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A Relaxed Matrix Inversion Method for Retrieving Water Constituent 

Concentrations in Case II Waters: the Case of Lake Kasumigaura, Japan 

 

Abstract 

The matrix inversion method (MIM) is an effective algorithm for estimating water constituent 

concentrations in case II waters. To apply this method, appropriate and accurate specific inherent 

optical properties (SIOPs) for each constituent in water are essential. However, many routine 

observations of lake water quality do not in fact provide SIOPs, thus limiting the application of the 

MIM. In this study, an alternative MIM method based on linear matrix inversion theory was 

proposed to relax the requirement of SIOPs measurement. For this, so-called ESIOPs (Estimated 

SIOPs) were first derived by an unusual application of MIM based on adequate calibration samples; 

then the water constituent concentrations for the whole study area were retrieved by the standard 

application of MIM based on the derived ESIOPs. For each calibration sample, measurement of the 

reflectance spectrum and corresponding water constituent concentrations, which can be obtained 

from periodical satellite data and routine field surveys, is required. The performance of the proposed 

method was evaluated using the simulation data from Hydrolight and three MEdium Resolution 

Imaging Spectrometer Instrument (MERIS) images. The results showed that this method yielded 

satisfactory estimations of the water constituent concentrations for the noise-contaminated 

simulation datasets. For MERIS data in our study area (Lake Kasumigaura, Japan), the average bias 

(mean normalized bias, or MNB) and relative random uncertainty (normalized root mean square 

error, or NRMS) were in the range of -11.2% to 3.4% and 4.8% to 29.7% for each water constituent 
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concentration. These findings imply that the algorithm proposed in this study is theoretically 

reasonable and practically applicable. 

 

Index terms— Matrix inversion method, case II waters, estimated SIOPs, routine observations 

 

 

I. Introduction 

Water quality monitoring is a critical requirement for water resource management, which is 

important for supporting sustainable development [1]. Remote sensing techniques are very useful 

for such monitoring, in terms of being able to cover large spatial areas at very frequent intervals. 

From the remote sensing perspective, global waters can be generally divided into two classes: case 

I and case II waters [2]. Case I waters are those dominated by phytoplankton (e.g. open oceans), 

whereas case II waters are waters influenced not only by phytoplankton and related particles but 

also by other substances (notably inorganic particles in suspension and yellow substances) that 

vary independently of phytoplankton (e.g., some coastal and inland waters) [3]. The remote 

sensing of case II waters has been far less successful than that of case I waters, mainly due to the 

complex interactions among optically active substances in the former [4-6]. 

Significant efforts have been made to improve the accuracy of the estimation of water quality 

for case II waters. These efforts include the use of derivative values of reflectance spectra [7], 

examination of the band ratio of near-infrared reflectance and red reflectance [4, 6, 8], the 

conceptual three-band model [9], the matrix inversion method (MIM) [10, 11], the use of spectral 
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mixture analysis techniques[12-14], the use of non-linear optimization techniques based on a 

radiative transfer model [15, 16], and others. 

Among these approaches, the MIM, which is based on a direct inversion of a bio-optical model, 

is simple and effective. Since it was first proposed by Hoge and Lyon [10], the MIM shows great 

potential for retrieving water constituent concentrations in case II waters with high estimation 

accuracy. For example, Hoogenboom et al. [11] successfully applied it in airborne hyperspectral data. 

Brando and Dekker [17] validated the effectiveness of the MIM with the space-borne hyperspectral 

data known as EO-1/Hyperion data. Giardino et al. [18] successfully applied MIM to the 

EO-1/Hyperion data to assess the water quality in Lake Garda, Italy, with the satisfactory result that 

the correlation coefficients between the in situ collected and Hyperion-derived concentrations were 

larger than 0.75.  

The key factor in the successful application of the MIM is whether accurate and appropriate 

specific inherent optical properties (SIOPs) can be obtained for each water component. However, in 

two types of circumstances, the SIOPs are unavailable for many applications. First, the instruments 

for measuring the SIOPs such as AC-9 and Hydroscat may not be available to a particular research 

group. Second, in some cases a post-session analysis needs to be carried out, but the SIOPs were not 

collected at those times. Moreover, long-term variability of the SIOPs in a lake may occur. For 

example, the SIOPs of Lake Geneva, one of the largest lakes in Western Europe, significantly shifted 

during the period from 2003 to 2007 [19]. The errors included in the SIOPs would significantly 

decrease the accuracy of the MIM [20]. Therefore, even if the SIOPs data have begun to be collected 

in water areas, it is still questionable whether the present-day SIOPs data can be used to perform 
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MIM for past decades. As a result, the usefulness of the MIM is greatly limited in many applications 

where SIOP measurements are not available, especially in the case of post-session studies.  

