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Abstract: A Monte-Carlo-based phase retardation estimator is developed
to correct the systematic error in phase retardation measurement by polariza-
tion sensitive optical coherence tomography (PS-OCT). Recent research has
revealed that the phase retardation measured by PS-OCT has a distribution
that is neither symmetric nor centered at the true value. Hence, a standard
mean estimator gives us erroneous estimations of phase retardation, and it
degrades the performance of PS-OCT for quantitative assessment. In this
paper, the noise property in phase retardation is investigated in detail by
Monte-Carlo simulation and experiments. A distribution transform function
is designed to eliminate the systematic error by using the result of the
Monte-Carlo simulation. This distribution transformation is followed by a
mean estimator. This process provides a significantly better estimation of
phase retardation than a standard mean estimator. This method is validated
both by numerical simulations and experiments. The application of this
method to in vitro and in vivo biological samples is also demonstrated.
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1. Introduction

Optical coherence tomography (OCT) provides high-resolution depth-resolved images of bi-
ological tissues noninvasively [1, 2], hence, OCT is suitable for applications in ophthalmol-
ogy [3, 4], dermatology [5], dentistry [6], and cardiology [7]. Polarization sensitive OCT (PS-
OCT), which possesses all the advantages stated above, is a functional extension of OCT. It
enables both conventional backscattering tomography and birefringence tomography [8–11].
Tissue birefringence is strongly associated with the structural properties of biological tissues;
hence, PS-OCT has been adopted for imaging skin [12–15], cartilage [16], teeth [17], and the
anterior and posterior segments of the eye [18–25].

Phase retardation is an important birefringent property of tissue, and it is widely employed
to visualize PS-OCT images. It is a cumulative quantity that rotates in phase along the depth
if the sample has birefringence while it remains constant if the sample has no birefringence. In
biological tissues, micro-structural changes such as fibrosis, inflammation, and canceration can
result in the alteration of phase retardation [21, 23, 25]; hence, the phase retardation image is
of significant diagnostic importance. However, as reported in several studies, phase retardation
measurements can be drastically affected by detection noise in PS-OCT [26, 27]. A standard
mean estimator, i.e., average, cannot provide an appropriate estimation of phase retardation,
and it significantly reduces the utility of PS-OCT for quantitative measurement [27].

Almost all PS-OCT algorithms derive phase retardation from multiple complex OCT sig-
nals. In the real and imaginary parts of the raw OCT signal, the noise distribution is reasonably
assumed to be Gaussian centered at a true value. However, in general, the derivation of phase
retardation from the raw OCT signals is complicated and, sometimes, nonlinear. This elabo-
rates derivation process drastically complicates the analytic investigation of noise distribution
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in phase retardation.
As is widely known, Monte-Carlo simulation is a powerful tool for investigating stochastic

processes of elaborate systems, and it has been widely employed for the analysis of the optical
scattering property of biological tissues [28], theirs polarization dependency [29], and imag-
ing modalities based on optical scattering, including diffusion tomography [30], photoacoustic
tomography [31], and OCT [32]. The Monte-Carlo method has also been employed to investi-
gate the noise property of phase retardation measurement in PS-OCT [27]. In this study, it was
shown that the noise distribution in phase retardation is neither Gaussian nor symmetric. This
is partially because the measurement range of phase retardation of PS-OCT is typically limited
from 0 to π; hence, phase retardation signals less than zero or greater than π will be aliased
in the 0 to π range. Because of this asymmetric distribution, both the mean and the mode in-
clude a systematic error, and they cannot provide a correct estimation of true phase retardation.
Currently, this systematic error is minimized by enhancing the signal-to-noise ratio (SNR) of
PS-OCT. However, to have a reasonably small error, a very high SNR, typically more than 20
dB, is required.

The objective of this paper is to propose a method that reduces the systematic error in
measurement and to relax the harsh SNR requirement for accurate phase retardation detection.
This method involves a Monte-Carlo-based (MCB) phase retardation estimator, and it consists
of the following 2 steps. In step 1, the measured raw phase retardation values are transformed
by a custom distribution transform function, which is designed on the basis of the noise prop-
erty of PS-OCT, determined by a Monte-Carlo analysis. In step 2, a mean operation is applied
to a set of the transformed phase retardation values measured at the same location in the sample
or located within a predefined averaging kernel. By simulation and wave plate experiments,
we show that this MCB estimator outperforms the conventional mean estimator in terms of
quantitative estimation of phase retardation. Finally, we apply the MCB estimator to phase re-
tardation images of an in vitro chicken breast muscle and in vivo human retina. The results
show improved image contrast and reasonable phase retardation, which are in good agreement
with prior knowledge of retinal birefringence.

