165, VEGF189, and 

VEGF206) (Leung et al., 1989). Hypoxia in tumor triggers tumor cells to secrete VEGF which 

induces angiogenesis by signaling through VEGFR in a normal blood vessel surrounding the tumor. 

VEGF mRNA expression is increased by hypoxia inducible factor 1, which is induced by exposure 

to low pO2 in a variety of pathophysiological circumstances (Semenza 2003; Ke and Costa, 2006). 

The VEGF-VEGFR interactions and their consequences are schematically shown in Fig. 2. Each 

VEGF subtype binds to multiple VEGFR. Activation of VEGFR-1 results in angiogenesis and 

migration of hematopoietic cells, of VEGFR-2, angiogenesis and permeability increase (Shibuya et 

al., 2006), and of VEGFR-3, lymphatic formation (Karkkainen et al., 2002). 

It has been reported that VEGF is overexpressed in most human tumors (Ferrara and 

Davis-Smyth, 1997; Hanrahan et al., 2003) to result in tumor microvasculature, disorganization and 
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lack of the conventional hierarchy of blood vessels by which arterioles, capillaries, and venules 

become unidentifiable (Hashizume et al., 2000; Carmeliet, 2003; Jain, 2003; McDonald and Choyke, 

2003). In the tumor vessels, permeability is increased by VEGF and the plasma constituent leaks 

easily out of the blood vessel (Ferrara et al., 1992; Ferrara and Davis-Smyth, 1997; Ferrara, 2004).  

BV is a genetically-engineered humanized monoclonal antibody derived from murine 

anti-human VEGF monoclonal antibody A4.6.1. The parental antibody A4.6.1 belongs to IgG1 

isotype and its dissociation constant to VEGF165 is 8x10-10 M. A4.6.1 specifically recognized VEGF 

but not to platelet-derived growth factor, which has a 15-18% sequence homology to VEGF (Leung 

et al., 1989), and other growth factors such as epidermal growth factor, acidic FGF, nerve growth 

factor and hepatocyte growth factor (Kim et al., 1992). BV is 93% human and 7% murine protein 

sequence, producing an agent with the same biochemical and pharmacologic properties as the 

parental antibody (Kim et al., 1992; Presta et al., 1997). In common with A4.6.1, BV binds to and 

neutralizes all human VEGF-A isoforms and their bioactive proteolytic fragments. The binding 

epitope of BV has been defined by crystal structure analysis of a Fab-ligand complex (Müller et al., 

1998). This analysis predicts that Gly88 in human VEGF is essential for binding BV and this residue 

also underlines the species specificity of BV binding, since serine residue is found in mouse and rat 

VEGF at the corresponding position (Ferrara et al., 2004). BV specifically binds to human VEGF-A, 

thereby blocking the binding of VEGF-A to VEGF receptors expressed on vascular endothelial cells. 

By blocking the biological activity of VEGF (Wang et al., 2004), BV, or its murine equivalent 

A4.6.1, inhibits neovascularization in tumors and thus suppresses tumor growth in xenograft models 

(Kim et al., 1993; Presta et al., 1997; Gerber and Ferrara, 2005; Warren et al., 1995).  

BV was first approved for colorectal cancer in the US in 2004. Since then, it has been used 

worldwide in combination with standard chemotherapies for patients with colorectal cancer (CRC), 

non-small cell lung cancer (NSCLC) and breast cancer (BC). In Japan, BV was approved for 

therapy of CRC and NSCLC in 2007 and 2009, respectively. In the evaluation of cancer treatment, 

‘progression-free survival’ and ‘response rate’ are used as markers how well a new treatment works. 

‘progression-free survival’ is the term during and after treatment in which a patient is living with a 

disease that does not get worse. ‘Response rate’ is the percentage of patients whose cancer shrinks or 

disappears after treatment. BV in combination with chemotherapeutic agents significantly prolonged 

progression-free survival and increased the response rate compared with chemotherapy alone in 

patients with CRC, NSCLC and BC (Hurwitz et al., 2004; Kabbinavar et al., 2003; Sandler et al., 

2006; Miller et al., 2007). 

In Chapter I of this study, I evaluated the antitumor activity of BV in human colorectal cancer 

xenograft models, both as a monotherapy and in combination with capecitabine (Cape) alone and 

with capecitabine plus oxaliplatin (Cape-Oxali) which were chemotherapeutic agents used as 
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first-line therapy for colorectal cancer patients. To understand the mechanisms of the effects of the 

combination of capecitabine plus bevacizumab (Cape-BV), I measured the levels of thymidine 

phosphorylase (TP) and VEGF, which are determinants for efficacy of Cape and BV, respectively. 

The synergistic effects of BV with chemotherapy have been attributed to a reduction in vascular 

permeability with normalization of the vasculature by obstructing the VEGF-VEGFR signaling. 

Vascular permeability reduction causes decrease of interstitial fluid pressure (IFP), and consequently, 

chemotherapeutic agents are transferred abundantly to tumor cells in combination therapy of BV 

with chemotherapeutic agents (Jain, 2001; Gerber and Ferrara, 2005). However, there is no report 

that verifies all of these processes. A demonstration of all the processes is required to clarify why BV 

with chemotherapeutic agents shows synergistic effects. In Chapter II of this study, I examined the 

synergistic antitumor activity of combination therapy of paclitaxel (PTX) and BV in a human breast 

cancer xenograft model, and also investigated the effect of BV on PTX concentration and the blood 

vessel permeability in the model.  
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Introduction 
 

BV (Avastin®) is a genetically engineered humanized monoclonal antibody derived from murine 

anti-human VEGF monoclonal antibody A4.6.1 (Presta et al., 1997; Kim et al., 1992). It binds 

specifically to human VEGF, thereby blocking the binding of VEGF to VEGF receptors expressed 

on vascular endothelial cells. By blocking the biological activity of VEGF (Wang et al., 2004), BV 

or its murine equivalent A4.6.1 inhibits neovascularization in tumors and thus suppresses tumor 

growth (Presta et al., 1997; Kim et al., 1993; Gerber and Ferrara, 2005). Clinically, it has been 

reported that BV significantly improved the survival benefit among patients with metastatic 

colorectal cancers in combination with irinotecan hydrochloride, 5-fluorouracil (5-FU), and 

leucovorin and with 5-FU and leucovorin (Hurwitz et al., 2004; Kabbinavar et al., 2003). 

Cape (N4-pentyloxycarbonyl-5'-deoxy-5-fluorocytidine, Xeloda®) is an oral fluoropyrimidine 

drug widely used. It is converted first to 5’-deoxy-5-fluorocytidine by carboxylesterase located in 

the liver, then to 5’-deoxy-5-fluouridine by cytidine deaminase expressed in the liver and various 

solid tumors, and finally to 5-FU by TP highly expressed in many tumors. It has been reported that 

the antitumor activity of Cape correlates with tumor levels of TP activity in xenograft models 

(Ishikawa et al., 1998). A recent clinical study has reported that the combination therapy of BV with 

FOLFOX4 (5-fluorouracil, leucovorin plus oxaliplatin) or with Cape-Oxali significantly improves 

progression free survival compared with FOLFOX4 or Cape-Oxali alone in first-line metastatic 

colorectal cancer (Saltz et al., 2008). 

In my present study, I evaluated the microvessel density (MVD) decrease by BV and antitumor 

activity of BV as a monotherapy and in combination with Cape alone and with Cape-Oxali in 

human colorectal cancer xenograft models. To understand the mechanisms of the effects of the 

combination of Cape-BV, I measured the levels of TP and VEGF, which are determinants for 

efficacy of Cape and BV, respectively.  
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Materials and Methods 

 

Animals  

Five-week-old male BALB-nu/nu (CAnN.Cg-Foxn1<nu>/CrlCrlj nu/nu) mice were obtained 

from Charles River Laboratories Japan, Inc. (Kanagawa, Japan) and acclimatized for at least 1 week 

in our animal facility before use. The number of animals per experiment group was four to six, as 

specified in the figures. All animal experiments were conducted in accordance with the ‘Standards 

for the Care and Management of Experimental Animals’ and ‘Rules for Animal Care and 

Management’ promulgated in Chugai Pharmaceutical Co., Ltd. 