By contrast, concentrations of water constituents such as chlorophyll-a, total suspended solids 

(TSS), and dissolved organic carbon (DOC) are routine measurements for many lakes. In the case of 

Lake Kasumigaura (the second largest lake in Japan), these data have been routinely collected by the 

National Institute for Environmental Sciences (NIES) every month at 10 sites since the 1970s. 

Meanwhile, satellite sensors such as Coastal Zone Color Scanner (CZCS), Sea-viewing Wide 

Field-of-view Sensor (SeaWiFS), MODerate resolution Imaging Spectroradiometer (MODIS), and 

MEdium Resolution Imaging Spectrometer Instrument (MERIS) have provided remote-sensing 

reflectance every day or every 3 days since 1978. Combining these routine measurements and 

satellite data can produce a long-term understanding of distributions and trends of water quality 

parameters in the past. This would be of great help for effective and sustainable management of the 

lake’s water.  

The objective of this study was to propose an alternative version of the MIM. The proposed 

method requires only routine measurements and satellite data as inputs, and does not require the 

measurement of SIOPs for each water component. The performance of the proposed method was 

first evaluated by a sensitivity analysis based on a set of simulation data; the applicability of the 

proposed method was then verified in Lake Kasumigaura using three MERIS images and datasets 

from in situ monitoring.  
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II. Methods and Materials 

A. Bio-optical model 

According to Gordon et al. [21], the remote-sensing reflectance just beneath the water surface is 

expressed as: 
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where a(λ) and bb(λ) are the spectral total absorption and backscattering coefficients, respectively; f 

is a proportional factor; and g0 and g1
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 are constants.  

The spectral total absorption coefficient is usually expressed as the sum of the constituents’ 

absorption coefficients, as follows: 

                      (3) 

where [Chl-a] and [TR] denote the concentrations of chlorophyll-a and tripton, respectively, and 

[CDOM] denotes the absorption of CDOM at 440 nm. The variable aw(λ) is the absorption 

coefficient of pure water; a*
ph(λ), a*

tr(λ), and a*
CDOM
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trb,

*
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(λ) are the specific absorption coefficients of 

phytoplankton, tripton and CDOM, respectively.  

The spectral total backscattering coefficient is expressed as the sum of the backscattering 

coefficients for each constituent in water except for CDOM, as follows: 

                               (4) 

where bb,w(λ) is the backscattering coefficient of pure water, and b*
b,ph(λ) and b*

b,tr(λ) are the 

specific backscattering coefficients of phytoplankton and tripton, respectively.  
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Austin [22] proposed the factor of 0.544 for relating the radiance just above the surface to the 

radiance just beneath the surface. Thus, the remote-sensing reflectance just above the water surface 

is as follows: 

)()(
)(544.0)(544.0)(
b

b
rsrs λλ

λ
λλ

ba
bfrR
+

==                                          (5) 

 

B. Matrix Inversion Method (MIM) 

The MIM was developed based on a direct inversion of the bio-optical model [11, 17]. Eq. (1) 

can be rewritten by substituting a(λ) and bb
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The inherent and apparent optical properties are dependent on wavelength, but the water constituent 

concentrations are not. Therefore, if there are M bands available, this equation can be rewritten as a 

set of M equations, where each equation has the form: 
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where the subscript j (j=1, 2,…, M) denotes the j-th band for SIOPs and the remote-sensing 

reflectance. Eq. (7) can be represented in a more concise form using matrix notation: 
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There are three constituents (i.e. phytoplankton, tripton, and CDOM) of case II waters; thus, we need 

at least three bands to solve the above equations. When M equals 3, we can directly calculate the 

concentrations using the analytical solution of the linear system; when M is greater than 3, we can 

obtain the concentrations using the least square method. From Eq. (8), it is obvious that the SIOPs 

for each constituent should be known before MIM can be used.  

 

C. Development of a new MIM-based method without the SIOPs requirement 

To extend the application of MIM to cases in which appropriate SIOPs are unavailable, we 

propose a new MIM-based method, hereafter called the Relaxed Matrix Inversion Method (RMIM) 

because the SIOP requirements of the original MIM are relaxed.  

In the original MIM, the unknown variables are the water constituent concentrations (i.e. 