2. Jones Matrix Polarization Sensitive Optical Coherence Tomography

The MCB phase retardation estimator proposed in this paper is specifically designed for Jones
matrix PS-OCT. The detailed principle of Jones matrix PS-OCT is described elsewhere [33–35].
Here, we briefly summarize the principle of swept-source Jones matrix PS-OCT [36].

In this system, the incident polarization is continuously modulated by an electro-optic modu-
lator (EOM). This modulation multiplexes two OCT signals that correspond to two orthogonal
polarization axes of the EOM in its carrier frequency. Thus, the OCT signal corresponding to
one of the axes of the EOM has a high-modulation frequency along its spectral scan, while
the spectral interference signal of the other axis is not modulated. These modulated and non-
modulated spectra were detected by a polarization diversity (PD) detection unit, in which hor-
izontal and vertical polarization components of the spectral interference signals are indepen-
dently detected by two detectors. The polarization axes of the EOM and those of PD detection
units are configured to be inclined at 45 degrees; hence, the modulated and non-modulated
polarization components are detected by both the horizontal and the vertical detectors. The
modulated and non-modulated signals were numerically demultiplexed after detection. The de-
multiplexed spectra were processed using a standard SS-OCT algorithm, and four OCT signals
were obtained. Here, the OCT signals are denoted by I0,H(z), I1,H(z), I0,V (z), and I1,V (z), where
the subscripts 0 and 1 denote non-modulated and modulated signals and the subscripts H and
V denote horizontal and vertical polarization states of the PD detector, respectively. Then, the
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cumulative Jones matrix at a particular point in the sample Js(z) is obtained as

Js(z) = Jr(z)J
−1
in , (1)

where Jr(z) and Jin are the raw Jones matrix measured at the point of interest and the Jones
matrix measured at the surface of the sample, respectively [36]. By using the OCT signals,
these matrixes are defines as

Jr(z) =

[
I0,H(z) I1,H(z)
I0,V (z) I1,V (z)

]
, (2)

Jin =

[
I0,H(z0) I1,H(z0)
I0,V (z0) I1,V (z0)

]
, (3)

where z and z0 are the depth positions of the point of interest and the surface, respectively. In
practice, Jin is a Jones matrix of the input fiber of the interferometer; hence, the effect of fiber
birefringence is canceled by Eq. (1).

The round-trip phase retardation, δM(z), is obtained by matrix diagonalization [27] or by a
trace method [37]. In this paper, we use the trace method represented by Eq. (4) rather than
matrix diagonalization because it enables faster calculation.

δM(z) = 2cos−1

∣∣∣trJs(z)+
detJs(Z)
|detJs(Z)| trJ

†
s (z)

∣∣∣
2
[
tr
(

J†
s (z)Js(z)

)
+2 |detJs(z)|

]1/2
, (4)

where tr, det, and † denote the trace, determinant, and complex conjugate transpose, respec-
tively. In this paper, the raw phase retardation δM(z) is expressed as the measured phase retar-
dation.

3. Noise in Phase Retardation Measurement

3.1. Noise Model and Monte-Carlo Simulation

Numerical simulations are performed to investigate the error and noise properties of phase
retardation measurement. In the simulations, the noise is described using the same model as
that used in a previous study [27]. Thus, the raw OCT signals, including Jr(z) and Jin(z), are
modeled as the summation of the true Jones matrix and additive complex noise as

[
I0,H(z) I1,H(z)
I0,V (z) I1,V (z)

]
=

[
S0,H(z) S1,H(z)
S0,V (z) S1,V (z)

]
+

[
N0,H(z) N1,H(z)
N0,V (z) N1,V (z)

]
, (5)

where Ss denote the true values of the OCT signals, and Ns denote complex noise in each
channel. The real and imaginary parts of the noise follow zero-mean Gaussian distributions.
The noises are totally decorrelated with each other, even though all of them are assumed to
have identical standard deviations.

