
1	NEUROPROTECTIVE EFFECT OF 3,5-DI-O-CAFFEOYLQUINIC
2	ACID ON SH-SY5Y CELLS AND SAMP8 MICE THROUGH THE UP-
3	REGULATION OF PGK1
4	
5	Junkyu Han ^{1, 2} , Yusaku Miyamae ¹ , Hideyuki Shigemori ¹ , Hiroko Isoda ^{1, 2} *
6	
7	¹ Graduate School of Life and Environmental Sciences, ² Alliance for Research on North
8	Africa (ARENA), University of Tsukuba. Tsukuba, Ibaraki 305-8572, Japan
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	*Corresponding author. Tel: 81-29-853-5775. Fax: 81-29-853-5776.
22	E-mail: isoda@sakura.cc.tsukuba.ac.jp

1	Abbreviations: AB, B-amyloid protein; AD, Alzheimer's disease; ALS, amyotrophic
2	lateral sclerosis; AO, antisense oligonucleotide; ATCC, American Type Culture Collection;
3	BBB, blood-brain barrier; CA, caffeoylquinic acid; CBB, coomassie brilliant blue; CQA,
4	caffeoylquinic acid; IEF, isoelectric focusing; MALDI-ToF, matrix assisted laser
5	desorption ionization-time of flight; MWM, Morris water maze; SAMP, senescence-
6	accelerated-prone mice; SAMR, senescence-accelerated-resistant mice; PGK1,
7	phosphoglycerate kinase-1; THP, tetrahydropapaveroline.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

1	Abstract-As aged population dramatically increases in these decades, efforts should be
2	made on the intervention for curing age-associated neurologic degenerative diseases such
3	as Alzheimer's disease (AD). Caffeoylquinic acid (CQA), an antioxidant component and its
4	derivatives are natural functional compounds isolated from a variety of plants. In this study,
5	we determined the neuroprotective effect of 3,5-di-O-CQA on $A\beta_{1-42}$ treated SH-SY5Y
6	cells using MTT assay. To investigate the possible neuroprotective mechanism of 3,5-di-O-
7	CQA, we performed proteomics analysis, real-time PCR analysis and measurement of the
8	intracellular ATP level. In addition, we carried out the measurement of escape latency time
9	to find the hidden platform in Morris water maze (MWM), real-time PCR using
10	senescence-accelerated-prone mice (SAMP) 8 and senescence-accelerated-resistant mice
11	(SAMR) 1 mice. Results showed that 3,5-di-O-CQA had neuroprotective effect on A β_{1-42}
12	treated cells. The mRNA expression of glycolytic enzyme (phosphoglycerate kinase-1;
13	PGK1) and intracellular ATP level were increased in 3,5-di-O-CQA treated SH-SY5Y cells.
14	We also found that 3,5-di-O-CQA administration induced the improvement of spatial
15	learning and memory on SAMP8 mice, and the overexpression of PGK1 mRNA. These
16	findings suggest that 3,5-di-O-CQA has a neuroprotective effect on neuron through the
17	upregulation of PGK1 expression and ATP production activation.
18	

1 The major reason of aging is the functional decrease of energy production in the body. 2 Aging is usually associated with the accumulation of reactive oxygen species (ROS)-3 mediated oxidative damage, which can induce the decrease in intracellular ATP levels via 4 the functional decline of mitochondrion. Intracellular ATP depletion causes cell death in 5 neuronal cells, leading to neurodegenerative diseases such as Alzheimer's disease (AD), 6 amyotrophic lateral sclerosis (ALS) and Parkinson's disease (Beal et al., 1995; Huaug et al., 7 2001). AD, in particular, is one of the diseases with increasing number of patients with age-8 related neurodegenerative disorders, and is a degenerative disorder of the central nervous 9 system, which causes mental deterioration and progressive dementia. AD is accompanied 10 by neuropathologic lesions including the presence of senile plaques of the β -amyloid 11 protein (A β), an etiological role in AD. The overexpression of A β protein and its fibrillar deposition in senile plaques have been correlated with the progression of cognitive 12 13 impairment in AD (Eckert et al., 2003; Roth, 2001; Holliday, 1996).

14 One of the animal models that is used to study AD and aging is the senescence-15 accelerated mouse (SAM). The SAM model was developed in 1981, which originally 16 consisted of nine major senescence-accelerated-prone mice (SAMP) substrains and three 17 major senescence-accelerated-resistant mice (SAMR) substrains, each of which exhibits the 18 characteristic disorders. Thereafter, selective inbreeding was applied based on the degree of 19 senescence, the lifespan, and the age-associated pathologic phenotypes (Hosokawa et al., 20 1997; Takeda et al., 1981). The SAMP8 strain exhibits age-related deterioration in memory 21 and learning (Yagi et al., 1988; Ohta et al., 1989) along with the overexpression of amyloid 22 precursor protein (APP) (Li et al., 2009; Nomura et al., 1996; Morley et al., 2000). SAMP8 mice also show decreased glucose metabolism (Poon et al., 2005; Shimano, 1998), which is a characteristic of AD wherein energy metabolism is impaired (Blass et al., 1988). The decrease in the production of A β , after giving an intracerebroventricular injection of a 42mer phosphorothiolated antisense oligonucleotide (AO) directed at the A β region of the APP gene, can reduce lipid peroxidation and protein oxidation and improve cognitive deficits in aged SAMP8 mice. Therefore, SAMP8 is a good model to study brain aging and is used as one mouse model of AD.

8 Caffeoylquinic acid (COA) derivatives are natural functional compounds isolated 9 from a variety of plants and possess a broad range of pharmacological properties, 10 including antioxidant, hepatoprotectant, antibacterial, antihistaminic, anticancer, and 11 other biological effects (Basnet et al., 1996; Kwon et al., 2000; Nakajima et al., 2005). 12 has been demonstrated that CQA derivatives possess neuroprotective Recently, it 13 effects in A β -induced PC12 cell toxicity (Hur *et al.*, 2001) and in tetrahydropapaveroline 14 (THP)-induced C6 glioma cell death (Soh et al., 2003). Moreover, CQA exhibited a 15 neuroprotective function against in vitro cell death and in vivo ischemia-induced neuronal 16 damage. However, the mechanism by which these caffeoylquinic acid derivatives exert 17 neuroprotection is unclear.

