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Abstract. Excitons comprising of electron-hole pairs are one of representing many-
body effects in carbon nanotubes (CNTs) and well known to affects optical properties
of CNTs. Besides the excitons, another fascinating many-body effect in CNTs is
magnetism that is inherent in CNTs with certain imperfections, such as adsorbents,
defects, and interfaces, in their hexagonal atomic network. In the present study, we
report the interesting interplay between these two many-body effects in CNTs: The
localized spins originated from imperfections in CNTs can couple to the excitons and
change the spin state of excitons. We show that the interaction can be written as
the spin–spin interaction expressed by the Kondo-like Hamiltonian. Our calculation
reveals that the interaction induces mixing between the singlet and triplet excitons
and that this mixing produces optically activated triplet excitons. The results solves
a recent mystery regarding the microscopic origin of unexpected behavior in the
photoluminescence spectra of CNTs.
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1. Introduction

In the past two decades, nanoscale carbon cylinders known as carbon nanotubes

(CNTs) have been attracting great interest due to their unique physical properties

that originate from their atomic network that has a quasi-one-dimensional honeycomb

structure [1]. One of the fascinating properties of CNTs is the strong correlation between

photoexcited carriers due to the enhanced Coulomb interaction caused by their one-

dimensional structure. Consequently, photoexcited electrons and holes are strongly

attracted to each other and form excitons that have binding energies of up to a few

hundred millielectronvolts [2, 3, 4]. The high binding energies of these excitons are

potentially valuable for studying fundamental excitonic physics and for utilizing CNTs

in optoelectronic devices. Besides the excitons, another intriguing aspect of CNTs is

the appearance of the spin polarization associated with modulation of the π electron

network of CNTs due to imperfections such as defects, adatoms, and edges [5, 6, 7, 8, 9].

In this paper, we will unify these unique concepts in CNTs and show that the

unification drastically changes the optical properties of CNTs, especially of the spin

states of excitons. For this purpose, we develop a theory of excitons in defective CNTs.

In this model, the defects are modeled in terms of polarized spins associated with

localized states near the defects and an exciton then interacts with these localized spins.

Using the tight-binding approximation, we calculate the absorption spectra by solving

the Bethe–Salpeter equation. The primary result of the present work is that the triplet

dark excitons become optically active by the exchange interaction between excitons and

the localized spins at defect sites without the spin-orbit interaction. It is well known

that the spin state of optically accessible excitons consists of the anti-parallel spins of

a electron and hole pair, i.e., the singlet state, while optical excitation of excitons with

the parallel spins, i.e., the triplet excitons, is forbidden by the spin selection rule for

the materials with the weak spin-orbit interaction such as semiconducting CNTs. The

model developed here may give rise to a new field of low-dimensional sciences for hybrid

systems consisting of excitons and localized spins induced by defects.

2. Localized spins produced by vacancies and adatom impurities

We consider the polarized electron spins induced by defects, rather than the defects

themselves. Defects such as vacancies and adatoms eliminate π electrons in the CNT,

forming holes in the topological π network. CNTs have two kinds of atomic sites (i.e.,

they have a bipartite lattice) so that all atomic sites can be classified into one of two

sublattices, A and B. Imperfections induce an imbalance between the numbers of these

two carbon sublattice sites. Lieb’s theorem states that bipartite networks possess a total

electron spin S corresponding to the difference in the numbers of the two sublattices

S = (NA − NB)/2 [10, 11, 12]. Early theoretical studies demonstrated that defects in

π-network CNTs induce half-filled non-bonding electron states at the Fermi level [13]

resulting in spin polarization near the Fermi level [5, 6, 7, 8, 9]. We thus expect that
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Figure 1. Schematic representation of the flipping process of exciton spins by the
localized spin at the defect site. The localized spins around defects interact with
excitons, resulting in mixing of singlet and triplet excitons.

these localized spins around defects interact with excitons resulting in mixing of singlet

excitons and triplet excitons by flipping the spins of excitons (Fig. 1).

3. Interaction between excitons and localized spin

To derive the effective Hamiltonian for the interaction between an exciton and a localized

spin, we start with the following Hamiltonian representing the exchange interaction

between conduction (valence) electrons of excitons and the localized state at defect

sites.

Hex = −
∑

m=c,v

∑
k,σ

Jmc†km,σm
ck′

m,σ′
m
f †

i,σ′fi,σδσm,σδσ′
m,σ′ , (1)

where ckc(v),σ is the annihilation operator for conduction (valence) electrons and fi,σ

is the annihilation operator for a non-bonding state at a defect site i. σ indicates

the up spin (↑) and down spin (↓). The exchange integral Jc(v) is given by Jc(v) ≡∫
drdr′ ψ∗

kc(v)
(r)φ∗

imp(r
′)v(r− r′)φimp(r)ψk′

c(v)
(r′), where ψkc(v)

is the wave function of the

conduction (valence) bands and φimp is the wave function of a non-bonding state at a

defect site.