As shown in Eqs. (34)–(39) and Fig. 2 of Ref. 27, the noise property is described as a function
of the effective SNR (ESNR; γ) rather than the SNR of each detection channel. The ESNR is
defined as

1
γ
=

1
4

(
1

SNRs,0
+

1
SNRs,1

+
1

SNRr,0
+

1
SNRr,1

)
. (6)

SNRs,i and SNRr,i are defined as the ratio of signal energy (signal intensity) of the i-th incident
light and noise energy of the i-th detection channel at the point of interest (denoted by the
subscript s) and surface of the sample (denoted by the subscript r), respectively. Because of
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this property, we utilize ESNR rather than the SNR of each detection channel in the following
analysis.

It should be noted that here we follow the definition of SNR of Jones matrix OCT described
in Section 3.1.1 of Ref. 27. In this definition, the signal is the summation of the signal energies
of all detections for a single incident polarization state, while the noise is defined as the noise
level in each single detection. In our Jones matrix PS-OCT, two detectors, i.e. for horizontal and
vertical polarization states, are utilized for polarization diversity detection. When we measure
a void region, the signal energy detected by a single detector is equivalent to the noise energy.
According to the above mentioned definition, signal is the summation of the signal energies of
the two channels, each of which is equivalent to the noise energy in this case. Hence the ESNR
measured at a void region (noise region) becomes around 3 dB. This pseudo increasing of SNR
is appeared only at a very low signal region.

3.2. Noise Property

The phase retardation measurements and numerical simulation were performed for a one-eighth
wave-plate (EWP) and a quarter wave-plate (QWP), whose round-trip phase retardations are
π/2 and π , respectively. For the wave-plates measurement, a tunable neutral density filter was
located in a sample arm to control the incident power and hence SNR. 213 A-lines were acquired
for each SNR configuration. The intensity of OCT signal in air was averaged to obtain the noise
floor of each detection channels, and the SNR and ESNR were calculated for the successive
estimation of phase retardation. For each simulation, 213 Monte-Carlo trials were performed.
Figure 1 shows the distribution of the raw measured/simulated phase retardation, δM , obtained
from numerical simulations (left column) and experiments (right column) using an EWP (first
and second rows) and a QWP (third and fourth rows). The histograms show good agreement
between the simulations and the experiments. These results validate the proposed Monte-Carlo
model.

Figure 1 also shows that the distributions are asymmetric. This asymmetry is shown more
quantitatively in Fig. 2, where the skewness of the distributions of the true phase retardations
(δT = 0, π/6, π/3, π/2, 2π/3, 5π/6, π radians) is plotted against ESNR. The skewness is defined
as the third moment about the mean divided by the third power of standard deviation, and is one
of the statistical measures of asymmetric level of prbability density function. Each distribution
was obtained using a Monte-Carlo simulation with 221 trials. For δT = 0 and π , the skewness
is not zero in nearly the entire ESNR range. Since skewness becomes zero for a symmetric
distribution, these non-zero values of the skewness indicate that the distributions of δT = 0
and π are not symmetric for any ESNR. For other δT , the skewness is nearly zero, i.e., the
distribution is symmetric for high ESNR. However, the distribution becomes asymmetric for
the ESNR less than around 20 to 25 dB. These asymmetries may be attributed to the aliasing
at the perimeters of the measurement range and to the nonlinear relationship between the Jones
matrix and the phase retardation.

Because of these asymmetries, the mean of the distribution cannot give a reasonable estima-
tion of the true phase retardation δT . The mean of the simulated δM corresponding to several
δT values are plotted against ESNR, as shown by the red curves in Figure 3. The curves are ob-
tained by averaging 216 trials of δM obtained by the Monte-Carlo simulation. The mean of δM

deviates from the true value (dashed lines) and approaches around 2.15 rad as ESNR decreases.

4. Monte-Carlo-Based Phase Retardation Estimator

Conventionally, mean and maximum likelihood estimators have been utilized for quantitative
estimation of polarization [24]. However, the asymmetric distribution presented in Section 3.2
implies that these standard estimators do not provide appropriate estimations. This is because
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Fig. 1. Comparison of the measured phase retardation distribution with different ESNR
in the simulation and experiment. The sample is an eighth-waveplate in (a)–(d) and a
quarter-waveplate in (e)–(h). (a),(c),(e), and (g) show the results of numerical simulation
and (b),(d),(f), and (h) are the experimental results. The marked ESNR values denote the
mean ESNR in each experiment or simulation.
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these estimators assume symmetric distribution of measured values. To overcome this problem,
we propose an MCB estimator that involves a two-step estimation algorithm consisting of a
non-linear distribution transform and a conventional mean estimation.