In this study, we used a SH-SY5Y human neuroblastoma cell line as the Aβinduced neuronal cell death model and the SAMP8 mice as the *in vivo* AD model, to determine a pharmacological function for the the neuroprotective properties of 3,5-di CQA. Furthermore, to investigate the mechanism for the neuroprotective effect of 3,5-di CQA, we have performed (2D)-polyacrylamide-gel electrophoresis (PAGE), matrix assisted laser desorption ionization-time of flight (MALDI-ToF) mass spectrometry analysis and real
 time PCR.

- 3
- 4

EXPERIMENTAL PROCEDURRS

5 Cell culture

6 The human neuroblastoma clonal SH-SY5Y cell line was obtained from American Type 7 Culture Collection (ATCC). Cultures were maintained in serum-containing medium (1:1 8 mixture of Dulbecco's modified Eagle's medium and Ham's nutrient mixture F-12), 9 supplemented with 15% fetal bovine serum and MEM non-essential amino acids. Cells 10 were maintained at 37°C under 5% $CO_2/95\%$ air. To culture for the subsequent extraction 11 of protein and total RNA, cells were seeded onto Petri plates at a density of 2 x 10⁶ cells per 12 dish, and 3,5-di-O-CQA was added at a final concentration of 20 μM.

13

14 **Determination of cell viability**

To investigate the neuroprotective effect, we employed the Aβ-treated SH-SY5Y cell model (Li et al., 1996; Wang *et al.*, 2009). Cell viability was assessed using the conventional MTT reduction assay. The cultured cells in 96-well plates (fibronectin coated plate) were treated with 3,5-di-O-CQA and exposed to 2 μ M Aβ₁₋₄₂ for 72 h, then 10 μ l of MTT stock solution (5 mg/ml) was added to the culture medium and incubated for 6 h at 37 °C. The formazan was extracted with 100 μ l 10% SDS (W/V) and the absorbance was measured with a microtiter plate reader.

1 Two-dimensional gel electrophoresis (2-DE)

2 2-DE was performed essentially as described by Isoda et al. (2006) with modifications. 3 Samples containing 30 µg for analytical gels or 300 µg for preparative gels of protein were 4 separated by isoelectric focusing (IEF) and then by sodium dodecyl sulfate polyacrylamide 5 gel eletrophoresis (SDS-PAGE) using Ettan IPGphor II and Ettan DALTsix (GE Healthcare, 6 Uppsala, Sweden). For IEF, samples were added into the rehydration solution containing 8 7 M urea, 2% CHAPS, 0.5% IPG buffer, 0.002% bromophenol blue and 0.28% (w/v) 8 dithiothreitol (DTT), and then applied to a 24cm immobiline dry strips, which are dry 9 polyacrylamide gel strips with an immobilized pH gradient pH 3-10 (GE Healthcare). The 10 dry strips were rehydrated at 20 °C for 12 h and isoelectric focusing of proteins was carried 11 out at 500 V for 1 h, 1000 V for 1 h, 10000 V for 3 h, 10000 V for 2 h, and, 45 min. 12 Thereafter, IPG strips were reduced (1% DTT) and alkylated (2.5% iodoacetamide) in 13 equilibration buffer (6 M urea, 50 mM Tris-Cl, pH 8.8, 30% glycerol, 2% SDS). When the 14 equilibration was finished, the strips were loaded onto 12% acrylamide vertical gels and 15 separation of proteins with different molecular weight was carried out at 2.5 W per gel for 16 30 min, followed by 25 W per gel for 3.5 h.

17 Silver staining using Plus One Silver Staining Kit (GE Healthcare) was performed 18 according to the manufacturer's instructions. The stained gels were subjected to image 19 analysis by ImageMaster 2D Platinum software (ver. 4.9; GE Healthcare). Gels in which 20 proteins from either β -amyloid (A β) or caffeoylquinic acid (CA) treatment, or both, as well 21 as control were imported into the same platform and were subjected to image analysis. 22 After spot detection and matching, the spots of interest were manually selected and the 1 data regarding the relative intensities of these spots were obtained. Spots intensities were
2 expressed as percentages (% vol) of relative volumes by integrating the value (or OD) of
3 each pixel in the spot area (vol) and dividing it with the sum of the volumes of all the spots
4 detected in the gel.

5

6 **In-gel digestion and mass spectrometry**

7 For spot picking, preparative gels in which quantity of protein was ten times more than that 8 in analytical gels, were prepared. After coomassie brilliant blue (CBB) staining using 9 Coomassie Tablets, PhastGel R-350 (GE Healthcare), the protein spots of interest were 10 excised and put into 1.5 ml eppendorf tubes. After destaining, the spots were digested with 11 trypsin (sequencing grade, GE Healthcare) and the peptides were extracted. Prior to 12 analysis on mass spectrometer, the peptide solutions were desalted by Zip Tip C18 13 (Millpore, Tokyo, Japan). The peptide solutions were then applied onto MALDI plate 14 directly and the solution drop was allowed to air-dry. Furthermore, the matrix solution, 15 prepared by dissolving 10 mg of α -cyano-4-hydroxycinnamic acid (CHCA, Sigma, USA) 16 in 1 ml of 50% acetonitrile and 0.1% triflouroacetic acid in deionized water, was overlayed onto the dried drops. After the matrix solution was dried, the plate was inserted into the 17 18 MALDI-TOF mass spectrometer and was subjected to peptide mass fingerprinting. All the 19 MALDI-TOF mass spectra were acquired on AXIMA-CFR mass spectrometer. The 20 acquired MS spectra were searched against NCBI database using the MASCOT 21 (www.matrixscience.com) MS search engine. The search parameters were the following: 22 type of search, peptide mass fingerprint; enzyme, trypsin; fixed modification,

carbamidomethyl (C); variable modifications, oxidation (M); mass values, monoisotopic;
 protein mass, unrestricted; peptide mass tolerance, 0.2 Da; peptide charge state, 1; max
 missed cleavages, 2.