 

Tumors 

Three human colorectal cancer lines were used in this study. COL-16-JCK was provided by the 

Central Institute for Experimental Animals (Kanagawa, Japan), COLO 205 (ATCC CCL-222) was 

purchased from American Type Culture Collection (Manassas, VA, USA) and CXF280 was kindly 

provided by Dr H.H. Fiebig (University of Freiburg, Freiburg, Germany). COL-16-JCK and 

CXF280 were maintained in BALB-nu/nu mice by subcutaneous inoculation of tumor pieces. 

COLO 205 was maintained in vitro in culture medium RPMI-1640 containing 2 mM L-glutamine, 

10 mM HEPES, 1 mM sodium pyruvate, 4.5 g/l glucose, 1.5 g/l sodium bicarbonate and 10% FBS 

at 37˚C in an incubator with 5% CO2. 

 

Human Colorectal Cancer Xenograft Models 

Pieces (~2 x 2 mm) of minced tumor of COL-16-JCK and CXF280 were inoculated 

subcutaneously (s.c.) into the right flank region of male BALB-nu/nu mice. A suspension of COLO 

205 cells (5 x 106 or 8.8 x 106 viable cells/mouse) was injected s.c. into a male BALB-nu/nu mouse. 

Treatments with the antitumor drugs were started after tumors were sufficiently established in the 

mice. Tumor volume was estimated using the equation V = ab2/2, where a and b are tumor length 

and width, respectively. The percentage of tumor growth inhibition (TGI%) was calculated as 

follows: TGI% = [1-(Mean change in tumor volume in each group treated with antitumor 

drugs/Mean change in tumor volume in the control group)] x 100. 

 

Immunohistochemistry 

Tumors were collected after treatment with BV or human immunoglobulin G (HuIgG). 

Immunohistochemistry was performed using the standard method of avidin-biotin complex 

peroxidase staining on 4-μm thick sections from paraffin-embedded, formalin-fixed tissue. The 

CD34 antibody (rat monoclonal antibody, clone MEC14.7; HyCult Biotechnology, Uden, The 
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Netherlands) (Garlanda et al., 1997) was used to identify the microvessels. 

 

MVD 

MVD was determined as the ratio of the CD34-positive area to the total observation area. Four to 

six fields per section (0.4977 mm2 each) were randomly analyzed, excluding necrotic areas. The 

CD34-positive areas within the viable regions were measured using imaging analysis software Win 

ROOF (Mitani Corporation, Fukui, Japan). 

 

TP levels in the tumor 

Tumors were homogenized in 10 mM Tris-buffer (pH 7.4) containing 15 mM NaCl, 1.5 mM 

MgCl2 and 50 μM potassium phosphate buffer using a glass homogenizer. The homogenizer was 

then centrifuged at 10,000 rpm for 15 min at 4˚C and the supernatants were stored at -80˚C until use. 

The protein concentration of the supernatants was determined using a DC protein assay kit (Bio-Rad, 

Hercules, CA, USA). The level of TP was measured by ELISA with monoclonal antibodies specific 

to human TP, as previously described by Nishida et al . (Nishida et al., 1996). One unit corresponds 

to the amount of TP enzyme activity, which phosphorylates 5'-DFUR to 5-FU at rate of 1 μg 5-FU 

per hour (recombinant human TP). 

 

Levels of VEGF in tumors 

Tumors were homogenized in PBS buffer containing 0.05% Tween-20 using a glass 

homogenizer. The homogenized samples were then centrifuged at 10,000 x g for 20 min at 4˚C and 

the supernatants were stored at -80˚C until use. The protein concentration of the supernatants was 

determined using a DC protein assay kit (Bio-Rad). The level of VEGF was measured using a 

human VEGF ELISA kit (R&D, Minneapolis, MN, USA). 

 

Chemicals 

BV (Avastin®) and Cape (Xeloda®) were obtained from F. Hoffman-La Roche Ltd. (Basle, 

Switzerland). Oxaliplatin (Oxali) was kindly provided by Sanofi-Synthelabo Inc. (presently 

Sanofi-Aventis). HuIgG was purchased from MP Biomedicals, Inc. (Solon, OH, USA). BV and 

HuIgG were diluted with saline and administered intraperitoneally (i.p.) twice a week for 3 weeks. 

Cape was suspended in 40 mM citrate buffer (pH 6.0) containing 5% gum arabic as the vehicle and 

given orally (per os, p.o.) for 14 days. Oxali was dissolved in 5% glucose solution and given 

intravenously (i.v.) once only on the day of treatment initiation. 

 

Statistical analysis 
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Statistical analysis was performed using the Mann-Whitney U test. Differences were considered 

to be significant for values of P < 0.05. 
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Results 
 

Tumor growth inhibition by BV alone 

I examined the antitumor activity of BV alone in three human colorectal cancer xenograft models. 

A piece of minced COL-16-JCK tumor was inoculated s.c. into the right flank region of 

BALB-nu/nu mice. Twenty-one days after tumor inoculation, the mice were divided into 4 groups 

and treatment was initiated (Day 1). BV at doses of 1.2, 2.5 and 4.0 mg/kg and HuIgG at 4.0 mg/kg 

as the control were administered i.p. twice a week for 3 weeks. Antitumor activity was evaluated on 

Day 22 (21 days after the treatment was initiated). TGI% was 46, 59 and 55% in the groups treated 

with BV at 1.2, 2.5 and 4.0 mg/kg, respectively. There were statistically significant differences in 

tumor volume between the control group and the groups treated with BV at doses of 1.2 mg/kg or 

above (P < 0.05, Fig. 3a).  

BALB-nu/nu mice were injected s.c. with 5 x 106 cells of COLO 205 cell line into the right flank 

region. Nine days after the injection of the tumor cells, treatment was started. TGI% on Day 22 was 

33, 41 and 44% in the groups treated with BV at doses of 1.2, 2.5 and 4.0 mg/kg, respectively. There 

were statistically significant differences in tumor volume between the control group and the groups 

treated with BV at doses of 1.2 mg/kg and above (P < 0.05, Fig. 3b).  

For mice inoculated with CXF280, treatment was initiated 18 days after inoculation. TGI% on 

Day 22 was 22, 40 and 47% in the groups treated with BV at doses of 0.4, 1.2 and 4.0 mg/kg, 

respectively. There were statistically significant differences in tumor volume between the control 

group and the groups treated with BV at doses of 1.2 mg/kg and above (P < 0.05, Fig. 3c). No 

significant decrease in body weight was observed in any of the groups of the three xenograft models 

(Fig. 3a, b and c). 

 

Antitumor activity of BV in combination with Cape 

I evaluated the antitumor activity of BV in combination with Cape in two human colorectal 

cancer xenograft models. Twenty-seven days after inoculation with COL-16-JCK tumors, the mice 

were divided into 4 groups (6 mice per group) and treatment was initiated (Day 1). BV was 

administered i.p. at 4 mg/kg twice a week for 3 weeks and Cape was orally administered at 359 

mg/kg [2/3 maximum tolerated dose (MTD)] (Ishikawa et al., 1998) daily for 14 days. On Day 37, 

there were statistically significant differences in tumor volume between the control and the groups 

treated with Cape alone, BV alone and Cape-BV. There were also statistically significant differences 

in tumor volume between the group treated with Cape-BV and the groups treated with BV alone and 

Cape alone (P < 0.05, Fig. 4). TGI% on Day 37 was 52% in the Cape alone group, 35% in the BV 

alone group and 80% in the Cape-BV combination group.  
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COLO 205 colorectal cancer cells (8.8 x 106) were injected s.c. into the right flank region of 

BALB-nu/nu mice. Seven days after tumor cell injection, the mice were divided into 4 groups (6 

mice per group) and treatment was initiated (Day 1). BV was administered i.p. at 4 mg/kg twice a 

week for 3 weeks. Cape was administered p.o. at 269 mg/kg [1/2 MTD (Ishikawa et al., 1998)] daily 

for 14 days. Tumor volumes on Day 22 were significantly smaller in the Cape-BV group than in 

groups treated with each agent alone (P < 0.05, Fig. 5). TGI% was 55% in the Cape group, 44% in 

the BV group and 82% in the Cape-BV combination group.  