4.1. Non-Linear Distribution Transform and MCB Estimator

The first step of our MCB estimator is the distribution transform. We assume a transform func-
tion f (δM) that transforms measured raw phase retardation δM into transformed phase retarda-
tion, δE , for further estimation. The ensemble average of δE approaches the true phase retarda-
tion δT as the number of samples increases;

δT � 〈δE〉 ≡ 〈 f (δM)〉 , (7)

where 〈〉 denotes ensemble average. Note that f (δM) is not only a function of δM , but also a
function of ESNR γ and δT because the distribution of δM varies with them.

In practical phase retardation estimation, δT cannot be utilized as prior information, while
ESNR can be obtained prior to the estimation directly from the measured OCT signals. Hence,
we define a set of the suboptimal but practical transform function f ′(δM), which is a polynomial
function of δM and ESNR γ , but not a function of δT , as

f ′(δM;γ) =
n

∑
i=0

bi(γ)δ i
M, (8)
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where bi(γ) is i-th order polynomial coefficient of the transform function at an ESNR of γ .
In the design process of the transform function, bi(γ) is defined to be

δT � 〈δE〉=
〈

n

∑
i=0

bi(γ)δ i
M

〉
. (9)

To determine bi(γ) for a particular γ , δMs were obtained by Monte-Carlo simulations for
several δT s from δT = 0 to π in steps of π/60. If bi(γ) is properly defined, the simulation results
would follow the following 61 equations.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 � b0(γ) +b1(γ)〈δM,0〉 + · · · bn(γ)
〈

δ n
M,0

〉
π/60 � b0(γ) +b1(γ)

〈
δM,π/60

〉
+ · · · bn(γ)

〈
δ n

M,π/60

〉
...

...
...

...

π � b0(γ) +b1(γ)〈δM,π〉 + · · · bn(γ)
〈

δ n
M,π

〉
, (10)

where the left-hand-sides are the set true phase retardations δT , δM,δT
is a raw phase retarda-

tion obtained by Monte-Carlo simulation with a set true phase retardation of δT , and n is the
maximum polynomial order of f ′(δM;γ). Here, each ensemble averaged value is obtained via
Monte-Carlo simulation with 221 trials; hence, they are known values. Equation (10) can also
be written in a vector form as

DT � DM ·B (11)

where DT = [0,π/60, · · · ,δT , · · · ,π]T , B = [b0(γ), · · · ,bn(γ)]T and

DM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈
δ 0

M,0

〉 〈
δ 1

M,0

〉
· · ·

〈
δ n

M,0

〉
...

...
...〈

δ 0
M,δT

〉 〈
δ 1

M,δT

〉 . . .
〈

δ n
M,δT

〉
...

...
...〈

δ 0
M,π

〉 〈
δ 1

M,π

〉
· · ·

〈
δ n

M,π

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

And then, the polynomial coefficients bi(γ) are defined as

B ≡ DM
+ ·DT (13)

where DM
+ is the pseudo-inverse of DM, obtained by singular value decomposition.

Equation (13) is equivalent to obtaining optimal bi(γ) by a least squares method. Thus, bi(γ)
is defined to minimize a squared-sum error defined as

R =
60

∑
k=0

[
δT,k −

(
b0 +b1

〈
δM,k

〉
+ · · ·+bn

〈
δ n

M,k

〉)]2
(14)

where δT,k = kπ/60 is the true phase retardation of the k-th configuration of the Monte-Carlo
simulation and δM,k is the corresponding simulated value of the measured phase retardation.

A transform function f ′(δM;γ) is now defined for particular γ . For practical applications of
phase retardation measurement, f ′(δM;γ) is defined for γ of 0 dB to 50 dB in steps of 1 dB.

This transform function can be utilized to correct the contrast of phase retardation tomogra-
phy images. Further, to obtain a qualitative phase retardation value, one of standard estimators
can be applied after this distribution transform. According to the assumption made in the design
of the transform function, a mean estimator would be reasonable. In this paper, we denote this
combination of the distribution transform and mean estimator as an MCB estimator.
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Fig. 4. Contour plots of systematic error in mean estimator (a) and 4th order MCB estimator
(b).