4

5 Real-time PCR

6 To find the trigger genes on the neuroprotective effect of 3,5-di-O-CQA, we considered the 7 lower concentration (10 µM) and shorter treatment time (16 h). After incubating seeded 8 plates for 16 h, total RNA was purified using the ISOGEN kit (Nippon Gene Co. Ltd., 9 Japan). Total RNA was quantified by measurement of the spectrophotometer at 260 nm 10 with a UV spectrophotometer and was also measured at 280 nm to assess purity. Only RNA 11 with a 260/280 ratio higher than 1.8 was used for real-time PCR. The template cDNA was 12 synthesized from total RNA using the SuperScript reverse transcriptase system (Invitrogen). Briefly, RNA was denatured at 65 °C for 5 min and incubated with 1 µL oligo (dT)₁₂₋₁₅ 13 14 primers and chilled at 4°C. After adding SuperScript II reverse transcriptase (200 units) the 15 reaction mix was incubated at 42°C for 60 min, then 10 min at 70°C (16). For the 16 quantification of mRNA, nested primers were designed using Primer3 input software 17 (http://frodo.wi.mit.edu/cgi-bin/primer3/ primer3.cgi/primer3 www.cgi). Quantitative PCR 18 reactions were performed in a MiniOpticon instrument (Bio-Rad, USA) and carried out as 19 recommended for iQ SYBRGreen supermix (Bio-Rad). Briefly, the RT mix (2 µL) was 20 used as template for the real-time PCR mix containing 0.5 mM forward (5' 21 ACAATGGAGCCAAGTCGGTAG-3') (5'and reverse 22 GCCTACACAGTCCTTCAAGAAC-3') nested primers (2 µL each) and 2 x SYBR Green supermix (10 µL). The amplification conditions were: 3 min at 95°C, 10 s at 95°C, 30 s at
 62°C, and 30 s at 72°C for 34 cycles. At the end of the reaction, a melting curve analysis
 was carried out to check for the presence of primer-dimers.

4

5 Measurement of Intracellular ATP Content.

6 ATP was assessed as firefly bioluminescence using the luminescence luciferase assay kit 7 (TOYO Ink, Tokyo, Japan). To determine the increase of intracellular ATP content due to 3,5-di-O-CQA treatment SH-SY5Y cells (2 x 10^3 cells/well) were pretreated for 48 h with 8 9 3,5-di-O-CQA (10 and 20 µM) after which, cells were lysed with 100 µL of lysis buffer 10 (Toyo ink) and placed directly into the chamber of a luminometer (Powerscan HT; 11 Dainippon Pharmaceutical, Osaka, Japan). Light emission was recorded after the addition 12 of 100 µL of luciferin-luciferase solution (Toyo ink). When ATP is the limiting component 13 in a luciferase reaction, the intensity of light emitted is proportional to the concentration of 14 ATP in the cytosolic extracts.

15

16 Animals and supplementation

Male SAMP8 and SAMR1 mice were provided by the Japan SLC company. Three mice were housed per cage with a 12-h light/dark cycle. The animals had free access to food and water. After a 7-day acclimatization to the laboratory conditions, 3 month old SAMP8 mice (n=20) were randomly divided into two groups: SAMP8 control group (n=10), 3,5-di-O-CQA-supplemented group (n=10), while age matched SAMR1 mice (n=10) served as the normal aging control. The 3,5-di-O-CQA-treated mice were orally administered with 3,5di-O-CQA mixed with drinking water (6.7 mg/kg • day) for 1 month using oral
 administration tube and syringe.

3

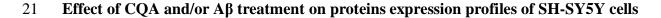
4 Morris water maze (MWM)

5 After the open field test, the MWM was selected as a method for the evaluation of the 6 spatial learning and memory. A circular water tank (120 cm in diameter and 50 cm in 7 height) was filled with water to a depth of 30 cm. Inside the tank, an escape platform (11 8 cm in diameter) was placed, with the top of 1 cm below the water surface. The platform 9 was in the middle of the target quadrant, and its position remained fixed during the 10 experiment. Above the tank, a white floor-to-ceiling cloth curtain was drawn around the 11 pool, and four kinds of black cardboard (circle, triangular, rhombus and square) were hung 12 equidistantly on the interior of the curtain serving as spatial cues. Each mouse had daily 13 sessions of one trial for 30 consecutive days. When they succeeded, mice were allowed to 14 stay on the platform for 30 s. When the mice failed to find the platform within 60 s, they 15 were assisted by the experimenter and allowed to stay the platform for the same time. A 16 probe trial was performed 24 h after the last training session. In this trial, the platform was 17 removed from the tank and mice were allowed to swim freely for 60 s.

18

19 Statistical analysis

The escape latency of mice in the MWM training was analyzed using the two-way analysis
of variance (ANOVA) with repeated measures, the factors being treatment and training day.
One-way ANOVA was used to analyze group differences for the data collected in the swim


speed analysis, the MWM probe trial, and the open field test, Nissl staining and Western blotting, followed by LSD (equal variances assumed) or Tamhane's T2 (equal variances not assumed) post hoc tests. A criterion of P<0.05 was considered significant and the results were expressed as mean \pm SEM.