No significant difference in body weight was observed between mice treated with Cape-BV and 

those treated with each single agent in the COL-16-JCK and COLO 205 models (Figs. 4 and 5). 

 

Antitumor activity of BV in combination with Cape-Oxali 

The mice inoculated with COL-16-JCK were divided into 6 groups (6 mice per group); 25 days 

after tumor inoculation treatments were initiated (Day 1). Cape was administered p.o. at 180 mg/kg 

(1/3 MTD) (Ishikawa et al., 1998) daily for 14 days. Oxali was administered i.v. at 5 mg/kg (1/3 

MTD) (Sawada et al., 2007) on Day 1 and 4 mg/kg of BV was administered i.p. twice a week for 3 

weeks. On Day 36, Cape and Oxali significantly inhibited tumor growth as single agent. TGI% was 

38% in the Cape alone group, 23% in the Oxali alone group and 70% in the Cape-Oxali group (Fig. 

6). Cape in combination with Oxali showed significantly higher antitumor activity than Cape, 

although Oxali as a single agent showed no significant antitumor activity. Furthermore, tumor 

volume of BV in combination with Cape-Oxali group was significantly smaller than that of 

Cape-Oxali group and BV alone group. TGI% was 86% in the BV in combination with Cape-Oxali 

group, 70% in the Cape-Oxali group and 44% in the BV alone group. No significant difference in 

body weight was observed between mice treated with Cape-Oxali alone and those treated with 

Cape-Oxali plus BV (Fig. 7). 

 

Effect of BV on MVD 

I investigated the effect of BV on MVD in tumors of the COL-16-JCK xenograft model by using 
immunohistochemical staining for CD34. BV at doses of 1.2 and 4.0 mg/kg and HuIgG at 4.0 mg/kg 

as a control were administered i.p. twice a week for 3 weeks (41 days post-tumor inoculation). 

Tumors were collected 5 days after the last treatment (Day 23). TGI% was, respectively, 43 and 

45% in the groups treated with BV at 1.2 and 4.0 mg/kg on Day 23. Typical immunohistochemical 

staining images of CD34 are shown in Fig. 8. The MVD was determined as the ratio of the 

CD34-positive area to the total observation area and were 1.00, 0.70 and 0.51% at the dosages of 0 

(control), 1.2, and 4.0 mg/kg of BV, respectively; MVD values were significantly lower for the 

BV-treated groups than for the control group (P < 0.05, Fig. 9). 
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Levels of TP and VEGF in tumor 

I measured the levels of TP and human VEGF in tumors in COL-16-JCK and COLO 205 

xenograft models. Levels of tumor TP were not changed after i.p. administration of BV at 4 mg/kg 

twice a week for 3 weeks in the COL-16-JCK and COLO 205 xenograft models. The level of VEGF 

in tumor was not increased by Cape treatment (539 mg/kg, daily for 13 days) in the COL-16-JCK 

model (Table 1). 
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Discussion 
 

In my present study, I demonstrated the antitumor activity of BV alone, Cape-BV and 

Cape-Oxali plus BV in human colorectal cancer xenograft models. The antitumor activity of BV in 

combination with Cape was significantly higher than that of BV alone in 2 xenograft models. In 

addition, I investigated the mechanisms of the combination effects of BV and Cape in the 2 

xenograft models. 

Cape is enzymatically metabolized to 5-FU as a result of the highly expressed TP in the tumor. It 

has been reported that the antitumor activity of Cape correlates with tumor levels of TP activity in 

xenograft models (Ishikawa et al., 1998). Some chemotherapeutic drugs, such as the taxanes, have 

been reported to increase the levels of TP in tumors in xenograft models and to show significantly 

more potent antitumor activity in combination with Cape than each agent alone (Sawada et al., 

1998; Endo et al., 1999; Ishitsuka et al., 1996). It has been also reported that Oxali treatment 

increased the level of TP in tumors in xenograft models (Sawada et al., 2007). In the present study, I 

investigated the levels of TP in tumors after treatment with BV to evaluate possible therapeutic 

effects in combination with Cape and with Cape-Oxali in xenograft models. However, BV induced 

no significant increase in levels of TP in the 2 xenograft models used, suggesting that the 

combination effects are a result of mechanisms other than TP up-regulation in tumors treated with 

BV. A4.6.1 has been reported to increase pO2 in tumors (Lee et al., 2000). On the other hand, 

hypoxia has been reported to induce TP in tumor cells (Akiyama et al., 2004) and might explain the 

lack of an increase in the levels of TP in the tumor after treatment with BV in the xenograft models 

tested.  

BV binds to human VEGF and inhibits its biological activities. VEGF has been reported to be 

expressed in tumors and to play a major role in tumor angiogenesis (Ferrara and Henzel, 1989; 

Leung et al., 1989; Ferrara, 2004). As in many studies, the present study also demonstrated that BV 

decreased MVD in the tumors of the xenograft models. In tumors expressing VEGF, tumor growth 

would be more dependent on angiogenesis regulated by VEGF. Therefore, I investigated the level of 

VEGF after treatment with Cape to possibly explain the mechanisms of the effects of Cape-BV 

combination. However, no significant increase in tumor VEGF was demonstrated after treatment 

with Cape, suggesting that the combination effects are a result of mechanisms other than change in 

the level of VEGF in tumors treated with Cape.  

In the present study using human colorectal cancer xenograft models, I investigated the possible 

mechanisms explaining the clinical benefits demonstrated in a clinical study of combination therapy 

of BV with Cape-Oxali in colorectal cancer patients. The levels of TP and VEGF measured in tumor, 

however, did not explain the mechanism of the effects of the combination demonstrated in xenograft 
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models. Previously, A4.6.1 has been shown to increase the concentration of anticancer agents in the 

tumors as compared with anticancer agents alone (Wildiers et al., 2003). I will further investigate the 

mechanisms of combination therapies plus BV in xenograft models that show effects of antitumor 

activity. 
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Chapter II 

 

 

Tumor-suppressing activity of bevacizumab 

and its effect on drug delivery 
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Introduction 
 

BV in combination with PTX is approved as first-line therapy in patients with metastatic breast 

cancer in EU in 2007 and in the US in 2008. In Japan, BV treatment for BC was applied for Health, 

Labour and Welfare Ministry approval and now it is under the evaluation. PTX binds to ß-tubulin 

and stabilizes microtubules, repressing the dynamic instability of spindle microtubules, and thus 

results in blocking the cell cycle at the metaphase-to-anaphase transition (Horwitz, 1992). It is used 

for breast cancer treatment as a chemotherapeutic agent in combination with other chemotherapeutic 

agents or molecular targeted agents. Paclitaxel plus bevacizumab (PTX-BV) significantly prolonged 

progression-free survival as compared with PTX alone and increased the response rate (Miller et al., 

2007), although the mechanisms of the combination therapy are still elusive. 

In my present study, I attempted to demonstrate the synergistic antitumor activity of combination 

therapy with PTX-BV and to investigate the mechanism of the combination therapy in an MX-1 

human breast cancer xenograft model. As it has been hypothesized that BV may enhance the 

delivery of chemotherapeutic agents to tumors as a result of the normalization of tumor vessels 

resulting from the decrease of vascular permeability (Jain, 2001; Gerber and Ferrara, 2005), I 

compared the concentrations of PTX in tumors treated with PTX in combination with BV and in 

those treated with PTX alone. I also examined vascular permeability in tumors. 
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Materials and Methods 

 

Animals  

Five-week-old female BALB-nu/nu (CAnN.Cg-Foxn1<nu>/CrlCrlj nu/nu) mice for the MX-1 

xenograft model and male BALB-nu/nu mice for the A549 xenograft model were obtained from the 

Charles River Laboratories, Inc. (Kanagawa, Japan). The mice were acclimatized for at least 1 week 

in our animal facility before use. All the animal experiments were conducted in accordance with the 

Institutional Animal Care and Use Committee in Chugai Pharmaceutical Co., Ltd. 