[Chl-a], [TR], and [CDOM] in Eq. (8)), while the SIOPs are known in advance. Similarly, if we 

know the water constituent concentrations in advance, we can use linear matrix inversion theory to 

estimate the SIOPs. In such a case, Eq. (6) can be rewritten as: 
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The aw(λ) and bb,w(λ) are absorption and backscattering coefficients of pure water, which can be 

taken from [23-25]. Therefore, if we have N water samples and the i-th water sample (i=1, 2,…, N) 

contains concentrations of [Chl-a]i, [TR]i, and [CDOM]i

)(rs, jir λ

, and possesses the corresponding 

remote-sensing reflectance of  at band jλ ( j=1, 2,…, M), then Eq. (9) can be rewritten as: 
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Using matrix notation, Eq. (10) can be rewritten as follows: 
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It can be seen that there are five unknown variables (i.e. )(*,
ph ja λ , )(*

tr ja λ , )(*
CDOM ja λ , )(*

phb, jb λ  and 

)(*
trb, jb λ , called “Estimated SIOPs”, or ESIOPs, to differentiate them from measured SIOPs). 

Therefore, we need at least five water samples to obtain the ESIOPs. If we use remote-sensing 

reflectance at a different band to substitute for rrs,1(λ j), rrs,2(λ j),…rrs,N(λ j) in Eq. (11), then we can 

obtain the ESIOPs at the corresponding band. 

After the spectra of ESIOPs were derived, the water constituent concentrations for other water 

areas can be retrieved identically as the original MIM (i.e., Eq. (8)). 
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D. Sensitivity analysis 

To evaluate the performance of the RMIM, a sensitivity analysis was carried out based on three 

basic datasets. The first basic dataset contained a set of SIOPs, which was obtained from Brando and 

Dekker [17] and is hereafter called the “SIOPs dataset”. The second basic dataset contained 100 

combinations of water constituent concentrations, which were randomly varied with uniform 

distribution in the ranges of 0-20 mg m-3 for [Chl-a], 0-25 g m-3 for [TR], and 0-0.5 m-1

1. Adding noise to the reflectance dataset. To simulate satellite remote-sensing reflectance spectra, 

two aspects of noise were considered in the sensitivity analysis. First, a white Gaussian noise 

 for [CDOM], 

respectively (hereafter, the “concentration dataset”). These ranges were determined according to the 

maximum values of [Chl-a], [TR], and [CDOM] presented in Brando and Dekker [17]. The third 

basic dataset contained 100 noise-free remote-sensing reflectance spectra, which were generated 

using the Hydrolight numerical simulation code based on the IOPs derived from the first and second 

datasets by using equations 3 and 4 [26] (hereafter, the “reflectance dataset”). Parameters for 

Hydrolight simulation are summarized in Table 1. The reflectance dataset was separated into two 

groups: one was used to calculate the ESIOPs (Fig. 1-a); the other was used to assess the accuracy of 

RMIM (Fig. 1-b). Ten reflectance spectra (Fig. 1-a) were randomly selected from reflectance dataset 

to derive the ESIOPs from 460 to 740 nm at 10-nm intervals (Eq. 11), because there are 10 sampling 

sites available every month in the Lake Kasumigaura database [27]. Consequently, the other 90 

reflectance spectra (Fig. 1-b) were used to estimate water constituent concentrations based on the 

obtained ESIOPs (Eq. 13).  

The sensitivity analysis performed in this paper proceeded as follows: 
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was added to each band of the spectrum to reach a signal-to-noise (SNR) of 150:1. This 

corresponded to noise coming from imperfections of satellite sensors such as thermal effects, 

and was generally spectrally uncorrelated. Second, a spectrally correlated noise was also added 

to each band of the spectrum. This noise usually results from an imperfect atmospheric 

correction procedure, especially from the error of aerosol correction (refer to AC errors 

hereafter). Ruddick et al. [28] provided the values of AC errors for the wavelengths ranging 

from 412 – 865 nm for four combinations of atmosphere (clear or turbid) and water (clear or 

turbid). In this study, only the case of a clear atmosphere was considered. The simulated spectra 

were simply classified as clear water if Rrs

2. Adding noise to the concentration dataset. The RMIM requires water constituent concentrations 

to calculate the ESIOPs at first. Therefore, measurement errors in the concentrations should also 

be considered when evaluating the performance of RMIM. For this sensitivity analysis, the 

water constituent concentrations were added by relative errors of 5, 10, 15, 20, 25, 30, and 35 %, 

respectively. The sign of each relative error was randomly determined through Gaussian 

distribution. It should be noted that the noises were added only into the 10 combinations of 

constituent concentrations for ESIOPs calculation (corresponding to the reflectance spectra in 

Fig. 1-a); while the other 90 combinations for accuracy assessment (corresponding to the 

reflectance spectra in Fig. 1-b) were kept noise-free. For each relative error of concentration, 

(700) was less than 0.5%; otherwise, as turbid water. 