The exchange Hamiltonian Eq. (1) can be expressed in terms of the spin operators

for conduction and valence electrons and for the localized non-bonding states:

Hex = −Jc + Jv

2

∑
kk′σ

c†kσck′σ − (Jcsc − Jvsv) · S, (2)

where sc(v) ≡
∑

k,k′
∑

σ,σ′ c†k,σσσ,σ′ck′,σ′ is the spin of conduction (valence) electrons and S

is the spin of the localized state. σ are the Pauli matrices. This Hamiltonian consists of

a spin-independent term (the first term) and a spin-dependent term (the second term).

The latter term describes the exchange interaction between the spins of electrons or

holes consisting of excitons and the localized spin, which we denote by Hex-sp:

Hex-sp =
S+

N

∑
k,k′

(Jcc
†
kc↓ck′c↑ − Jvc

†
kv↓ck′v↑)

+
S−

N

∑
k,k′

(Jcc
†
kc↑ck′c↓ − Jvc

†
kv↑ck′v↓)
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+
Sz

N

∑
k,k′

[
Jc(c

†
kc↑ck′c↑ − c†kc↓ck′c↓)

− Jv(c
†
kv↑ck′v↑ − c†kv↓ck′v↓)

]
. (3)

where S+ ≡ f †
↑f↓, S− ≡ f †

↓f↑, and Sz ≡ (f †
↑f↑− f †

↓f↓)/2. For convenience, we denote the

first, second, and third terms of Eq. (3) as H+
ex-sp, H−

ex-sp, and Hz
ex-sp, respectively. The

Hamiltonian given in Eq. (3) is known as the Kondo exchange Hamiltonian. Recent

advances in spintronics have revealed that this type of exchange interaction induces

various interesting phenomena in optical devices including photoinduced magnetic

order [14] and the optical RKKY interaction between localized spins [15].

4. Singlet-triplet mixing

Next, we investigate how the spin–spin interaction, Eq. (3), affects exciton states. We

write exciton states as |α,K〉, where α denotes the spin singlet state or three triplet

states and K denotes the momentum of the center of mass of the exciton. Using this

notation, exciton states with finite momenta Q can be written as

|S,Q〉 =
1√
2

∑
q

ZS
qc,(q−Q)v

× (c†qc↑c(q−Q)v↑ + c†qc↓c(q−Q)v↓)|g〉, (4)

|T1, Q〉 =
1√
2

∑
q

ZT1

qc,(q−Q)v

× (c†qc↑c(q−Q)v↑ − c†qc↓c(q−Q)v↓)|g〉, (5)

|T2, Q〉 =
∑
q

ZT2

qc,(q−Q)vc
†
qc↑c(q−Q)v↓|g〉, (6)

|T3, Q〉 =
∑
q

ZT3

qc,(q−Q)vc
†
qc↓c(q−Q)v↑|g〉, (7)

where |g〉 is the vacuum for excitons. The exciton amplitudes Zn
qc,(q−Q)v in Eqs. (4)–(7)

are obtained by solving the Bethe–Salpeter equation [2, 4, 16, 17]:

(εkc − εkv)Z
n
kc,kv

+
∑

k′
c,k′

v

Kk′
c,k′

v ;kc,kvZ
n
k′

c,k′
v

= EnZn
kc,kv

, (8)

where En is the exciton energy of the nth state and Kk′
c,k′

v;kc,kv is the Coulomb

interaction kernel that consists of exchange and screened-direct terms. The quasiparticle

energy εkc and the quasihole energy εkv are calculated by applying the random-phase

approximation [2, 16, 17]. For the Coulomb potential between π orbitals, we employed

the Ohno potential V (r) = U/κ
√

(4πϵ0
e2 U |r|)2 + 1 with U = 11.3 eV [4, 16, 17]. The

dielectric function κ = 1.8 for vacuum was chosen [18] to incorporate screening effects

by σ bands and the surrounding environment. The calculations were performed under

the tight-binding approximation taking nearest-neighbor hopping of 3.0 eV into account.

By the first-order perturbation on the spin–spin interaction of Eq. (3), the singlet
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and triplet excitons become

|S̃, 0〉 = |S, 0〉 +
3∑

i=1

∑
Q

|T1, Q〉〈T1, Q|Hex-sp|S, 0〉
ETi

Q − ES
0

, (9)

|T̃i, Q〉 = |Ti, Q〉 + |S, 0〉〈S, 0|Hex-sp|Ti, Q〉
ES

0 − ETi
Q

, (10)

where ES
0 and ETi

Q (i = 1, 2, 3) are the energies of the singlet and triplet excitons,

respectively. As shown by the second terms in Eq. (9) and Eq. (10), a singlet exciton

acquires a triplet character, whereas a triplet exciton acquires a singlet character.