- 5
- 6

RESULTS

7 Neuroprotective effect of CQA on $A\beta_{1-42}$ -induced neuronal death

8 In order to eliminate the possible neuroprotective effect of 3,5-di-O-CQA, we examined the 9 cell viability when treated with 3,5-di-O-CQA and A β_{1-42} , SH-SY5Y cells were incubated 10 in the presence or in the absence of 2 μ M A β_{1-42} for 72h and the neuronal survival 11 determined by MTT assays. Fig. 1 shows the MTT result of cells treated for 72 h with 10 12 μ M A β_{1-42} , and treated with 20 μ M 3,5-di-O-CQA. The cell viability of A β_{1-42} treated cells 13 was significantly decreased to 74.2% \pm 7.6 compared with the non-treated group (P<0.01). In addition, we investigated the effect of 3,5-di-O-CQA on preventing decreased cell 14 15 viability in SH-SY5Y cells induced by A β_{1-42} . Incubation with 20 μ M 3,5-di-O-CQA reversed the A β_{1-42} -induced cell death and the cell viability significantly increased to 16 17 $106.5\% \pm 9.8$ compared to the non-treated group (P<0.01). Interestingly, the cell viability 18 of 3,5-di-O-CQA treated cells, without A β_{1-42} treatment, significantly increased to 124.6% 19 ± 9.8 compared to the non-treated group (P<0.01)

1 To examine the possible mechanism involved in the neuroprotective effect of 3,5-di-O-2 CQA on neuronal cells, we performed a proteomics analysis on $A\beta_{1-42}$ -treated SH-SY5Y 3 cells with or without 3,5-di-O-CQA treatment. Proteins were extracted from the CQA 4 and/or A^β treated SH-SY5Y cells, which had been treated for 72 h, and the total proteins 5 separated by 2D-gel electrophoresis. A protein pattern of SH-SY5Y cells is shown in Fig. 6 2A. Approximately 2000 spots were detected in each silver-stained gel, with molecular-7 mass ranges of 15 to 200 kDa and a pI, that ranges from 3 to 10. Many spots from CQA 8 and/or A\beta-treated SH-SY5Y cells were increased or decreased on each gel. As shown in Fig. 2B, $A\beta_{1-42}$ treatment caused a substantial decrease in a particular spot. However, 3,5-9 10 di-O-CQA treatment induced up-regulation of a particular spot under $A\beta_{1-42}$ treatment. The 11 spot protein had a relative molecular mass of 40-45 kDa and an isoelectric point in the range of 7.0-7.6 (Boxed region). To identify this protein, the spot was excised and 12 13 subjected to tryptic digestion and MALDI-ToF mass spectrometry analysis. The results of 14 the database searches showed that the protein sequence most closely corresponded to that 15 of human phosphoglycerate kinase-1 (PGK1), with matching peptides covering 67% of 16 PGK1 (281/417 amino acids).

17

18 Effect of CQA on the mRNA expression level of PGK1

In order to determine the effect of 3,5-di-O-CQA on the mRNA expression level of PGK1, which is overexpressed by 3,5-di-O-CQA treatment on protein level, we performed the real-time PCR analysis using β -actin as a control gene. As shown in Fig. 3, the mRNA expression level of PGK1 was highly increased by 20 μ M 3,5-di-O-CQA treatment on SH- 1 SY5Y cells. In fact, the mRNA expression level of PGK1 was significantly upregulated by 2 119% \pm 7.2 compared with the non-treated group (*P*<0.05).

3

4 Effects of CQA on intracellular ATP production

5 Based on the results of proteomics analysis and real-time PCR, 3,5-di-O-CQA induced the 6 increase in PGK1 expression. The PGK1 protein is one of glycolytic enzymes of glycolysis. 7 To investigate the upregulated glycolytic enzyme's effects on energy generation, the levels 8 of ATP, which is the end product of glycolysis, were evaluated. ATP is a multifunctional 9 nucleotide that is important as a "molecular currency" of intracellular energy transfer. In 10 this role, ATP transports chemical energy within cells for metabolism. Intracellular ATP 11 production level of 3,5-di-O-CQA-treated SH-SY5Y cells was measured by a luciferase 12 reaction method. In 3,5-di-O-CQA-treated SH-SY5Y cells, luminescence was significantly 13 upregulated by 113% \pm 7.2 compared to non-treated group (P<0.05) (Fig. 4).

14

15 Effect of CQA on spatial learning and memory of SAMP8 mice in MWM

We measured the time, swimming time to arrive at the platform (escape latency time), to assess the effect of 3,5-di-O-CQA on spatial learning and memory, which is AD's major symptom. We noted that the 3 month-old SAMP8 and SAMR1 mice demonstrated significant differences in motivational swimming speed between groups (data not shown). As shown in Fig. 5, all groups (SAMP8, SAMP8+CQA, SAMR1 group) improved their performance after 30 days. However, the escape latency time of SAMP8 group (*n*=10) was slightly decreased, compared with SAMR1 and SAMP8+CQA groups. The escape latency time of SAMP8+CQA and SAMR1 group (*n*=10) was significantly decreased compared to
 SAMP8 group (*P*<0.01). There was no significant difference between SAMP8+CQA and
 SAMR1group on the escape latency time.

4

5 Effect of CQA on the mRNA expression level of PGK1 on SAMP8 mice brain

We investigated the mRNA expression level of PGK1 on SAMP8 mice brain to determine the effect of 3,5-O-di CQA on PGK1 expression *in vivo*. From the real-time PCR result (Fig. 6), the mRNA expression level of PGK1 was highly increased in the brain of 3,5-di-O-CQA administrated SAMP8 mice. In fact, the PGK1 mRNA expression in SAMP8+CQA group was significantly upregulated by 153% \pm 7.5 compared with the SAMR1 group (*P*<0.01). However, the PGK1 mRNA expression in SAMP8 group was slightly down-regulated compared to SAMR1 group (not significantly).

- 13
- 14

DISCUSSION

15 The pathogenesis of AD has been reported by several researchers who carried out post-16 mortem determinations. AD is induced by: (1) a cholinergic defect; (2) a glutamatergic 17 impairment; (3) chromosome 21 impairment which produces β -APP; and (4) the 18 endothelium impairment of blood-brain barrier (BBB) (Hagino et al., 2004). Senile 19 dementia is a disease involving a cholinergic defect which is the direct result of the 20 decreased glucose metabolism in the brain (Meier-Ruge et al., 1984). Since the key 21 substrate of acetylcholine synthesis is acetylcoenzyme A, which is exclusively synthesized 22 in the glycolytic pathway in the brain. Glucose matabolism, final products of which are

ATP and NADH, is the main fuel for all brain cells. The cholinergic defect, nerve cell death
and the amyloid protein accumulation in the brain may be a secondary phenomena caused
by the decline in glucose metabolism in senile dementia (Benson et al., 1983; Tucek et al.,
1990).