The sensitivity analyses were made for percentages of AC errors from 0 to 100% with 10% 

interval. For each percentage of AC errors, 500 sets of white Gaussian noise were added to each 

band of the spectrum.  
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500 sets of white Gaussian noise were added to each band of the spectrum. 

3. Adding noise to the SIOPs dataset. The SIOPs for each constituent required by the MIM were 

also supplemented with noise for comparison analysis. The method for adding noise to the 

SIOPs dataset was same as that in the concentration dataset. Note that the absorption and 

scattering of pure water did not vary. A similar sensitivity analysis was also carried out based on 

the same basic datasets for the MIM for comparison. 

-------------- Please insert Table 1 here -------------- 

-------------- Please insert Fig. 1 here -------------- 

    

E. In situ and MERIS data collection 

To investigate the applicability of the RMIM, three field campaigns were carried out in Lake 

Kasumigaura, Japan, on September 3, 2007, on August 7, 2008 and on May 18, 2010.Water 

constituent concentrations for 61 sites were collected during the field campaign periods. A water 

sample collected at each site was taken to the laboratory to measure the water constituent 

concentrations. Chlorophyll-a was extracted using methanol (100%) at 4°C for 24 hours under dark 

conditions. The optical density of the extracted chlorophyll-a was measured at four wavelengths 

(750, 663, 645 and 630 nm), and the concentration was calculated according to the SCOR-UNESCO 

equations [29]. To obtain the concentration of tripton, the amount of total suspended solids (TSS) 

was divided into tripton and phytoplanktonic suspended solids. Based on the method of Gons et al. 

[30] and organic suspended solids data collected from Lake Kasumigaura, it can be assumed that a 

concentration of 1 mg m-3 chlorophyll-a is approximately equal to 0.12 g m-3 TSS. The absorption of 
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CDOM was measured using a Shimadzu UV-1700 spectrophotometer with filtered water. The 

absorption of CDOM was measured using a Shimadzu UV-1700 spectrophotometer with filtered 

water. 

Three full-resolution MERIS images (level-1b) covering Lake Kasumigaura were acquired on 

September 4, 2007, August 7, 2008, and May 18, 2010 (Fig. 2). Images were analyzed using BEAM 

4.0 software (Brockmann Consult, Geesthacht, Germany). The images were first geo-registered. 

Then atmospheric correction was performed on the images using the SCAPE-M (Self-Contained 

Atmospheric Parameters Estimation for MERIS data) atmospheric processor proposed by Guanter et 

al. [31] after masking for land, cloud, and invalid reflectance. Evaluation of the atmospheric 

correction was performed by comparing satellite-generated spectra and in situ reflectance spectra, 

which were collected following so-called “Method 1” of Muller et al. [32]. Pixels contaminated by 

clouds and land were excluded; sampling sites located more than one pixel away from the bank were 

retained (Fig. 2). Sampling sites in August, 2008 were simply divided into two groups according to 

their spatial distribution throughout the lake. One group containing 11 sites (marked as red crosses in 

Fig. 2-a) was used as a calibration dataset to derive the ESIOPs, while the other sites (marked as 

pink circles in Fig. 2-a) were used to assess the estimation accuracy of retrieval methods. Sampling 

sites in May, 2010 were also divided into a calibration dataset (10 sites marked as red crosses in Fig. 

2-b) and a validation dataset (11 sites marked as pink circles in Fig. 2-b) according to their spatial 

distribution. All the sites from September, 2007 (Fig. 2-c) were used for validation.  
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F. Accuracy assessment 

Three indices, namely the root mean square error (RMSE), mean normalized bias (MNB), and 

normalized root mean square error (NRMS) as suggested in Gitelson et al. [9], were used to assess 

the accuracies of the RMIM. These indices are defined as follows: 

N

XX
N

i
∑
=

−
= 1

2
imeas,iesti, )(

RMSE                                                  (12) 

)%(MNB iεmean=                                                           (13) 

)%(NRMS iεstdev=                                                         (14) 

where Xesti,i and Xmeas,i are the estimated and measured values, respectively, N is the number of 

samples, and ε i=100×(Xesti,i-Xmeas,i)/Xmeas,i 

III. Results 

is the percent difference between estimated and measured 

values. The MNB denotes the average bias in the estimation, while the NRMS denotes the relative 

random uncertainty of the results. 

-------------- Please insert Fig. 2 here -------------- 

 

 

A. Performances of MIM and RMIM for simulation data 

Before applying the MIM and RMIM, the proportional factor f needed to be determined. For the 

original MIM, f was obtained from Eq. (2) by determining the coefficients g0 and g1. Gordon et al. 