The matrix elements of Hex-sp for the singlet exciton state and three triplet exciton

states with a momentum of Q, |Ti, Q〉 (i = 1, 2, 3) are derived as follows:

〈T1, Q|Hz
ex-sp|S, 0〉 =

JSz

N

∑
k

ZT1∗
(k+Q)c,kvZ

S
kc,kv, (11)

〈T2(3), Q|H−(+)
ex-sp |S, 0〉

= −
(Jc + Jv)S−(+)√

2N

∑
k

Z
T2(3)∗
(k+Q)c,kvZ

S
kc,kv, (12)

where we defined J ≡ Jc − Jv as the difference between the exchange integrals. In

these calculations, the localized spin S is treated as a classical spin. Although the

spin selection rule permits the above matrix elements to have finite values, numerical

calculations show that the matrix elements between the singlet and triplet excitons

〈T1, Q|Hex-sp|S, 0〉 have a non-zero value while the other matrix elements vanish for any

finite Q. All the matrix elements are exactly zero by the orthogonality relation of the

exciton wave function when the momentum of the triplet excitons is zero. Therefore,

mixing occurs only between the singlet exciton |S, 0〉 and the triplet exciton |T1, Q ̸= 0〉
by the spin–spin interaction under the condition, J = Jc − Jv ̸= 0, which strictly

holds for CNTs and other graphene-related materials. Hereafter, we use J as a control

parameter to enable more general discussion of various polarized spin states induced by

non-bonding states. The extent of these non-bonding states strongly depends on the

shapes and sizes of the defects.

5. Absorption spectra

To calculate the absorption spectra, we need the matrix elements of the optical transition

W S
ab ≡ 〈S̃, 0|Hop|g〉 and W T1

ab (Q) ≡ 〈T̃ , Q|Hop|g〉 where Hop is the exciton–photon

interaction [19]. These are calculated using the perturbed states derived from Eqs. (9)

and (10):

W S
ab =

∑
k

ZS
kc,kv

Dk

ES
0

, (13)

W T1
ab (Q) = JSz

∑
k

ZT1∗
(k+Q)c,kvZ

S
kc,kv

ES
0 − ET1

Q

∑
q

DqZ
S∗
qc,qv

ES
0

,

(14)
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Figure 2. Absorption spectra of (14, 0), (17, 0), and (20, 0) CNTs. The exchange
energy is J = Jc − Jv = 5 meV and the defect concentration is c = 5%. The dashed
line indicates the triplet exciton energy. Broadening is set to 1 meV.

where Dkc,kv = 〈kc|z|kv〉 is the dipole matrix element between the conduction and

valence bands. The polarization axis of the laser beam is set to be parallel to the

CNT axes (i.e., the z-axis) because this polarization configuration maximizes the optical

absorption of the laser beam by the CNTs.

Without the mixing mechanism between singlet and triplet excitons, only the singlet

exciton has a finite probability for the optical transition in Eq. (13). However, due

to the spin–spin interaction, the perturbed triplet exciton has the singlet component

represented by the second term in Eq. (10) and it can couple to the ground state by the

exciton–photon interaction. Thus, the triplet dark exciton becomes optically allowed.

This is analogous to the mechanism for the appearance of phonon side bands [20, 21]. In

this case, the exciton–phonon interaction connects a bright exciton with zero momentum

to a dark exciton with finite momentum, making the finite-momentum exciton optically

active.

Using Eqs. (13) and (14), the absorption spectrum is given by:

α(h̄ω) ∝
∣∣∣W S

ab

∣∣∣2 δ(h̄ω − ES)

+
∑
Q

∣∣∣W T1
ab (Q)

∣∣∣2 δ(h̄ω − ET1
Q ), (15)

where h̄ω is the photon energy. The first term originates from the optical transition

of the singlet exciton and the second term is due to the triplet exciton intermediated

by the singlet exciton. For the second term in Eq. (15), we should use the average

impurity position and the average localized spin direction by assuming paramagnetism.

This gives the factor cS2
z = cS(S + 1)/3, where c is the defect concentration.