 

Human cancer xenograft model 

The MX-1 human breast cancer cell line was provided by Dr T. Tashiro (Cancer Chemotherapy 

Center, Japanese Foundation for Cancer Research, Tokyo, Japan). A piece of minced MX-1 tumor (2 

x 2 mm) was inoculated subcutaneously into the right flank region of each mouse. The A549 human 

lung cancer cell line was obtained from the American Type Culture Collection (Rockville, Maryland, 

USA) and maintained in F-12K nutrient mixture supplemented with 10% (v/v) fetal bovine serum at 

37°C under 5% CO2. 5 x 106 cells of A549 were inoculated at the same site as the MX-1. 

 

Antitumor agents 

BV was obtained from F. Hoffman-La Roche Ltd. (Basle, Switzerland). Human IgG (HuIgG) 

was purchased from MP Biomedicals, Inc. (Solon, Ohio, USA). BV and HuIgG were diluted with 

saline. PTX was obtained from Wako Pure Chemical Industries (Osaka, Japan). PTX was dissolved 

in Cremophor EL-ethanol solution (1:1) and diluted 1:10 with saline just before administration. 

Cremophor EL-ethanol solution (1:1) diluted 1:10 with saline was administered as the PTX vehicle. 

Cremophor EL was purchased from Sigma-Aldrich Japan Co., Ltd. (Tokyo, Japan). 

 

Evaluation of antitumor activity 

After the tumors were sufficiently established in the mice, treatments with the antitumor agents 

were started (day 1). BV or HuIgG was administered intraperitoneally and PTX was administered 

intravenously once a week for 3 weeks for the evaluation of antitumor activity. The tumor volume 

was estimated by using the equation V = ab2/2, in which a and b are the tumor length and width, 

respectively. Tumor volume was measured twice a week, and the degree of tumor growth inhibition 

was evaluated on day 22 (21 days after the initiation of the treatment). 

 

Quantification of vascular permeability and MVD in tumors 

Seventeen days after the MX-1 inoculation, BV or HuIgG at 5mg/kg and PTX at 30mg/kg were 
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administered once (day 1). Tumors were collected on day 2, day 5, and day 8. MVD and vascular 

permeability in the tumor were evaluated immunohistochemically. Immunohistochemical staining 

was performed using avidin–biotin–peroxidase complex on 5-µm thick sections from freshly frozen 

tissues. MVD (%) was calculated from the ratio of the CD31 stained area to the total area observed 

in three to six regions (0.4977mm2 each). Vascular permeability in the tumor was determined from 

the difference between the area with CD31 positive staining and the area showing fluorescein 

isothiocyanate (FITC)–lectin positive staining in adjacent tissue sections (Hu et al., 2005). 

FITC-labeled lectin (molecular weight 117K) was injected 1 h before collecting the tissues. 

Calculation of MVD and vascular permeability was performed automatically using the imaging 

analysis software Win ROOF (Mitani Corporation, Fukui, Japan). Rat anti-mouse CD31 monoclonal 

antibody clone MEC 13.3 (BD Biosciences, New Jersey, USA) and goat anti-FITC polyclonal 

antibody (Bethyl Laboratories, Inc., Texas, USA) were used in the assay. The MVD for each group 

was evaluated in four tumor samples. 

 

Measurement of PTX concentration in plasma and tissue samples by HPLC 

Sixteen days after the tumor inoculation, 30, 60, or 100 mg/kg of PTX was administered 1 h after 

the administration of 5mg/kg of BV or HuIgG in the MX-1 model. Mice were sacrificed 48 h after 

the PTX administration. Blood, tumor, and liver were collected. Plasma was obtained from the 

blood collected in a tube with sodium heparin by centrifugation at 10000 rpm for 10 min. Sixty 

microliters of plasma was mixed vigorously with 1 ml hexane–ethylacetate (1:1) in a reciprocal 

shaker for 30 min and then centrifuged at 2500 rpm for 10 min; 700 ml of the supernatant was 

evaporated to dryness. Tumor and liver were homogenized in a 19- or 4-fold volume of distilled 

water, respectively; 200 ml of the homogenate was mixed vigorously with 2 ml hexane–ethylacetate 

(1:1) in a reciprocal shaker for 30 min and then centrifuged at 2500 rpm for 10 min. Next, 1.5 ml of 

the supernatant was evaporated to dryness. The extraction residue was reconstituted in 500 ml of 

90% acetonitrile solution, and aliquots of 35 ml were injected into a Lachrom D-7000 series 

high-performance liquid chromatography (HPLC) system consisting of a degasser (L-7610), pump 

(L-7100), programmable autosampler (L-7250), column oven (L-7300), and UV-vis detector 

(L-7420) (Hitachi High-Technologies Corporation, Tokyo, Japan). Chromatographic separation was 

achieved using a Capcell Pak UG120, S5, column (4.6 mm i.d. x 250 mm) with a Guard cartridge 

Capsell UG120, S5 (4.0 mm i.d. x 20 mm) (5 mm particle size, C18; Shiseido Company Limited, 

Tokyo, Japan). Elution was performed using a 15-min linear gradient from 40 to 95% (v/v) of 

acetonitrile. The mobile phase consisted of 95% acetonitrile held for 5 min, and then 40% 

acetonitrile held for 15 min. UV detection was performed at 227 nm. Ethanol, ethyl acetate, hexane, 

and acetonitrile were purchased from Wako Pure Chemical Industries. For pharmacokinetics 
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calculations, 30 mg/kg of PTX was administered 1 h after the administration of 5 mg/kg of HuIgG 

or BV in the MX-1 model. Mice were sacrificed 5 min, 1, 2, 4, 12, 18, 24, or 48 h after the PTX 

administration. Blood, tumor, and liver were treated and PTX concentration was measured by HPLC 

as described above. The mean concentration at each time point was used because of the nonserial 

blood sampling in this study. Pharmacokinetic parameters were calculated with the Watson software 

(Thermo Fisher Scientific Inc., Massachusetts, USA) using the model independent calculation 

method. The apparent terminal half-life (T1/2) was calculated as 0.693/k. 

Twenty-two days after the A549 tumor inoculation, 20 mg/kg of PTX was administered 1 h after 

the administration of 5 mg/kg of HuIgG or BV. Mice were sacrificed 48 h after the PTX 

administration. PTX concentration in the blood, tumor, and liver was analyzed by HPLC. 

 

Statistical analysis 

Statistical analysis for the evaluation of the antitumor activity and concentration of PTX was 

performed using the Wilcoxon test (SAS preclinical package, SAS Institute, Inc., Tokyo, Japan). 

Differences were considered to be significant at P ≤ 0.05. A two-way analysis of variance was used 

to determine the differences in vascular permeability.  
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Results 
 

Antitumor activity of BV as monotherapy and in combination therapy with PTX 

I examined the antitumor activity of BV alone in an MX-1 human breast cancer xenograft model. 

BV at doses of 1.25, 5, or 20 mg/kg or HuIgG at 20 mg/kg as the control was administered. BV 

showed significant antitumor activity at doses of 5 and 20 mg/kg (P ≤ 0.05, Fig. 10a). There was no 

significant decrease in body weight – an indicator of toxicity – during the treatment (Fig. 10b). The 

percentage of tumor growth inhibition after 3 weeks of administration of BV at 1.25, 5, or 20 mg/kg 

was 22, 64, and 61%, respectively. I also evaluated the antitumor activity of BV in combination with 

PTX in the same MX-1 tumor xenograft model. PTX and BV at the doses of 20 and 5 mg/kg, 

respectively, were administered once a week for 3 weeks. On day 22, there were statistically 

significant differences in tumor volume between the control and the groups treated with PTX, BV, 

and PTX-BV. Both PTX and BV significantly inhibited tumor growth (Fig. 11a). In the MX-1 model, 

tumor volume percent change against the control in the PTX and BV groups was 9.02 and 37.5%, 

respectively. Using these values to calculate percent change in the combination results in a change of 

3.38%. However, in practice the tumor volume percent change in the combination group was 4.32%, 

and thus 7.70% lower than the calculated change. Hence, PTX and BV in combination showed 

potent activity, more than merely additive and with no reduction in body weight. There were no 

significant decreases in body weight on day 22 compared with day 1 in any of the groups (Fig. 11b). 