5 In the presence of oxygen, glucose undergoes complete combustion to create CO₂ 6 and H₂O. The energy produce reaction that liberates free energy, which is trapped as ATP 7 into two consecutive processes: glycolysis and oxidative phosphorylation in mitochondria. 8 The impairment of glycolytic metabolism of glucose in the endothelium of BBB, and the 9 dysfunction of glycolysis pathway cause hypoglycemia in the brain which may initiate the 10 accumulation of amyloid protein in the brain (Hagino et al., 2004).

Our results show that 3,5-di-O-CQA induced the intracellular ATP level in the human neuroblastoma clonal SH-SY5Y cells. Moreover, 3,5-di-O-CQA induced the overexpression of PGK1 mRNA on *in vivo* and *in vitro*. From these results, we suggest that the increase of intracellular ATP level is caused by overexpression of PGK1 mRNA in 3,5di-O-CQA treatment. Therefore, it is possible that the neuroprotective effect of CQA is closely related to the energy metabolism activation, glycolysis pathway activation via the overexpression glycolytic enzyme.

18 CQA has a variety of physiological activities, antioxidant activity, cell 19 differentiation, analgesic activity and neuroprotective effect. However, there has been no 20 report that CQA induced the activation of ATP production in neuronal cells. Our study is 21 the first report on the new function of CQA as a stimulator of ATP production. Exposure of 22 neuronal cells to the strict circumstance, such as cell toxic and chronic hypoxia stimulates

the expression of glucose transporters and enzymes that accelerate glucose utilization to compensate for the reduced production of ATP (Gao et al., 2004). Such a response is gradually late and weak in aging cells. From our results, we suggest that CQA contribute to the homeostasis of ATP production in cells, especially on neuronal cells.

5 Futhermore, glycolytic enzymes have glycolytic and non-glycolytic functions. As 6 for the non-glycolytic functions, glycolytic enzymes play an important role in: (1) 7 apoptosis; (2) transcriptional regulation; (3) cell motility (Kim et al., 2005; Canback et al., 8 2002). Some glycolytic enzymes, Hexokinase, GAPD, etc, are implicated in neuronal 9 apoptosis, and several groups have been investigating thier possible roles in age-related 10 neurodegenerative disorders such as AD (Zheng et al., 2003; Sirover et al., 1999; Mazzola 11 et al., 2003). These findings suggest that the activated glycolytic enzymes by CQA 12 treatment were related to the regulation of neuronal cell apoptosis via apoptosis regulator; 13 BAD, Bak and Bcl.

The parameter of spatial learning and memory (means of escape latency time to find the hidden platform) within 6 days in MWM in SAMP8 and SAMR1 mice was similar. However, 3,5-di-O-CQA, 6.7 mg/kg • day, were shown to have decreased escape latency time compared to the vehicle-administrated SAMP8 mice for 10-30 days. This dose of 3,5di-O-CQA also caused an increase in PGK1 mRNA expression in SAMP8 mice brains (Fig. 6). From these results, 3,5-di-O-CQA induced the overexpression of PGK1 mRNA level both *in vitro* and *in vivo*.

Particularly, PGK1 is an important glycolytic enzyme because this enzyme that
 induces the production of 2 molecules of ATP in glycolysis pathway. Furthermore, PGK1

1 is not a rate limiting enzyme which is Hexokinase, Phosphofructokinase, Pyruvate kinase, 2 in the glycolysis pathway (Theresa et al., 1982). Therefore, the activation of PGK1 enzyme is not affected by the feedback inhibition on ATP production. We suggest that 3,5-di-O-3 CQA can induced the activation of ATP production without feedback inhibition through the 4 5 activation of PGK1. 6 7 CONCLUSION 8 In conclusion, we found that 3,5-di CQA has a neuroprotective effect on $A\beta_{1-42}$ 9 treated SH-SY5Y cells. The mRNA expression of glycolytic enzyme (PGK1) and the 10 intracellular ATP level were increased in 3,5-di-O-CQA-treated SH-SY5Y cells. We also 11 found that 3,5-di-O-CQA administration induced the improvement of spatial learning and 12 memory on SAMP8 mice, and the overexpression of PGK1 mRNA level. These findings 13 suggest that 3,5-di-O-CQA has a neuroprotective effect through the induction of PGK1 14 expression and ATP production activation. 15

REFERNCES 1 2 Angenstein F, Evans AM, Settlage RE, Moran ST, Ling S, Klintsova AY, Shabanowitz J, 3 Hunt DF, Greenough WT (2002) A receptor for activated C kinase is part of messenger 4 ribonucleoprotein complexes associated with polyA-mRNAs in neurons. J Neurosci 22: 5 8827-8837. 6 Basnet P, Matsushige K, Hase K, Kadota S, Namba T (1996) Four di-O-caffeoyl quinic 7 acid derivatives from propolis. Potent hepatoprotective activity in experimental liver 8 injury models. Biol Pharm Bull 19: 1479-1484. 9 Beal M.F (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann 10 Neurol 38: 357-366. 11 Benson DF, Kubl DE, Hawkins RA, Phelps ME, Cumminge JL, Tsai SY (1983) The 12 fluorodeoxyglucose 18F scan in Alzheimer's disease and multi-infarct dementia. Arch 13 Neurol 40: 711-714. 14 Blass JP, Sheu RK, Cedarbaum JM (1988) Energy metabolism in disorders of the nervous 15 system. Rev Neurol (Paris) 144: 543-563. 16 Boyd-kimball D, Sultana R, Fai Poon H, Lynn BC, Casamenti F, Pepeu G, Klein JB, 17 Butterfield DA (2005) Proteomic identification of proteins specifically oxidized by 18 intracerebeal injection of amyloid β -peptide (1-42) into rat brain: implications for 19 Alzheimer's disease. Neurosci 132: 313-324. 20 Canback B, Andersson SGE, Kurland CG (2002) The global phylogeny of glycolytic 21 enzymes. Proc Natl Acad Sci USA 99: 6097-6102.