[21] presented that g0≈0.0949 and g1≈0.0794 for oceanic waters; while Lee et al. [33] suggested that 

a g0 of 0.084 and g1 of 0.17 were more appropriate for higher-scattering coastal waters. It was found 

that the values of g0 and g1 might vary with particle phase function [34], and were not known 
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remotely. In this study, g0 and g1 were calculated as g0≈0.0855 and g1≈0.1272 from 300 Hydrolight 

simulations using regression analysis (R2

Q
f 0629.0975.0 µ−
=

=0.998).  

Since the RMIM does not require SIOPs, it is impossible to use Eq. (2) to determine the f for the 

application of the RMIM. Accordingly, an alternative method was employed to estimate f in the 

RMIM [35]:  

                                                         (15) 

where Q is an anisotropy factor for describing the upwelling light field; μ0 denotes the mean cosine 

of the zenith angle of the refracted photons, which is calculated according to the sampling time, 

locations, and solar zenith angle. In this study, an empirical equation Q = 2.38/μ0

Figure 3 shows the results of applying MIM and RMIM to the data with added white Gaussian 

noise and AC errors to the reflectance dataset. The mean and standard deviation (SD) of RMSE for 

retrieved water constituent concentrations were calculated. It could be seen that the SD (error bar in 

Fig. 3) of MIM and RMIM were low for the estimation of each water constituent concentration 

against each relative AC error, indicating that both methods are insensitive to instrument noise. For 

the effects of AC errors, the MIM shows sensitivity compared with the RMIM. The mean RMSE of 

the MIM for each water constituent concentration dramatically increased with the increase of AC 

errors. In contrast, the mean RMSE of the RMIM for each water constituent concentration shows a 

relatively stable pattern with the increase of AC errors. The RMIM yielded higher accuracy than the 

MIM for all levels of AC errors. Even if no noise due to the AC errors was added, neither method 

gave the exact concentrations, mainly because of the difference between the bio-optical model and 

 developed for 

turbid inland waters under varying solar elevations was used [36].  
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Hydrolight software.  

Figure 4 shows the results of adding relative errors to the concentration dataset or the SIOPs 

dataset. Since noise due to the imperfection of the sensor is always present in a measurement, the 

spectrally uncorrelated noise was still added to the reflectance dataset in this section. For the RMIM, 

it should be noted that the noises were only added to the water constituent concentrations which 

were used for calculating ESIOPs. Results show that the effects of inaccurate measurements of water 

constituent concentrations and SIOPs were larger than that of inaccurate spectra both for MIM and 

RMIM. For a relative AC error of 30%, the mean RMSEs of [Chl-a], [TR], and [CDOM] for the 

RMIM were 2.1 mg m-3, 0.4 g m-3, 0.05 m-1, respectively (Fig. 3). By contrast, for the same relative 

error of concentration (30%), the mean RMSEs were increased to 12.3 mg m-3 for [Chl-a], 8.6 g m-3 

for [TR], and 0.5 m-1

B. Performance of the RMIM for MERIS data 

 for [CDOM], respectively (Fig. 4). The MIM showed results similar to those of 

the RMIM. 

-------------- Please insert Fig. 3 here -------------- 

-------------- Please insert Fig. 4 here -------------- 

 

Before the MERIS data were used in the RMIM, atmospheric correction was carried out using 

the SCAPE-M. To show the effect of atmospheric correction, a 3×3 window was applied to the 

pixels corresponding to the sampling sites based on the GPS values. The mean atmospherically 

corrected reflectance of the 3×3 window was extracted and used for comparison with the in situ 

reflectance measured by the FieldSpec HandHeld (Analytical Spectral Devices, Inc., Boulder, CO, 
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USA) for each MERIS band. Fig. 5 shows comparison results for the 2008 satellite image. It is 

evident that atmospheric correction by the SCAPE-M atmospheric processor is effective, with 

considerable agreement between the two remote-sensing reflectance spectra for the seven sites. 

Band selection for the RMIM application was based on the typical spectral features of the water 

constituents and the accuracy of atmospheric correction for each band. Accordingly, the candidate 

bands should be (1) a blue band around 447 nm for the absorption of chlorophyll-a and CDOM, (2) a 

band at 550 nm representing the lowest influence of chlorophyll-a and CDOM, and (3) a band 

around 676 nm where chlorophyll-a has a red absorption maximum [17]. In addition, comparison of 

atmospherically corrected reflectance and in situ reflectance showed much higher accuracy for bands 

4-9 (ranging from 510 to 708 nm) than for the other bands (Fig. 5). Therefore, we selected MERIS 

bands 4-9 for the application of the RMIM. It is worth noting that these bands cover almost all of the 

spectral features for water constituents. 