I also examined the antitumor activity of BV 5 mg/kg in combination with PTX 30 mg/kg. Tumor 

growth (Fig. 11c) was delayed because the potent efficacy of the combination resulted in tumor 

volume regression. The time required for tumor volume to reach 1000 mm3 in the control, BV 5 

mg/kg alone, PTX 30 mg/kg alone, and PTX-BV combination group was 11.3, 17.0, 53.1, and 84.9 

days, respectively. The difference in time between BV alone and PTX-BV combination was 67.9 

days, longer than that between the control group and PTX alone (41.8 days). The results indicate 

that BV inhibited tumor growth in combination with PTX. 

 

Increase of PTX concentration in tumors by BV 

To investigate the mechanism of the synergistic activity of PTX-BV combination therapy, I 

measured PTX concentration in the plasma, tumor and liver by HPLC (Fig. 12-14). PTX 

concentration of PTX-BV combination group in 48 h was significantly higher than that of PTX 

alone group (Fig. 13). I examined antitumor activity and PTX concentration in the groups. First, I 

compared the antitumor activity of PTX alone with that of the combination therapy of PTX-BV in 

the MX-1 model (Fig. 15a). Tumor volume in the groups treated with PTX alone at 10, 30, 60, and 

100 mg/kg on day 22 showed dose-dependent tumor growth inhibition. The antitumor activity of 30 
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mg/kg PTX in combination with 5 mg/kg BV was comparable with that of PTX alone at both 60 

and 100 mg/kg. 

The concentration of PTX in the tumor in the mice treated with PTX 30 mg/kg plus BV 5 mg/kg 

was 5.75 ± 0.31 mg/g of tissue and was significantly higher than in the tumor treated with PTX 

30mg/kg alone (4.00 ± 0.85 mg/g of tissue) 48 h after the PTX injection in the MX-1 model (P = 

0.0022, Fig. 15b). The PTX concentration in the tumor treated with PTX 30 mg/kg plus BV 5 mg/kg 

was equivalent to that in the tumor treated with 100mg/kg of PTX. The PTX levels correspond to 

the degree of antitumor activity of PTX alone and PTX-BV. In contrast to the tumor, no remarkable 

differences were observed for PTX concentration in the plasma or liver between the PTX 30mg/kg 

plus BV 5mg/kg group and the PTX 30 mg/kg group. Maximum drug concentration (Cmax) and T1/2 

values were calculated from the mean values of PTX concentration in each group (Table 2). The 

maximum drug concentration time (Tmax) of PTX in the plasma, tumor, and liver were 5 min, 2 h 

and 5 min, respectively. After PTX injection, the PTX concentration was at the lower limit of 

quantification in the plasma at 12 h or later and in the liver at 18 h or later. 

I also examined the effect of BV on PTX concentration in the human lung cancer xenograft 

model, A549, and again found an increase in PTX concentration, further showing the potent 

antitumor activity of the combination of PTX-BV (Fig. 16a). PTX concentrations in the tumor 

treated with PTX 20 mg/kg plus BV 5 mg/kg were significantly higher than those treated with PTX 

alone, as in the MX-1 model (Fig. 16b). 

 

Decrease in the vascular permeability of tumors caused by BV 

Next, I examined the decrease in the vascular permeability of the tumor caused by BV. A tumor 

treated with BV was collected on days 2, 5, and 8. The vascular permeability in the tumor was 

evaluated by the difference between the area with CD31-positive staining and the area with 

FITC–lectin-positive staining in adjacent tissue sections. Typical images from immunohistochemical 

staining and automated image processing using the analysis software Win ROOF are shown in Fig. 

17. BV showed a significant decrease in the vascular permeability of tumor (Table 3). The ratio of 

the vascular permeability of the tumor treated with BV to the control tumor reached 50% by day 5. 

 

Effect of BV or PTX-BV on MVD 

I examined the effect of BV on MVD in the tumor of the MX-1 xenograft model by 

immunohistochemical staining for CD31. MVD on day 5 in the tumor of the BV alone group was 

significantly lower than in the control group (Fig. 18), but a further MVD decrease was not shown 

by the PTX-BV group. MVD in the PTX alone group also did not change significantly compared 

with that of the control group (data not shown). 
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Discussion 
 

In a clinical study, BV in combination with PTX significantly prolonged progression-free 

survival and increased the objective response rate compared with PTX alone in patients with 

metastatic breast cancer (Miller et al., 2007). In my present preclinical study, I also demonstrated the 

synergistic antitumor activity of BV in combination with PTX in a MX-1 breast cancer xenograft 

model and investigated the mechanism of this synergism. 

Using the model, I examined tumor levels of PTX after treatment with this agent to investigate 

the effect of BV on tumors in combination chemotherapy. VEGF has been reported to increase 

vascular permeability and to elevate the IFP in tumors. Theoretically, the delivery rate of 

low-molecular-weight chemotherapeutic agents is reduced in tumors as a result of an increase in IFP 

and, as BV reduces the IFP, the delivery of the chemotherapeutic agents into the tumors is increased 

(Gerber and Ferrara, 2005). Indeed, Wildiers et al. (2003) has reported that A4.6.1 showed a 

tendency to increase the tumor level of CPT-11 in human colorectal cancer xenograft model. 

Dickson et al. (2007) also showed that BV induced increases in the tumor levels of topotecan and 

etoposide in human neuroblastoma xenograft models. In my study, BV treatment significantly 

increased the concentration of PTX in tumor compared with tumors treated with HuIgG. According 

to the elevation of PTX concentration in tumors, the degree of antitumor activity of PTX at 30 

mg/kg administered in combination with BV was equivalent to that of 60 or 100 mg/kg alone. 

Therefore, in the MX-1 model, the synergistic antitumor activity of PTX-BV may be explained by 

the improved delivery of PTX into tumors. 

The delivery of PTX into plasma or liver did not appear to be altered by BV administration. 

Therefore, VEGF produced by MX-1 tumor cells would affect the vascular permeability and the 

delivery of PTX into the tumors locally but not systemically. The following actions reported for BV 

may also be helpful in understanding the mechanism of synergism between BV and 

chemotherapeutic agents: blood vessel normalization (Jain, 2005), vascular permeability decrease 

(Gerber and Ferrara, 2005), and interstitial pressure decrease (Lee et al., 2000; Willet et al., 2004; 

Gerber and Ferrara, 2005). I investigated the change in vascular permeability in tumors as one of the 

parameters of blood vessel normalization by BV treatment and found that BV significantly 

decreased the permeability of the MX-1 tumors. This is the first report that demonstrates both 

increased PTX concentration and improved permeability in tumor by BV in a breast cancer 

xenograft model that also exhibits synergistic antitumor activity of BV in combination with PTX. 

I attempted to measure the change in vascular flow by ultrasonic imaging and in IFP using the 

wick in needle technique (Fandes et al., 1977) in the same MX-1 tumor. Unfortunately, at present, I 

have not established an appropriate evaluation system. No significant evidence was available 
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regarding causality between the decrease in vascular permeability and the increase in drug delivery. 

VEGF has been reported to block vessel maturation such as pericyte coverage (Verheul et al., 2007; 

Lu et al., 2008) and thus examination of vessel maturity is important in the investigation of vessel 

normalization by BV. However, in the present study, I did not explore vessel maturation to clarify 

the mechanism of PTX concentration increase in tumor because the increase in PTX concentration 

in tumor was recognized 49 h after BV treatment (48 h after PTX treatment), whereas I assume the 

time for vessel maturation is longer than 49 h. Further investigation into the mechanisms is needed 

to clarify the synergism. 

