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It has been argued that high�multiplicity proton�proton collisions at the LHC may exhibit col-
lective phenomena usually studied in the context of heavy�ion collisions, such as elliptic �ow. We
study this issue using DIPSY�a Monte Carlo event generator based on the QCD dipole model.
We calculate the eccentricity of the transverse area de�ned by the spatial distribution of produced
gluons. The resulting elliptic �ow is estimated to be about 6%, comparable to the value in nucleus�
nucleus collisions at RHIC and the LHC. Experimentally, elliptic �ow is inferred from the azimuthal
correlation between hadrons, which receives contributions from collective �ow, and from various
other e�ects referred to as �non�ow�. We discuss how to identify in experiments the signal of �ow
in the presence of large non�ow e�ects.

I. INTRODUCTION

Elliptic �ow is one of the most important phenomena
observed in ultrarelativistic nucleus�nucleus collisions [1�
3]. An Au-Au collision at RHIC produces several thou-
sands of particles. If interactions among these particles
are strong enough they expand collectively like a �uid,
and elliptic �ow is a probe of this collective behavior [4].
The �uid picture is a macroscopic one, which is gener-
ally valid for a large system. For a system as small as a
nucleus, it is an idealization which must be amended in
order to quantitatively understand experimental data [5].
The system formed in proton�proton (pp) collisions is
even smaller. Yet the possibility has been raised that el-
liptic �ow may be seen in pp collisions at the LHC [6�14].
This is actually a quite nontrivial problem which can only
be addressed with a proper understanding of the proton
wavefunction at high energy from QCD, whereas most of
the preceding works [6, 9�13] are based on rather primi-
tive models of the proton. [See, however, [7, 14].] In this
letter, we study this issue using a full Monte Carlo (MC)
model of the collision which implements the BFKL�type
evolution of structure functions, multiple collisions, the
partonic shower and the subsequent hadronization. This
model is brie�y described in Sec. II.

An obvious obstacle to develop collective phenomena
in pp collisions is the low multiplicity of hadrons in the
�nal state. This may be overcome by triggering on high�
multiplicity events. Indeed, it has already been observed
in the 7 TeV run at the LHC [15, 16] that the multiplicity

distribution has a broad tail reaching out to dNch

dη > 30,

and this will be further pronounced in future runs at
14 TeV. Such high�multiplicity events originate from up-
ward �uctuations in the gluon multiplicity inside the pro-
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ton and the subsequent multiple gluon�gluon scatterings.
The �uctuations in the distribution of gluons in the trans-
verse plane then generates nonzero eccentricity of the in-
teraction region even in collisions at vanishing impact pa-
rameter.1 Assuming hydrodynamic evolution for these
high�multiplicity events, we estimate the magnitude of
the resulting elliptic �ow in Sec. III.

Experimentally, elliptic �ow is not measured directly,
but inferred from azimuthal correlations between the pro-
duced particles. These correlations are partly due to el-
liptic �ow, partly due to other e�ects referred to as �non-
�ow� [17]. Non�ow correlations are sizable for peripheral
nucleus�nucleus collisions at RHIC [18], and one expects
them to be even larger in pp collisions, making it a chal-
lenging task to disentangle the �ow contribution. In Sec-
tion IV, we stress the necessity to look at higher�order
cumulants of azimuthal correlations, and suggest how to
identify �ow in light of the experimental and MC results.

II. THE MODEL

Our calculations are based on the MC implementa-
tion of the dipole model developed in Lund [19�24]. The
dipole model by Mueller [25, 26] realizes the leading�
order BFKL evolution of gluons in the transverse coor-
dinate space, which is ideally suited for the computation
of the eccentricity. It is known that the BFKL evolution
generates large event�by�event �uctuations in the gluon
multiplicity [27] as well as characteristic spatial distri-
butions and correlations in the transverse plane [28, 29].
Both of these e�ects are important in properly estimating