22 Eckert A, Marques CA, Keil U, Schussel K, Muller WE (2003) Increased apoptotic cell

1	death in sporadic and genetic Alzheimer's disease. Ann NY Acad Sci 1010: 604-609.
2	Fai Poon H, Farr SA, Thongboonkerd V, Lynn BC, Banks WA, Morley JE, Klein JB,
3	Butterfield DA (2005) Proteomic analysis of specific brain proteins in aged SAMP8
4	mice treated with alpha-lipoic acid: implications for aging and age-related
5	neurodegenerative disorders. Neurochemistry International 46: 159-168.
6	Fai Poon H, Joshi G, Sultana R, Farr SA, Banks WA, Morley JE, Calabrese V, Butterfield
7	DA (2004) Antisense directed at the A-beta region of APP decreases brain oxidative
8	markers in aged senescence accelerated mice. Brain Res 1018: 86-96.
9	Ferhat L, Charton G, Represa A, Ben Ari Y, Terrossian E, Khrestchatisky M (1996) Acidic
10	calponin cloned from neural cells is differentially expressed during rat brain
11	development. Eur J Neurosci 8: 1501-1509.
12	Gao L, Mejías R, Echevarría M, López-Barneo J (2004) Induction of the glucose-6-
13	phosphate dehydrogenase gene expression by chronic hypoxia in PC12 cells. FEBS
14	Letters 569: 256-260.
15	Haag J, Aigner T (2007) Identification of calponin 3 as a novel Smad-binding modulator of
16	BMP signaling expressed in cartilage. Experimental cell reseach 313: 3386-3394.
17	Hagino N, Kobayashi S, Tsutsumi T, Horiuchi S, Nagai R, Setalo G, Dettrich E (2004)
18	Vascular change of hippocampal capillary is associated with vascular change of retinal
19	capillary in aging. Brain Research Bulletin 62: 537-547.
20	Holliday R (1996) The urgency of research on ageing. Bioessays 18: 89-90.
21	Hosokawa M, Abe T, Higuchi K, Shimakawa K, Omori Y, Matsushita T, Kogishi K,
22	Deguchi E, Kishimoto Y, Yasuoka K, Takeda T (1997) Management and design of the

1	maintenance of SAM mouse strains: an animal model for accelerated senescence and
2	ageassociated disorders. Exp Gerontol 32: 111-116.
3	Huang F, Li W, Zhang B, Cui X, Han Z, Fang Z, Cai S, Yin L, Wang L (2001) Effects of
4	free radicals and amyloid beta protein on the currents of expressed rat receptors in
5	Xenopus oocytes. Chin Med J (Engl.) 114: 244-247.
6	Hur JY, Soh Y, Kim BH (2001) Neuroprotective and neurotrophic effects of quinic acids
7	from Aster scaber in PC12 cells. Biol Pharm Bull 24: 921-924.
8	Isoda H, Talorete TPN, Han J, Nakamura K (2006) Expression of galectin-3, glutathione S-
9	transferase A2 and peroxiredoxin-1 by nonylphenol-incubated Caco-2 cells and
10	reduction in transepithelial electrical resistance by nonylphenol. Toxicology in Vitro
11	20: 63-70.
12	Kim JW, Dang CV (2005) Multifaceted roles of glycolytic enzymes. Trends in Biochemical
13	Sciences: 30, 142-150.
14	Kwon YS, Kim KO, Lee JH (2003) Chemical constituents of Dipsacus asper (II). Kor J
15	Pharmacogn 34: 128-131.
16	Kumar VB, Farr SA, Flood JF, Kamlesh V, Franko M, Banks WA, Morley JE (2000) Site-
17	directed antisense oligonucleotide decreases the expression of amyloid precursor
18	protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides
19	21: 1769-1775.
20	Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, Li Y (2009) Long-term green tea
21	catechin administration prevents spatial learning and memory impairment in
22	senescence-accelerated mouse prone-8 mice by decreasing $A\beta_{1-42}$ oligomers and

1	upregulating synaptic plasticity-related proteins in the hippocampus. Neurosci 163:
2	741-749.
3	Li YP, Bushnell AF, Lee CM, Perlmutter LS, Wong SKF (1996) β-Amyloid induces
4	apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Research 738: 196-204.
5	Martínez T, Pascual A (2007) Identification of genes differentially expressed in SH-SY5Y
6	neuroblastoma cells exposed to the prion peptide 106-126. Eur J Neurosci 26: 51-59.
7	Mazzola JL, Sirover MA (2003) Subcellular alteration of glyceraldehyde-3-phosphate
8	dehydrogenase in Alzheimer's disease fibroblasts. J Neurosci Res 71: 279-285.
9	Meier-Ruge W, Hunziker O, Iwangoff P (1991) Senile dementia: a threshold phenomenon
10	of normal aging? A contribution to the functional reserve hypothesis of the brain. Ann
11	NY Acad Sci 621: 104-118.
12	Nakajima Y, Shimazawa M, Mishima S, Hara H (2007) Water extract of propolis and its
13	main constituents, caffeoylquinic acid derivatives, exert neuroprotective effects via
14	antioxidant actions. Life sciences 80: 370-377.
15	Nomura Y, Yamanaka Y, Kitamura Y, Arima T, Ohnuki T, Oomura Y, Sasaki K,
16	Nagashima K, Ihara Y (1996) Senescence-accelerated mouse. Neurochemical studies
17	on aging. Ann NY Acad Sci 786: 410-418.
18	Morley JE, Kumar VB, Bernardo AE, Farr SA, Uezu K, Tumosa N, Flood JF (2000) Beta-
19	amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides
20	21: 1761-1767.
21	Ohta A, Hirano T, Yagi H, Tanaka S, Hosokawa M, Takeda T (1989) Behavioral