Increase of PTX concentration can be caused by the decrease of vessel permeability in tumor 

vessels as described above. However, an alternative explanation is also possible for the PTX 

concentration increase, especially for the T1/2 prolongation of PTX. This involves the lymphatic 

vessel. Although it has been considered that VEGFR-3 signaling contributes to the formation of the 

lymphatic vessel system, VEGF-A, VEGFR-2 and neuropilin have also been reported to function in 

lymphatic vessel formation (Cueni and Detmar, 2006). In consideration of the fact that BV binds to 

VEGF-A, it is possible that lymphatic vessel formation in tumor is further decreased and less PTX 

returns to vessels in the presence of BV. PTX has been shown to reduce MVD in tumors (Grant et 

al., 2003). Therefore, I examined the possibility that PTX could reduce MVD and exert synergistic 

effects with the anti-angiogenic activity of BV. In the MX-1 model, however, PTX did not 

significantly reduce MVD in tumor and showed no significant augmentation of the anti-angiogenic 

activity of BV. These findings suggest that the mechanisms of the synergistic antitumor activity 

observed in the MX-1 model are not related to the additional reduction of MVD by the combination 

therapy.  

In the present study, I demonstrated synergistic antitumor activity of BV with PTX in a breast 

cancer xenograft model. The improved delivery of PTX into the tumor helps to explain the 

mechanism of the synergistic effects of the combination of BV and PTX. Studies to further clarify 

the mechanism are needed. 
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General Discussion 
 

It has long been recognized that construction of blood vessels in the tumors is necessary to 

supply sufficient nutrition and oxygen for tumor cells to proliferate. VEGF is an important factor in 

tumor angiogenesis and growth (Ferrara et al., 1992; Ferrara and Davis-Smyth, 1997; Ferrara, 2004; 

Hoeben et al., 2004). It is overexpressed in tumor cells compared to those in the normal tissues 

(Ferrara and Davis-Smyth, 1997; Hanrahan, 2003). Hypoxia in tumor triggers tumor cells to secrete 

VEGF which induces angiogenesis through signaling to the VEGFR in the blood vessels 

surrounding the tumor (Semenza, 2003; Ke and Costa, 2006). As to the cancer therapy, 

chemotherapeutic agents have been used for a long time. However, they cause severe side-effects 

because their activity is not specific to tumors. Thus, many molecular targeted agents, which are 

specific to molecular targets amplified or overexpressed in tumor cells, have been developed 

recently to limit toxicity and to improve the efficacy of cancer therapy, and are now used together 

with the conventional therapies. BV is the first molecular targeted agent for VEGF (Ferrara et al., 

2004) and is expected to suppress tumor growth by inhibiting angiogenesis via VEGF-VEGFR 

signaling.  

In clinical studies, BV in combination with chemotherapeutic agents significantly prolonged 

progression-free survival and increased the objective response rate compared with chemotherapy 

alone in patients with CRC, NSCLC and BC (Hurwitz et al., 2004; Kabbinavar et al., 2003; Sandler 

et al., 2006; Miller et al., 2007). However, it is not clear why BV enhances the efficacy of the 

chemotherapeutic agents. To investigate the mechanisms of this synergistic effect of combination 

treatments, I established the animal models suitable in detecting antitumor activity of BV both as a 

monotherapy and as combination therapies with chemotherapeutic agents. BV alone showed 

significant antitumor activity in three human colorectal cancer xenograft models (COL-16-JCK, 

COLO 205, and CXF280). The MVD in tumors treated with BV was lower than that of the control 

on COL-16-JCK model. Antitumor activity of Cape-BV combination group was significantly higher 

than that of each agent alone (COL-16-JCK, COLO 205). Moreover, BV further enhanced the tumor 

suppressing activity of Cape-Oxali in COL-16-JCK xenograft model. 

The synergistic effects of BV with chemotherapy have been attributed to the reduction in 

vascular permeability with normalization of the vasculature by obstructing the VEGF-VEGFR 

signaling. Vascular permeability reduction causes decrease of IFP and, consequently, 

chemotherapeutic agents are transferred abundantly to tumor cells in combination therapy of BV 

with chemotherapeutic agents (Jain, 2001; Gerber and Ferrara, 2005). The individual processes 

mentioned above have been fragmentally reported. For example, Wildiers et al. (2003) described 

that A4.6.1 showed a tendency to increase the tumor level of CPT-11 in human colorectal cancer 
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xenograft model. Dickson et al. (2007) also showed that BV induced increases in the tumor levels of 

topotecan and etoposide in human neuroblastoma xenograft models. Lee et al. (2000) has reported 

the reduced IFP in a xenograft model and Willet et al. (2004) showed the IFP decline 12 days after 

BV treatment in patients with rectal cancer. However, there is no report that verifies all of these 

processes. 

In this study, taking the above hypothesis into account, I measured the PTX concentration in 

tumor and change of vascular permeability in the presence of BV in a MX-1 human breast cancer 

xenograft model to explain why BV showed synergistic antitumor activity with chemotherapeutic 

agents. BV treatment significantly increased the concentration of PTX in the tumor. Therefore, in the 

MX-1 model, the synergistic antitumor activity of PTX-BV may be explained by the improved 

delivery of PTX into tumors. In addition, BV significantly decreased the vascular permeability of 

the MX-1 tumors. These results support the idea that BV inhibition of VEGF-VEGFR signaling 

results in vascular permeability reduction and cause the IFP decrease in tumor, which in turn 

contributes to an increase of PTX concentration in tumors (Fig. 19). The only unverified point is the 

IFP change followed by permeability reduction. This is an issue to be solved in the future. Since 

VEGF has been reported to block vessel maturation such as pericyte coverage (Verheul et al., 2007, 

Lu et al., 2008), examination of vessel maturity is also important in the investigation of vessel 

normalization by BV. Currently, it is not clear whether the vessel maturity is correlated with 

permeability in tumor. Evaluation of pericyte coverage by BV is another important issue to 

comprehend the role of VEGF-VEGFR signaling. 

It should be noted that there is an alternative explanation for the PTX concentration increase: the 

T1/2 prolongation of PTX. It is considered the possibility of MVD and lymphangiogenesis inhibition 

by BV and decline of the PTX recovery from tumors to microvessel or lymphatic vessel. Although it 

is generally accepted that VEGFR-3 causes the formation of the lymphatic vessel system 

(Karkkainen et al., 2002), there is a report that VEGF-A, VEGFR-2 and neuropilin also function in 

lymphatic vessel formation (Cueni and Detmar, 2006). VEGF-A potency induces proliferation of 

lymphangiogenesis in vitro (Hirakawa et al., 2003), and injection of adenoviral murine VEGF-A164 

resulted in pronounced and persistent in vivo lymphangiogenesis in mouse ear skin (Nagy et al., 

2002). Targeted overexpression of murine VEGF-A164 in the skin of transgenic mice enhanced 

lymphangiogenesis as well as angiogenesis during tissue repair and in skin inflammation (Kunstfeld 

et al., 2004; Hong et al., 2004). Since BV binds to VEGF-A, lymphatic vessel formation in tumor 

can be further decreased by BV so that less PTX returns to vessels. This possibility awaits further 

investigation. 

The timing of BV treatment is also a matter of consideration. In my study, BV was administered 

just 1 h prior to PTX administration, expecting the immediate improvement of the vessel 
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permeability. Dickson et al. administered chemotherapeutic agents much later (Dickson et al., 2007). 

They injected topotecan or etoposide to mice 1, 3 and 7 days after the BV administration. The 

topotecan concentration of the combination group with BV was significantly higher than that of 

topotecan alone group, when topotecan was administered 3 days after BV treatment. However, this 

elevation was no longer seen on day 7. Meanwhile, etoposide concentration in tumor was elevated 

on day 1. However, this improvement had already declined on day 3. Thus, the tumor concentration 

of medicine was changed depending on the length of prior BV treatment and on the 

physicochemical properties of the medicine as well. Indeed, the greatest difference of permeability 

between control group and BV treatment group was observed on day 5 in my study. Further 

investigation is needed to clear the mechanism of improvement of permeability and tumor 

concentration of medicine. 