1 Previous works considered the �uctuation of `hot spots' [13] and
`�ux tubes' [14]. There the transverse distribution of these ob-
jects was assumed to be random. In our case the transverse
distribution of gluons is governed by the QCD evolution.
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the eccentricity.
For phenomenology, the original leading�order formu-

lation is impractical, and over the years there have been
many improvements of the model. These include the run-
ning of the coupling, energy�momentum conservation,
saturation e�ects, and con�nement e�ects at large dipole
separations. [For details, see [19�22].] The parameters of
the model are determined so that they reproduce a few
observables (such as the total pp cross section) at some
energy. Predictions can then be made for various other
observables at di�erent energies without any further tun-
ing of the parameters.
The MC code that we actually use in the following,

called DIPSY [23, 24], is the most advanced version by
the Lund dipole team which has access to all the ex-
clusive �nal states. In this framework, a typical high�
multiplicity event looks as follows: Before the scatter-
ing each proton develops a cascade of gluons (or equiv-
alently, dipoles) spread in rapidity and the transverse
plane. These gluons, mostly soft ones, then undergo mul-
tiple scatterings. The evaluation of the non�di�ractive
scattering amplitude for the two cascades reduces to that
for individual pairs of dipoles, allowing DIPSY to decide
on an event�by�event basis which dipoles interact. It is
then possible to trace the interacting parton chains back
from the interactions, and the initial state radiation can
be identi�ed. All emissions not connected to the interact-
ing chains are reabsorbed as virtual �uctuations. The ini-
tial state radiation is then passed to ARIADNE [30] that
further splits the dipoles with timelike emissions. After
that the dipoles hadronize through the string fragmen-
tation model in PYTHIA [31, 32], giving the observable
�nal states.

III. ECCENTRICITY AND THE ELLIPTIC

FLOW

In a nucleus�nucleus collision, the participant eccen-
tricity ϵpart is de�ned from the positions (x, y) of partic-
ipant nucleons within the nucleus [3]:

ϵpart ≡

√
(σ2

y − σ2
x)

2 + 4σ2
xy

σ2
y + σ2

x

, (1)

where

σ2
x = {x2} − {x}2,

σ2
y = {y2} − {y}2,

σxy = {x y} − {x}{y}, (2)

and the brackets {· · · } denote averaging over the partic-
ipants in a given event. We shall be interested in the
quantities ϵ{2} and ϵ{4} de�ned by

ϵ{2} ≡
√

⟨ϵ2part⟩ , (3)

ϵ{4} ≡ (2⟨ϵ2part⟩2 − ⟨ϵ4part⟩)1/4 , (4)

where ⟨· · · ⟩ denotes averaging over events in a given cen-
trality bin. Hydrodynamic evolution linearly relates ϵ{n}
and the corresponding elliptic �ow v2{n} measured from
the n�particle azimuthal correlation [33]. [See, however,
a recent study [34] which suggests a possible mixing of
di�erent harmonics due to �uctuations.] An empirical
formula which works at RHIC is [5]

v2{2} = ϵ{2}
(v2
ϵ

)
hydro

1

1 + λ
K0

⟨S⟩
⟨ dN

dη ⟩
, (5)

and a similar relation between v2{4} and ϵ{4}. In (5),
(v2/ϵ)hydro ≈ 0.2 is the ideal hydrodynamics result and
the parameter λ/K0 = 5.8 fm−2 measures the degree of
incomplete equilibration. S is the area of the overlap
region calculated as

S = 4π
√
σ2
xσ

2
y − σ2

xy , (6)

and dN
dη ≈ 1.5dNch

dη is the total hadron rapidity distribu-

tion. [We neglect the small di�erence between the rapid-
ity and the pseudorapidity.]
In pp collisions, we employ the same formulae (1)�(4),

with the averaging in (2) performed for the �liberated�
gluons, i.e., those in the initial state radiation. In doing
so, we apply a rapidity cut such that only gluons which
are separated from the beam directions by more than 2
units of rapidity are included in the averaging (2).2 The
validity of the use of (5) in pp collisions at the LHC is
a priori not clear and requires an explanation. We �rst
note that hydrodynamic simulations show that v2/ϵ as a
function of 1