-------------- Please insert Fig. 5 here -------------- 

 

Fig. 6 shows results of the comparison between the satellite-estimated and measured water 

constituent concentrations on Sept. 4, 2007, Aug. 7, 2008 (pink circles in Fig. 2b), and May 18, 2010 

(pink circles in Fig. 2c) using the calibration dataset obtained on Aug. 07, 2008 (red crosses in Fig. 

2b). It can be seen that the estimated values were in good agreement with the measured ones for 

validation datasets of August, 2008 and September, 2007, with an RMSE less than 10.2 mg m-3 for 

[Chl-a] estimation, less than 1.9 g m-3 for [TR] estimation, and less than 0.31 m-1 for [CDOM] 

estimation (Table 2). The average bias (MNB) and relative random uncertainty (NRMS) for these 
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two periods also show lower values for estimating all water constituent concentrations. However, for 

the validation dataset of May, 2010, the satellite-estimated water constituent concentrations show 

noticeable biases from the measured values, with the largely increased RMSE and MNB of 27.6 mg 

m-3 and 57.6% for [Chl-a], 9.5 g m-3 and –49.2% for [TR], 0.54 m-1

However, if we use the calibration dataset from May, 2010 (pink circles in Fig. 2c) instead of 

that from Aug., 2008, the opposite results were obtained (Fig. 7 and Table 3). For the validation 

dataset of May, 2010, the RMSE and MNB were largely reduced to 9.2 mg m

 and 81.6% for [CDOM], 

respectively. The NRMS for [Chl-a] and [CDOM] were also increased from 11.4% to 37.2%, and 

from 23.1% to 43.1%, but reduced from 29.7% to 10.5% for [TR], respectively (Table 2). From Fig. 

6 and Table 2, it was noted that the RMIM yielded overestimations for [Chl-a] and [CDOM], and 

underestimation for [TR] for the validation dataset of May, 2010. 

 

-------------- Please insert Fig. 6 here -------------- 

-------------- Please insert Table 2 here -------------- 

 

-3 and 3.3% for [Chl-a], 

1.4 g m-3 and 1.1% for [TR], and 0.13 m-1 and –3.2% for [CDOM], respectively. The NRMS for 

[Chl-a], [TR] and [CDOM] were also reduced to 16.1%, 8.0% and 16.6%, respectively. In contrast, 

for the other two validation datasets, the RMSE and MNB were largely increased for both periods. 

Compared with the results shown in Fig. 6 and Table 2, the [Chl-a] and [CDOM] were 

systematically underestimated with MNB values ranging from –18.3% to –64.8%; and the [TR] was 

overestimated with MNB values of 72.8% and 135.0%, for validation datasets of August, 2008 and 



 19 

September, 2007, respectively (Table 3). These results indicate that an appropriate calibration dataset 

is needed for successful application of the RMIM.  

-------------- Please insert Fig. 7 here -------------- 

-------------- Please insert Table 3 here -------------- 

 

IV. Discussion 

A relaxed matrix inversion method (RMIM) has been proposed for mapping the distributions of 

water constituent concentrations (i.e. [Chl-a], [TR], and [CDOM]) in case II waters. Unlike the 

original MIM, this method does not require the measurement of SIOPs, which are not generally 

included in routine observations of inland waters. The required inputs for the RMIM are several 

remote-sensing reflectance spectra and corresponding water constituent concentrations (at least 5 

water samples). The former may be obtained from periodically acquired satellite data, and the latter 

may be obtained from routinely observed water quality data. Therefore, the RMIM can relax the 

limitation of the original MIM, and then can be applied to case II waters where no SIOPs are 

available. 

Another merit of the RMIM is that it requires few water samples in the calibration process. 

According to Eq. 11, we can calculate the ESIOPs if more than five independent water samples were 

collected. In contrast, the Neural Network (NN) algorithms as well as empirical methods require a 

large number of water samples with enough dynamic range for calibration, because these methods 

are generally good interpolators and bad in extrapolations [37,38]. In addition, since architectures of 

the NN’s are usually variable in different studies (e.g., [38-40]), it is more complicated to practically 
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use the NN algorithms.  