Currently, ten antibody medicines, including BV which neutralizes VEGF, are available to treat 

hematological cancer or solid tumor. Generally, two or three anticancer medicines, including low 

molecular agents and antibody medicines, have been used in combination to treat solid tumor. It is 

important to make clear the rationale, why the combination therapy is more effective than the 

monotherapy, not only because I can explain it to patients and doctors but also the knowledge will 

contribute to revealing biological characteristics of the tumor and to further advancements in 

antitumor therapy. This study shows the rationale of BV and PTX combination therapy. Discovering 

the timing of BV administration at which other anticancer agents are maximally concentrated in 

tumor may make it possible to propose a new effective modality of BV combination therapy. 

Furthermore, clarifying the mechanism by which permeability in tumor tissue is improved would 

make the role of VEGF clearer. 

The essential parts of this thesis have been published in the major journals on anticancer 

chemotherapeutic studies (Yanagisawa et al., 2009; Yanagisawa et al., 2010). 
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Table 1. Levels of TP from treatment with BV and VEGF from treatment with Cape in 

COL-16-JCK and COLO 205 xenografts.  

 

HuIgG or BV was administered i.p. twice a week for 3 weeks. Cape was given p.o. daily for 13 days. 

The levels of TP and VEGF in tumor were measured by ELISA. NT: not tested. 

 

 TP level (unit/mg protein)  VEGF level (pg/mg protein) 

Cell line HuIgG  
(4 mg/kg) 

BV  
(4 mg/kg) 

 Vehicle 
 

Cape  
(539 mg/kg) 

COL-16-JCK 2.1 ± 0.7 2.7 ± 5.8  281.2 ± 36.0 272.0 ± 21.3 

COLO 205 8.5 ± 0.6 9.5 ± 2.4  NT NT 
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Table 2. Cmax and T1/2 of PTX in PTX alone or PTX-BV groups in a MX-1 xenograft model. 

 

  
Cmax 

(μg/ml) 
Cmax 

(μg/g tissue) 
 

 
T1/2 
(h)   

Administration 
 

Plasma Tumor Liver Plasma Tumor Liver   

PTX 30 mg/kg + HuIgG 5 mg/kg   60.4 12.9 201 

 

0.952 39.0 1.66  

PTX 30 mg/kg + BV 5 mg/kg 70.0 12.9 226 0.834 68.6 1.46  

∆% 
 

16% 0% 12% -12% 76% -12%   

 

PTX was administered intravenously 1 h after HuIgG or BV was administered intraperitoneally. 

Mice were sacrificed within 5min to 48 h after the administration of PTX. Blood, tumor, and liver 

were collected from each mouse and PTX concentration was analyzed by high-performance liquid 

chromatography. Cmax or T1/2 was calculated from the average of each group (n = 6/group). 
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Table 3. Effect of BV on vascular permeability in MX-1 tumor   

     Permeability (%)      

Administration 
 

Day 2 Day 5 Day 8 
 

p value 

Control (HuIgG 5 mg/kg) 

 

3.05 ± 1.65 3.65 ± 1.37 2.87 ± 1.24 

 

- 

BV 5 mg/kg 2.25 ± 1.05 1.80 ± 1.18 1.80 ± 0.94 0.0315 

 

Statistical analysis of the difference between the control and the BV group was performed using a 

two-way analysis of variance. 
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Figure 1. Growth factor signal pathways and molecular targeted agents. Binding of specific ligands 

that are produced by either tumor cells or by surrounding stromal cells activate growth factor 

receptors. The activated receptors transfer the signals and cause survival, proliferation and invasion 

of tumor cells. VEGF, which is secreted by tumor cells, binds VEGFR. VEGFR leads to the 

activation of intracellular signaling transduction pathways that involves endothelial cell proliferation, 

migration and survival.  
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Figure 2. Outputs of VEGF-VEGFR signaling. VEGF is a glycoprotein with a molecular weight 

of 45,000. Six subtypes of VEGF (VEGF-A, -B, -C, -D, -E and -F) and three receptors (VEGFR-1, 

-2 and -3) are known. Each VEGF subtype binds to multiple VEGFR. Activation of VEGFR-1 

results in angiogenesis and migration of hematopoietic cells, of VEGFR-2, vasculogenesis, 

angiogenesis, permeability and of VEGFR-3, lymphatic formation. 
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Figure 3. Antitumor activity of BV in COL-16-JCK (a), COLO 205 (b) and CXF280 (c) human 

colorectal cancer xenograft models. Mice were randomly divided into 4 groups (n = 5 or 6/group). 

HuIgG or BV was administered i.p. twice a week for 3 weeks. Data points indicate mean values + 

SD of tumor volume or body weight. ○, HuIgG 4.0 mg/kg (control group); ●, BV 0.4 mg/kg; ▲, 

BV 1.2 mg/kg; ■, BV 2.5 mg/kg; ◆, BV 4.0 mg/kg. *P < 0.05 vs. control group. 
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Figure 4. Antitumor activity of BV in combination with Cape in COL-16-JCK human colorectal 

cancer xenograft models. HuIgG or BV was administered i.p. twice a week for 3 weeks and Cape 

was given p.o. daily for 14 days. Data points indicate mean values + SD of tumor volume or body 

weight (n = 6). ○, HuIgG 4 mg/kg (control group); ●, BV 4 mg/kg; ▲, Cape 359 mg/kg; ■, Cape 

359 mg/kg and BV 4 mg/kg. *P < 0.05 vs. control group; **P < 0.05 vs. Cape group; ***P < 0.05 vs. 

BV group. 
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Figure 5. Antitumor activity of BV in combination with Cape in COLO 205 human colorectal 

cancer xenograft models. HuIgG or BV was administered i.p. twice a week for 3 weeks and Cape 

was given p.o. daily for 14 days. Data points indicate mean values + SD of tumor volume or body 

weight (n = 6). ○, HuIgG 4 mg/kg (control group); ●, BV 4 mg/kg; ▲, Cape 269 mg/kg; ■, Cape 

269 mg/kg and BV 4 mg/kg. *P < 0.05 vs. control group; **P < 0.05 vs. Cape group; ***P < 0.05 vs. 

BV group. 



48 
 

 
 

 

 

 

 

0

20

40

60

80

100
Tu

m
or

 g
ro

w
th

 in
hi

bi
tio

n 
(%

)

 
 

 

Figure 6. Tumor growth inhibition (%) of Cape-Oxali in COL-16-JCK. Mice were randomly divided 

into groups (n = 6). Cape (180 mg/kg) was administered p.o. once a day for 14 days. Five mg/kg of 

Oxali was administered i.v. on Day 1. TGI was evaluated on Day 36.Tumor growth inhibition (%) of 

Cape-Oxali in COL-16-JCK. Mice were randomly divided into groups (n = 6). 180 mg/kg of Cape 

was administered p.o. once a day for 14 days. 5 mg/kg of Oxali was administered i.v. on Day 1. TGI 

was evaluated on Day 36. 



49 
 

 
 

 

 

Tu
m

or
 v

ol
um

e 
(m

m
3 )

100

1000

300

3000

1 8 15 22 29 36

Days after treatment started

1 8 15 22 29 36

B
od

y 
w

ei
gh

t (
g)

22.0

26.0

30.0

34.0

*

*

***
**
*

 
 

 

Figure 7. Antitumor activity of BV in combination with Cape-Oxali in COL-16-JCK. HuIgG or BV 

was administered i.p. twice a week for 3 weeks and Cape was given p.o. daily for 14 days. Oxali 

was administered i.v. on Day 1. Data points indicate mean values + SD of tumor volume or body 

weight (n = 6). ○, HuIgG 4 mg/kg (control group); ●, BV 4 mg/kg; ■, Cape 180 mg/kg and Oxali 

5 mg/kg (Cape-Oxali); ◆, Cape 180 mg/kg, Oxali 5 mg/kg, and BV 4 mg/kg. *P < 0.05 vs. control 

group; **P < 0.05 vs. capecitabine-Oxali group; ***P < 0.05 vs. BV group. 
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Figure 8. Images of CD34 staining for MVD in COL-16-JCK. Mice were randomly assorted into 

groups (n = 4). HuIgG or BV was administered i.p. twice a week for 3 weeks. Tumors were 

collected on Day 23 (5 days after the last treatment) and MVD was evaluated. 