S
dN
dη falls essentially on the same curve both

at RHIC and at the LHC in spite of the di�erence in en-
ergy by a factor of about 14 [6], and both for Au�Au and
Cu�Cu at RHIC although they di�er in size by a factor
of two [5]. [The parameters (v2/ϵ)hydro and λ/K0 in prin-
ciple depend on the temperature, but their changes are
small due to the softness of the QCD equation of state.]
We then recall the general argument that the applicabil-
ity of hydrodynamics is controlled by the dimensionless
parameter α ≡ λ

K0

S
dN/dη rather than the system size. In

our simulations, the necessary condition α < 1 is well
satis�ed in a broad Nch range even after allowing for
some uncertainty in the parameter λ/K0. On the other
hand, it is hard to imagine hydrodynamic behaviors in
systems smaller than S ∼ 1 fm2 which roughly sets the
border between the hadronic and nuclear scales. We thus

2 We could have included only gluons which are centrally pro-
duced, say, within |η| < 1. However, we �nd it more reasonable
to average over a wider range in rapidity in order to make up
for the lack of the �nal state radiation in the eccentricity calcu-
lation. Noncentral gluons are connected to the central ones by
color strings, and the early stage �nal state radiation from the
noncentral gluons will contribute to the central energy density
(and vice versa) before hydrodynamics starts to operate.
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expect that (5) can be marginally applied for S > 1 fm2,
and this condition is better satis�ed in high�multiplicity
events (see below).
For the actual evaluation of v2, we propose the follow-

ing slight improvement of (5)

(v2{2})2 =
(v2
ϵ

)2

hydro

⟨
ϵ2part(

1 + λ
K0

S
dN/dη

)2
⟩

, (7)

and similarly,

(v2{4})4 =
(v2
ϵ

)4

hydro

{
2

⟨
ϵ2part(

1 + λ
K0

S
dN/dη

)2
⟩2

−

⟨
ϵ4part(

1 + λ
K0

S
dN/dη

)4
⟩}

. (8)

The reason is that in pp collisions the eccentricity ϵ and
the area S �uctuate widely even at �xed dN/dη. Equa-
tions (7) and (8) nicely captures this event�by�event cor-
relation between ϵ and S. Note that it is the squared
value (v2{2})2 (and also (v2{4})4) that directly comes
out of the experimental measurement of �ow via multi-
particle correlations [18]

v22{2}=
⟨{

cos(2(ϕi − ϕj))
}⟩

, (9)

v42{4}=2(v2{2})4−⟨{cos(2(ϕi+ϕj−ϕk−ϕl))}⟩, (10)

where ϕi is the azimuthal angle of the i-th outgoing par-
ticle and averaging over all pairs (and 4-plets) satisfying
some cut requirements is implied. In the case of nucleus�
nucleus collisions, the �uctuations are rather small so
that (7) essentially reduces to the previous formula (5).
We have generated pp events at

√
s =7 TeV and 14 TeV

with randomly chosen impact parameter b⃗, and classi�ed
events in bins of the charged particle multiplicity Nch.
The averaging ⟨· · · ⟩ has been taken in each bin. Unlike in
nucleus�nucleus collisions, in pp collisions the impact pa-
rameter is not measurable, and there is no simple scaling
between the centrality and the multiplicity (not even be-
tween the centrality and the e�ective area S) because of
the �uctuations. Still, the majority of high�multiplicity
events in our MC simulations comes from collisions with
b ≈ 0.
In Fig. 1, we plot the results for ϵ{2}, ϵ{4} and ⟨S⟩ as

a function of Nch within the ALICE acceptance |η| < 0.9
(central detector) at 7 TeV. Events with Nch = 60 typ-
ically have 12 dipole�dipole (gluon�gluon) subcollisions.
We see that the eccentricity is 20�40% in the highest
multiplicity region, similar to the value in semi�central
nucleus�nucleus collisions.
If the rescatterings among liberated partons (not in-