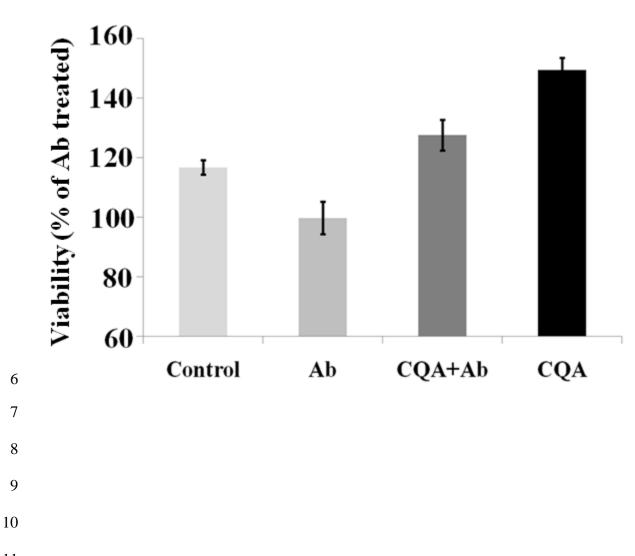
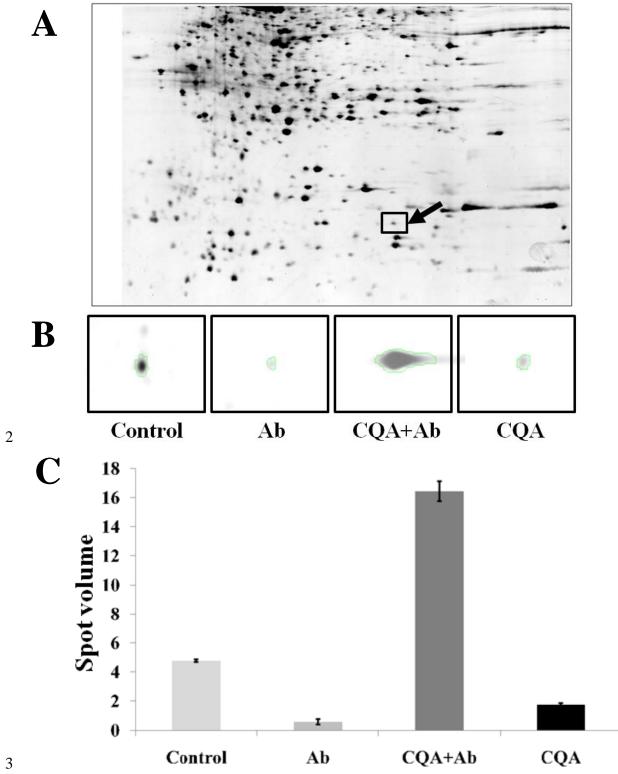
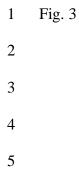
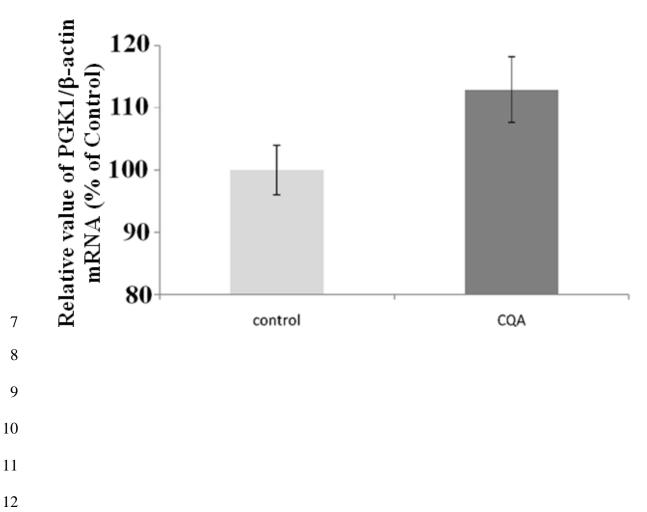
22 characteristics of the SAM-P/8 strain in Sidman active avoidance task. Brain Res 498:

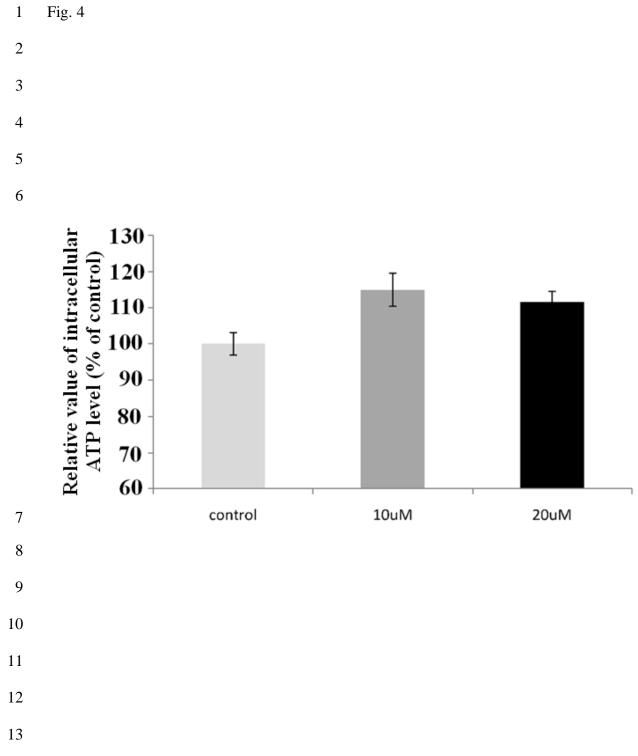
1 195-198.