Figure 2 shows the calculated absorption spectra for (14, 0), (17, 0), and (20, 0)

CNTs for J = 5 meV, S = 1/2, and a defect concentration of c = 5%. These spectra

clearly show the triplet exciton peak regardless of diameter of CNTs in addition to

the singlet main peak. An optical transition between the ground and triplet states is

possible through the singlet state in the perturbed triplet state |T̃1, Q〉. The satellite

peak is asymmetric because triplet excitons with finite momenta that exceed the bottom
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Figure 3. Spectral weight transfer of (20, 0) CNTs as a function of J = Jc − Jv. The
defect concentration is set to c = 5%.

of the energy band are excited. This asymmetric spectral shape differs from those for

the CNTs with the enhanced spin-orbit interaction or the encapsulated ferromagnets,

whose spectral shapes are symmetric [22, 23]. We also calculated the ratio of the spectral

weight Itriplet/Isinglet for (20, 0) CNTs as a function of J (see Fig. 3). This result shows

that the spectral weight of the triplet exciton exceeds 20 % when J = 10 meV and c = 5

%. The spectral weight varies linearly with the defect concentration and the calculated

results can be fitted by the phenomenological expression: Itriplet/Isinglet(%) ≅ 0.0023cJ2.

6. Discussion

The theory proposed in the present work resolves the recent outstanding problem

regarding the satellite peak observed by photoluminescence (PL) experiments. PL

measurements using high-intensity laser irradiation [24, 25] or atomic hydrogen

exposure [26] have revealed the presence of a satellite peak in addition to the main

peak of the spin-singlet bright exciton. Based on experimental studies, these satellite

peaks have been ascribed to triplet dark excitons, which neither absorb nor emit light

in pristine CNTs. The experiments show that the photoactive triplet excitons are

commonly generated regardless of defect types so that this indicates the underlying

universal physics that makes the triplet dark excitons optically allowed in defective

CNTs. The theory developed in the present paper can be used for explaining all the

experimental results since the theory covers both vacancies generated by high-intensity

laser irradiation [24, 25] and adatoms produced by atomic hydrogen exposure [26], which

are equivalent to each other from the topology of the π-network.

7. Conclusions

In summary, we have studied the optical properties of CNTs in terms of the effective

interaction between excitons and localized spin near defects that are inherent in one-
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dimensional bipartite networks. Our analysis is based on a model Hamiltonian and

provides a unified theory for the microscopic mechanism for optical activation of triplet

dark excitons. The satellite peak is attributed to the triplet exciton and it appears in

the absorption spectra due to mixing between the singlet and triplet exciton states by

the spin–spin interaction. Our calculation not only solves a recent important problem

in the optical properties of CNTs but it also extends our understanding of many-body

physical phenomena caused by the interaction between excitons and localized spins that

are inherent in low-dimensional materials such as CNTs.
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69, 155422 (2004).
[8] Y. Ma, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, New. J. Phys. 6, 68 (2004).
[9] Y. Ma, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, Phys. Rev. B 72, 085451 (2005).

[10] H. C. Longuet-Higgins, J. Chem. Phys. 18, 265 (1950).
[11] A. A. Ovchinnikov, Theoret. Chim. Acta 47, 297 (1978).
[12] E. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
[13] M. Igami, T. Nakanishi, and T. Ando, J. Phys. Soc. Jpn. 68, 3146 (1999).
[14] H. Ohno, Science 281, 951 (1998).
[15] C. Piermarocch, P. Chen, L. J. Sham, and D. G. Steel, Phys. Rev. Lett. 89, 167402 (2002).
[16] T. Ando, J. Phys. Soc. Jpn. 75, 024707 (2006).
[17] J. Jiang, R. Saito, Ge. G. Samsonidze, A. Jorio, S. G. Chou, G. Dresselhaus, and M. S. Dresselhaus,

Phys. Rev. B 75, 035407 (2007).
[18] R. B. Capaz, C. D. Spataru, S. Ismail-Beigi, and S. G. Louie, Phys. Status Solidi B 244, 4016

(2007).
[19] J. Jiang, R. Saito, K. Sato, J. S. Park, Ge. G. Samsonidze, A. Jorio, G. Dresselhaus, and M. S.

Dresselhaus, Phys. Rev. B 75, 035405 (2007).
[20] V. Perebeinos, J. Tersoff, and P. Avouris, Phys. Rev. Lett. 94, 027402 (2005).
[21] O. N. Torrens, M. Zheng, and J. M. Kikkawa, Phys. Rev. Lett. 101, 157401 (2008).
[22] S. Konabe and K. Watanabe, Phys. Rev. B 83, 045407 (2011).
[23] S. Konabe and S. Okada, Appl. Phys. Lett. 98, 073109 (2011).



Effects of localizes spins on excitons in CNTs with imperfections 9

[24] H. Harutyunyan, T. Gokus, A. A. Green, M. C. Hersam, M. Allegrini, and A. Hartschuh, Nano
Lett. 9, 2010 (2009).

[25] R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Phys. Rev. B 81, 033401 (2010).
[26] K. Nagatsu, S. Chiashi, S. Konabe, and Y. Homma, Phys. Rev. Lett. 105, 157403 (2010).