cluded in DIPSY) are strong enough, then the nonzero
ϵ will give rise to v2 according to the modi�ed formulae
(7), (8). We plot the results for v2{2} and v2{4} in Fig. 2.
We see that v2 is more or less constant and is about 4�
6%. This is comparable to the value in nucleus�nucleus

collisions at RHIC and at the LHC. We discuss the impli-
cations of these results below. The Monte Carlo shows no
signi�cant di�erence at 14 TeV (results not shown) even
though high�multiplicity events are then more frequent.
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FIG. 1: (Color online) Predictions for the eccentricity and the
interaction area S [fm2] (×0.1) at 7 TeV versus the charged
multiplicity in the interval |η| < 0.9 at

√
s = 7 TeV.

It is worth noting that DIPSY predicts that the con-
ventional de�nition of the eccentricity

ϵs ≡
σ2
y − σ2

x

σ2
y + σ2

x

, (11)

typically takes a negative value, if the impact parameter
is chosen in the x�direction. This is in stark contrast
to the nucleus�nucleus case where the interaction region
is roughly the geometrical overlap of two colliding nuclei
so that ϵs > 0 always. While ϵs is unmeasurable in pp
collisions, this still illustrates the fact that the origin of
the eccentricity is very di�erent from that in the nucleus�
nucleus case.

IV. DISCUSSION

The rather large value of elliptic �ow v2 ∼ 6% that we
have obtained in the �ow scenario may seem promising
at �rst. However, in practice the observed v2{2} and
v2{4} di�er from the genuine v2 by the so�called non�ow
contribution

(v2{n})n = vn2 + δn , (12)

where δn is the n�particle correlations not associated
with �ow, such as resonance decays and the back�to�
back correlations from hard and semi-hard scatterings.
In nucleus�nucleus collisions, they are relatively innocu-
ous because they scale with the multiplicity as

δn ∼ 1

Nn−1
ch

. (13)
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FIG. 2: (Color online) Predictions for v2{2} and v2{4} calcu-
lated from Eqs. (7) and (8) versus the charged multiplicity in
the interval |η| < 0.9 at

√
s = 7 TeV. The error bars are from

statistics only.

In pp collisions, we expect that the non�ow contribution
is less suppressed than (13) due to various initial and
�nal state e�ects. Most importantly, high�multiplicity
events often contain several jets and mini-jets, and par-
ticles within a pair of recoiling jets typically give a large
contribution cos 2(ϕi−ϕj) ≈ 1 to the average (9). There
are also correlations from the initial state partonic evo-
lution which is initiated by only a few partons. These
correlations tend to enhance the non�ow contribution δn,
making the isolation of vn2 di�cult for small values of n.
Indeed, the ALICE collaboration has found that

v2{2, 4} decrease slowly with Nch [35]. This slow de-
crease is also observed in Monte Carlo simulations, mean-
ing that the scaling (13) does not hold for pp collisions. In

the highest multiplicity events, v2{2} ≈ 0.13 [35] which
is twice as large as the �ow contribution v2 ≈ 0.06. This
implies that the two�particle correlation is dominated by
non�ow e�ects.
This situation in pp collisions necessitates us to look

at higher order cumulants v2{n} with n ≥ 4 which
are by de�nition insensitive to two�particle non�ow
correlations. In this regard it is very interesting to notice
that the ALICE collaboration [35] also reported the
measurement of v2{4} in pp, and found that the right�
hand�side of (10) is negative. [(v2{4})4 ≈ −10−4 in the
highest multiplicity bins.] The same phenomenon can be
seen in MC simulations like PYTHIA (as done in [35])
and also in DIPSY without assuming �ow. On the other
hand, as shown in Figs. 1 and 2, (ϵ{4})4 and (v2{4})4
are positive in the �ow scenario at large Nch. Leaving
the origin of negative four�particle non�ow correlations
for future work, we conclude with a prediction that, if
there is �ow in the large Nch region, then the fourth
order cumulant (10), which is negative in the absence of
�ow, will eventually turn positive.
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