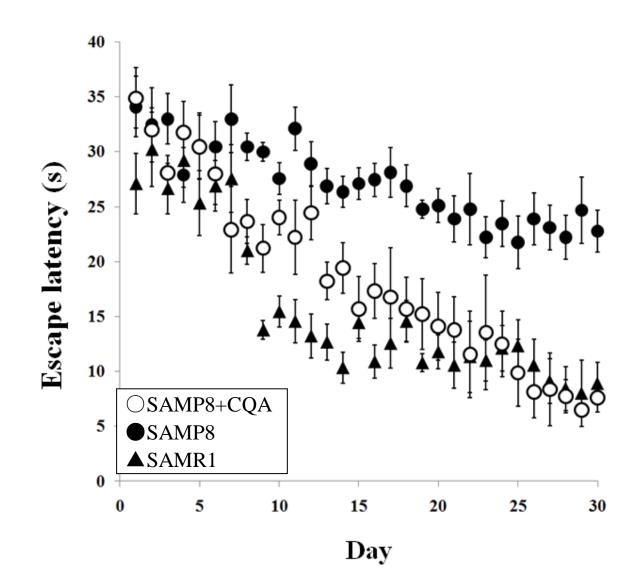
2	Qi X, Xiu J, Shan K, Xiao Y, Gu R, Liu R, Guan Z (2005) Qxidative stress induced by
3	beta-amyloid peptide ₁₋₄₂ is involved in the altered composition of cellular membrane
4	lipids and the decreased expression of nicotinic receptors in human SH-SY5Y
5	neuroblastoma cells. Neurochem inter 46: 613-621.
6	Roth KA (2001) Caspases, apoptosis, and Alzheimer disease: causation, correlation, and
7	confusion. J Neuropathol Exp Neurol 60: 829-838.
8	Shapiro TA, Talalay P (1982) Schistosoma mansoni: Mechanisms in regulation of
9	glycolysis. Experimental Parasitology 54: 379-390.
10	Shimano Y (1998) Studies on aging through analysis of the glucose metabolism related to
11	the ATP-production of the senescence accelerated mouse (SAM). Hokkaido Igaku
12	Zasshi 73: 557-569.
13	Sirover MA (1999) New insights into an old protein: the functional diversity of mammalian
14	glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta 1432: 159-184.
15	Soh Y, Kim JA, Sohn NW, Lee KR, Kim SY (2003) Protective effects of quinic acid
16	derivatives on tetrahydropapaveroline induced cell death in C6 glioma cells. Biol Pharm
17	Bull 26: 803-807.
18	Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y,
19	Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T (1981) A new murine
20	model of accelerated senescence. Mech Ageing Dev 17: 183-194.
21	Tucek S, Rincy J, Dolazal V (1990) Advance in the biology of cholinergic neurons. Adv

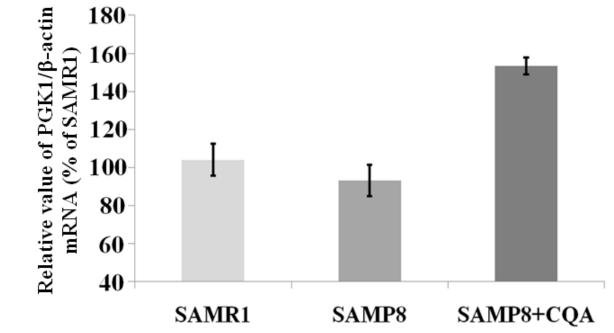
22 Neurol 51: 109-115.

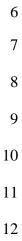
1	Wang H, Xu Y, Yan J, Zhao X, Sun X, Zhang Y, Guo J, Zhu C (2009) Acteoside protects
2	human neuroblastoma SH-SY5Y cells against β -amyloid-induced cell injury. Brain
3	Research 1283: 139-147.
4	Yagi H, Katoh S, Akiguchi I, Takeda T (1988) Age-related deterioration of ability of
5	acquisition in memory and learning in senescence accelerated mouse: SAM-P/8 as an
6	animal model of disturbances in recent memory. Brain Res 474: 86-93.
7	Zheng L, Roeder RG, Luo Y (2003) S phase activation of the histone H2B promoter by
8	OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114:
9	255-266.


Fig. 2







- 1 Fig. 6

1	Fig. 1 Effect of 3,5-di-O-CQA on the $A\beta_{1-42}$ treated SH-SY5Y cells viability. SH-SY5Y
2	cells were treated with 20 μM 3,5-di-O-CQA (CQA) or 2 μM A β_{1-42} (A $\beta)$ for 72 h.
3	Each bar represents the mean \pm SD ($n = 4$). * $P < 0.05$
4	
5	Fig. 2 Two-dimensional gel electrophoresis of SH-SY5Y cells (A), the magnified images of
6	the boxed regions (B) and spot volume (C). SH-SY5Y cells were treated with 20 μM
7	3,5-di-O-CQA or exposed to 2 μM A β_{1-42} for 72 h,. The 2-DE gel was stained with
8	coomassie brilliant blue. Spot volume was measured by ImageMaster 2D Platinum
9	software. These spots were identified as PGK1 by MALDI-TOF mass spectrometry.
10	Each bar represents the mean \pm SD ($n = 3$). ** $P < 0.01$ (vs control).
11	
12	Fig. 3 Effect of 3,5-di-O-CQA on the expressions of PGK1 mRNAs by SH-SY5Y cells. β -
13	actin was used as a housekeeping gene. The mRNA expression of PGK1 was
14	normalized by β -actin mRNA expression. SH-SY5Y cells were treated with 10 μ M
15	3,5-di-O-CQA for 16 h. Each bar represents the mean \pm SD ($n = 4$). * $P < 0.05$
16	
17	Fig. 4 Effect of 3,5-di-O-CQA on the intracellular ATP production of SH-SY5Y cells. SH-
18	SY5Y cells were treated with 10 and 20 μM 3,5-di-O-CQA for 48 h. Intracellular ATP
19	production was increased by 3,5-di-O-CQA treatment on SH-SY5Y cells. Each bar
20	represents the mean \pm SD ($n = 10$). ** $P < 0.01$ vs control
21	

1	Fig. 5 Effect of 3,5-di-O-CQA on the spatial learning and memory of SAMP8 mice in
2	MWM. The average time to reach the hidden platform (latency in seconds) is plotted
3	for each training day. SAMP8 mice were administrated with 3,5-di-O-CQA (6.7
4	mg/kg · day) for 30 days. Each bar represents the mean \pm SD ($n = 8$). *P<0.05 vs
5	SAMP8 group.
6	
7	Fig. 6 Effect of 3,5-di-O-CQA on the expressions of PGK1 mRNAs by SAMR1 and
8	SAMP8 mice brains. β -actin was used as a housekeeping gene. The mRNA expression
9	of PGK1 was normalized by β -actin mRNA expression. SAMP8 mice were
10	administrated with 3,5-di-O-CQA (6.7 mg/kg · day) for 30 days. Each bar represents
11	the mean \pm SD (<i>n</i> = 8). * <i>P</i> <0.05
12	