The performance of the RMIM was evaluated by using the simulation dataset and actual 

MERIS data. Based on the simulation dataset, a sensitivity analysis was carried out for testing the 

robustness of the RMIM, and also for the original MIM for comparison. Results indicate that the 

RMIM could effectively address the AC errors but suffered due to the spectrally uncorrelated noise 

resulting from satellite sensors compared with the original MIM. This may be explained by the 

different properties between the AC errors and the spectrally uncorrelated noises that were contained 

in the remote-sensing reflectance spectra. The AC errors can be recognized as ‘systematic errors’ 

resulting from imperfect aerosol correction; while the spectrally uncorrelated noise is a kind of 

unpredictable “random error” in the Rrs

On the other hand, accurate measurements of water constituent concentrations for deriving the 

ESIOPs in the calibration process would be of great help in improving the performance of RMIM. 

 measurement. In the calibration process of the RMIM, all 

errors would be included into the ESIOPs. Since similar systematic errors (i.e., AC errors) were 

contained in all remote-sensing reflectance spectra, this kind of error could be compensated for in 

the inverse process of calibration (i.e. the process for retrieving the water constituent concentrations). 

However, the effect of random errors is completely unpredictable noise, and thus resulted in 

uncertainties in the RMIM. Fortunately, recently developed sensors, such as the MERIS and MODIS, 

provide high SNRs of bands for water monitoring [41, 42], thereby guaranteeing that the uncertainty 

in the RMIM is small (see error bars in Fig. 3). For the application of the MIM, there is no chance to 

compensate for systematic errors resulting from atmospheric correction since no calibration process 

is needed; thus, there was a dramatic increase of RMSE with increased AC errors (Fig. 3). 



 21 

This is because the measurement errors contained in the water constituent concentrations are 

propagated by means of ESIOPs, thereby reducing the estimation accuracy of the RMIM (Fig. 4). 

Unlike the remote-sensing reflectance spectra, there is no chance to compensate for the noise 

resulting from measurement errors of water constituent concentrations since these data were only 

used in the calibration process.  

As with the empirical regression method or neural network (NN) method, the calibration 

process in the RMIM allows the ESIOPs to be used to gain information not only on the real SIOPs 

but also on the noise contained in the input datasets. Therefore, compared with the original MIM, the 

RMIM can reduce the effects of noise contained in the input datasets, and thus give higher 

estimation accuracy. However, the noises included in the ESIOPs will make their shapes and 

magnitudes different from the real SIOPs. Therefore, the use of RMIM to retrieve the SIOPs for 

phytoplankton, tripton and CDOM is still not appropriate. In the RMIM, the ESIOPs are used as 

intermediate variables for the purpose of retrieving water constituent concentrations.  

Based on the results from the application of actual MERIS data in Lake Kasumigaura, it is clear 

that continually refining the ESIOPs to ensure they meet the actual conditions at the time being 

investigated is crucial for mapping more accurate water constituent concentrations. If the same 

calibration dataset was used for all seasons, the RMIM would show poor performance (Figs. 6 and 7). 

The similarity in the predicted accuracy for the datasets of August, 2008 and September, 2007 is due 

to the similarity in SIOPs in Lake Kasumigaura in the two periods. Figure 8 shows the derived 

ESIOPs in Lake Kasumigaura from three MERIS images. It can be seen that the ESIOPs of Sept. 04, 

2007 are similar to those of Aug. 07, 2008 in shape and magnitude, while the ESIOPs of May 18, 



 22 

2010 are significantly different from those of the other two dates. This change is partially due to the 

fact that the SIOPs change seasonally according to the different dominant phytoplankton species. Fig. 

9 shows the averaged proportion of the four main phytoplankton species in Lake Kasumigaura for 

each month during 1980-2008 [27]. It is noted that Cyanophyceae is the dominant species during the 

summer season (July, August, and September); while in May the dominant species is 

Bacillariphyceae. Accordingly, when using the ESIOPs derived from the dataset of Aug. 7, 2008, the 

RMIM yielded a much better estimation for the validation datasets of Aug., 2008 and Sept., 2007 

than that of May 2010; and when using the ESIOPs derived from the dataset of May 18, 2010, the 

accuracy of the RMIM for validation dataset of May, 2010 was significantly higher than those of 

Aug., 2008 and Sept., 2007.  

The data accumulated for Lake Kasumigaura allow us to refine the ESIOPs to correspond to the 

actual conditions of the time being investigated rather than introducing error by using the same 

values for all conditions, and thus can provide a more accurate spatial distribution map for regular 

water quality monitoring in the Lake.  

-------------- Please insert Fig. 8 here -------------- 

-------------- Please insert Fig. 9 here -------------- 

 

V. Conclusion 

 

In this study, we presented the RMIM, a relaxed matrix inversion method for mapping water 

constituent concentrations in case II waters. The most significant characteristic of he RMIM is that 
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its required inputs can all be obtained from periodical satellite data and routine field observations. In 

this respect, the RMIM can extend the applicability of linear matrix inversion theory to situations in 

which appropriate SIOPs for the study area are unavailable, particularly for post-session studies (e.g. 