Immunohistochemical staining for CD34 using the avidin-biotin-peroxidase complex method was 

performed on 4-μm thick sections of paraffin-embedded formalin-fixed tissue. 
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Figure 9. Effect of BV on MVD. HuIgG or BV was administered i.p. twice a week for 3 weeks. 

MVD was determined by the ratio of the CD34-positive area to the total observation area using 

imaging analysis software, Win ROOF. *P < 0.05 (n = 4). 
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Figure 10 Antitumor activity of BV in the MX-1 human breast cancer xenograft model. Tumor 

volume change (a) and body weight change (b) were shown. Treatment was started 14 days after the 

tumor inoculation. Mice were randomly divided into four groups of six mice. Data points are mean 

plus standard deviation of tumor volume (mm3). ○: control (HuIgG 20 mg/kg), ♦: BV 1.25 mg/kg, 

■: BV 5 mg/kg, ●: BV 20 mg/kg. Asterisks indicate statistically significant differences. *P ≤ 0.05 

versus control group by Wilcoxon test. 

 



53 
 

100

1000

10000

15.0
20.0
25.0
30.0

Days after treatment started 

Tu
m

or
 v

ol
um

e (
m

m
3 )

B
od

y 
w

ei
gh

t (
g)

1 8 15 22

1 8 15 22

*

*

**
***

*

(a)

(b)

(c)

41.8 days

67.9 days

PT
X

 3
0 

m
g/

kg
 

+ 
B

V
 5

 m
g/

kg

PT
X

 3
0 

m
g/

kg

B
V

 5
 m

g/
kg

l

C
on

tr
ol

120

100

80

60

40

20

0D
ay

 a
t 1

00
0m

m
3

of
 tu

m
or

 v
ol

um
e

 

 

 

Figure 11. Antitumor activity of BV in combination with PTX in the MX-1 human breast cancer 

xenograft model. (a and b) Tumor volume and body weight in combination therapy with PTX-BV. 

Treatment was started 14 days after the inoculation of the tumor cells. Mice were randomly divided 

into four groups of six mice for the PTX-BV combination study. Data points: mean plus standard 

deviation (SD) of tumor volume (mm3, a) or body weight (gram, b). ○: control group (HuIgG 5 

mg/kg plus PTX vehicle), ●: BV group (BV 5 mg/kg plus PTX vehicle), ∆: PTX group (HuIgG 5 

mg/kg plus PTX 20 mg/kg), ▲: combination group (BV 5 mg/kg plus PTX 20 mg/kg). Statistically 

significant differences are shown. *P ≤ 0.05 versus control group, **P ≤ 0.05 versus PTX group, 

***P ≤ 0.05 versus BV group by Wilcoxon test. (c) Tumor growth delay by BV treatment. 

Treatment was started 17 days after the inoculation of the tumor cells. Mice were randomly divided 

into four groups of six mice for the PTX-BV combination study. Bars: mean + SD of the day at 1000 

mm3 of tumor volume. 
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Figure 12. PTX concentration in plasma. ○, PTX group (PTX 30 mg/kg plus HuIgG 5 mg/kg); ●, 

PTX-BV group (PTX 30 mg/kg plus BV 5 mg/kg). Data points: mean + SD of PTX concentration 

(µg/mL). n = 6/group. 
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Figure 13. PTX concentration in tumor. ○, PTX group (PTX 30 mg/kg plus HuIgG 5 mg/kg); ●, 

PTX-BV group (PTX 30 mg/kg plus BV 5 mg/kg). Data points: mean + SD of PTX concentration 

(µg/g tissue). n = 6/group.  



56 
 

 
 

 

 

Time after PTX treatment (h) 

4 8 12

300
PT

X
 co

nc
en

tr
at

io
n 

(µ
g/

g 
tis

su
e)

0

200

100

0
16

 
 

 

Figure 14. PTX concentration in liver. ○, PTX group (PTX 30 mg/kg plus HuIgG 5 mg/kg); ●, 

PTX-BV group (PTX 30 mg/kg plus BV 5 mg/kg). Data points: mean + SD of PTX concentration 

(µg/g tissue). n = 6/group.  
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Figure 15. Comparison of PTX concentration in the tumor in MX-1 model. (a) Antitumor activity of 

PTX alone or PTX-BV in MX-1. Mice were randomly allocated to groups (n = 6/group). Bars: 

mean plus standard deviation of tumor volume (mm3) on day 22. Tumor volume of the control 

group on day 1 in Experiments 1 and 2 was 185 ± 50 and 192 ± 77 mm3, respectively. Tumor 

volume of the treatment group on day 1 was equivalent to the volumes for the control groups. (b) 

Concentration of PTX in the tumor. Mice were randomly allocated to four groups of six mice. PTX 

was administered intravenously 1 h after HuIgG or BV was administered intraperitoneally. Mice 

were sacrificed 48 h after the administration of PTX. The tumor was collected from each mouse and 

the PTX concentration was analyzed by high-performance liquid chromatography. *P ≤ 0.05 versus 

PTX alone by the Wilcoxon test. 
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Fugure 16. Combination of BV with PTX and increased PTX in the tumor in the A549 model. (a) 

Antitumor activity of PTX-BV in A549. Mice were randomly allocated to groups (n = 8/group) 32 

days after inoculation. Data points: mean plus standard deviation of tumor volume (mm3). ○: control 

group (HuIgG 5 mg/kg plus PTX vehicle), ●: BV group (BV 5 mg/kg plus PTX vehicle), ∆: PTX 

group (HuIgG 5 mg/kg plus PTX 20 mg/kg), ▲: combination group (BV 5 mg/kg plus PTX 20 

mg/kg). Statistically significant differences are shown. *P ≤ 0.05 versus control group, **P ≤ 0.05 

versus PTX group, ***P ≤ 0.05 versus BV group by Wilcoxon test. (b) Concentration of PTX in the 

tumor. Mice were randomly allocated to two groups of six mice. PTX was administered 

intravenously 1 h after HuIgG or BV was administered intraperitoneally. Mice were sacrificed 48 h 

after the administration of PTX. The tumor was collected from each mouse and the PTX 

concentration was analyzed by high-performance liquid chromatography. *P ≤ 0.05 versus PTX 

alone by the Wilcoxon test. 
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Figure 17. Immunohistochemical analysis of fluorescein isothiocyanate (FITC)–lectin and CD31. 

Mice were randomly divided into six groups of four mice. HuIgG or bevacizumab was administered 

intraperitoneally on day 1. Mice were sacrificed on day 2, day 5, or day 8. The tumors were 

collected from each mouse and the permeability in the tumor was determined from the difference 

between the area with CD31 positive staining and the area showing FITC-lectin-positive staining in 

adjacent tissue sections. The calculation of permeability was performed automatically by the 

imaging analysis software Win ROOF. Green area is FITC-lectin-positive staining and red area is 

CD31-positive staining in permeability images. 
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Figure 18. Effect of BV or PTX-BV on MVD. Mice were randomly allocated to groups (n = 

4/group). PTX vehicle or PTX was administered intravenously on day 1. HuIgG 5 mg/kg (control) 

or BV 5 mg/kg was administered intraperitoneally on day 1. Mice were sacrificed on day 5. The 

tumors were collected from each mouse and the MVD was evaluated. *P ≤ 0.05 versus control by 

the Wilcoxon test. NS, not significant. 
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Figure 19. Hypothesis of how BV in combination with chemotherapy increases antitumor 

activity. In the tumor vessel, permeability is increased by VEGF and the plasma constituent leaks 

easily out of the blood vessel. Vascular permeability caused high IFP in tumor. Chemotherapeutic 

agents are difficult to transfer to tumor cells (A). When BV is treated, it binds to VEGF-A, and 

reduces the vascular permeability in tumor. IFP is declined and chemotherapeutic agents are 

transferred abundantly to tumor cells (B). 

 

 

 

 

 

 

 

 


	カバー.pdf
	1_表紙
	2_Contents
	3_本文