1980s-2000s for Lake Kasumigaura). The performance of the proposed method was evaluated 

through sensitivity analysis based on simulation experiments and three MERIS images. The results 

showed that the RMIM could retrieve an acceptable estimation of water constituent concentrations in 

our study area (Lake Kasumigaura).  
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List of Tables 
 
Table 1 Parameters for Hydrolight simulation. 

Parameters Values or Ranges
Solar zenith angle 30o

Sensor viewing direction Nadir
Wind speed (m/s) 5
Wavelength (nm) 460-740, every 10 nm
[Chl-a] (mg m-3) Random values in the range of 0-20
[TR] (g m-3) Random values in the range of 0-25
[CDOM] (m-1) Random values in the range of 0-0.5
Specific apsorption and backscattering coefficients Cited from Brando and Dekker [17]
Inelastic scattering Without  

 
Table 2 Comparison of estimation accuracy for validation datasets of three dates (Sept. 4, 2007; Aug. 
7, 2008; May 18, 2010) using the calibration dataset of Aug. 7, 2008. 
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[Chl-a] [TR] [CDOM]

RMSE* 10.116 1.889 0.302
MNB (%) -4.487 1.327 2.860
NRMS (%) 11.365 29.670 23.069

RMSE* 7.541 1.530 0.143
MNB (%) 3.184 -5.746 -11.143
NRMS (%) 10.536 15.310 4.734

RMSE* 27.658 9.472 0.542
MNB (%) 57.575 -49.249 81.649
NRMS (%) 37.177 10.499 43.093

Sept. 4, 2007

Aug.7, 2008

May 18, 2010

 
*RMSE is with the unit of mg m-3, g m–3, and m-1

[Chl-a] [TR] [CDOM]

RMSE* 27.906 11.601 0.455
MNB (%) -30.849 135.037 -18.127
NRMS (%) 6.728 54.625 21.302

RMSE* 23.501 6.552 0.776
MNB (%) -29.756 72.823 -64.705
NRMS (%) 17.202 38.238 7.391

RMSE* 9.196 1.401 0.126
MNB (%) 3.331 1.118 -3.175
NRMS (%) 16.069 8.005 16.559

Sept. 4, 2007

Aug.7, 2008

May 18, 2010

 for [Chl-a], [TR], and [CDOM], respectively. 

 
Table 3 Comparison of estimation accuracy for validation datasets of three dates (Sept. 4, 2007; Aug. 
7, 2008; May 18, 2010) using the calibration dataset of May 18, 2010. 

 
*RMSE is with the unit of mg m-3, g m–3, and m-1 for [Chl-a], [TR], and [CDOM], respectively. 

 
 
 
List of Figures 
 
Fig. 1. Simulated remote-sensing reflectance just above the water by Hydrolight simulation for (a) 
calculating the ESIOPs and (b) validating performance of the algorithms. 
 
Fig. 2. MERIS images and sampling stations of Lake Kasumigaura, Japan on (a) September 4, 2007, 
(b) August 7, 2008, and (c) May 18, 2010. 
 
Fig. 3. Plots of the average RMSE of retrieval of (a) chlorophyll-a concentration, (b) tripton 
concentration, and (c) absorption of CDOM at 440 nm against the noise level in R rs

Fig. 4. Plots of the average RMSE of retrieval of (a) chlorophyll-a concentration, (b) tripton 
concentration, and (c) absorption of CDOM at 440 nm against the noise level in constituent 

 for MIM and 
RMIM. Error bars denote the variation of RMSE caused by Gaussian noise in spectra.  
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concentrations of calibration dataset for the RMIM, and the noise level of SIOPs for the original 
MIM. Error bars denote the variation of RMSE caused by Gaussian noise in the spectra.  
 
Fig. 5. Comparison between in situ collected and atmospherically corrected remote-sensing 
reflectance spectra in Lake Kasumigaura on August 7, 2008. 
 
Fig. 6. Comparison of measured and estimated (a) chlorophyll-a concentration, (b) tripton 
concentration, and (c) absorption of CDOM at 440 nm from MERIS data using the calibration 
dataset of August 7, 2008. 
 
Fig. 7. Comparison of measured and estimated (a) chlorophyll-a concentration, (b) tripton 
concentration, and (c) absorption of CDOM at 440 nm from MERIS data using the calibration 
dataset of May 18, 2010. 
 

Fig. 8. The Estimated SIOPs (ESIOPs, i.e., aph
*, atr*, aCDOM

*, bb,ph
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Fig. 9. Monthly averaged proportion of four main phytoplankton species in Lake Kasumigaura from 
1980 to 2008. 
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