4.2. Performance of Monte-Carlo-Based Estimator

4.2.1. Estimation Error

The detailed performance of the MCB estimator was evaluated via Monte-Carlo simulations.
Figure 3 shows the estimated phase retardation at several ESNR and true phase retardations,
where 216 trials of Monte-Carlo simulation were performed for each configuration. The green
curves were obtained using the MCB estimator with the 4th order transform function, and the
red curves were obtained using a mean estimator, as discussed in Section 3.2. As shown in this
figure, the MCB estimator gives reasonable estimation even with a low ESNR of around 5 dB,
while a standard mean estimator suffers from a significant error, even at an ESNR of 20 dB.

For further understanding of this error property, the estimation error is plotted as a function
of the true phase retardation and ESNR, as shown in Fig. 4. Figures 4(a) and 4(b) show the
estimation error of mean estimator and 4th order MCB estimator, respectively. In these esti-
mations, 216 trials of δM or δE were averaged. Fig. 4(a) clearly shows that the mean estimator
includes a significant error if the true value is not close to 2.15 rad, and the error becomes larger
as the true value approaches the perimeter of the measurement range of phase retardation, i.e.
[0, π]. In contrast, the error is well controlled by the MCB estimator, as shown in Fig. 4(b).
When the ESNR is higher than 5 dB, the error is less than π/50 for most of the part of the plot.
The maximum error is less than π/20 rad, which appears at δT = 0 and π .

In order to evaluate the performance of the MCB estimator in a more qualitative manner, we
defined a mean error energy, ε2, as

ε2 =

[
6

∑
i=0

(
δT,i −

〈
δM/E,i

〉)2

]
/7, (15)

where δT,i = iπ/6 is true phase retardation and
〈
δM/E,i

〉
is the ensemble mean of δM or δE

when the true value is δT,i. Figure 5 shows the square-root of ε2 as a function of ESNR, where
ε was obtained via Monte-Carlo simulation with 216 trials, followed by a mean estimator (red
curve), 4th order MCB estimator (green curve), and 6th order MCB estimator (blue curve). For
very high ESNR, e.g., higher than 25 dB, all the estimators provide a reasonably small amount
of error. However, if the ESNR becomes lower than 25 dB, the error of the mean estimator
increases rapidly, while the errors of the MCB estimators remain reasonably small until around
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8 dB.

4.2.2. Randomness of Estimation

Thus far, we discussed the estimation error obtained with a sufficiently large number of trials.
However, in practice, the number of trials/measurements we can perform at a single location
is limited. Similarly, the kernel size of a local averaging filter that may be applied to a phase
retardation image should be small. If the distribution of the transformed phase retardation is
broad, i.e., randomeness is high, a large number of measurements are required to restrain the
randomness of the result. Hence, the randomness of estimation is also of particular interest.

For qualitative evaluation, we define randomness as the root mean square error (RMSE) of
the estimation as

σ =
√

〈(δT −δE)2〉. (16)

In Fig. 6, σ is plotted as a function of ESNR and δT . We consider σ as a performance cri-
terion of precision in estimation. Figures 6(a)–6(c) show σ against δT and ESNR, where σ
was obtained with mean, 4th order MCB, and 6th order MCB estimation, respectively. σ of
all of these three methods increase as ESNR decreases. The 4th and 6th order MCB estimators
possess a similar level of randomness if the ESNR is higher than 15 dB. However, the random-
ness in the 6th order MCB becomes significantly higher than that in the 4th order MCB if the
ESNR is less than 10 dB. Therefore, we have used the 4th order transform function rather than a
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higher order transform function. In summary, the randomness in estimation increases as ESNR
decreases, and the mean and higher order MCB generate the lowest and highest random error.

5. Experimental Validation

5.1. Standard Samples

The experimental performance of the MCB estimator is quantitatively evaluated by measuring
the phase retardations of a glass plate, a one-eighth wave-plate, and a quarter wave-plate, whose
round trip phase retardations are 0, π/2, and π , respectively.

For this measurement, PS-SS-OCT with a 1.3 μm probe was employed. The details of the
principle of this system are described in Section 2 and Ref. 36, and the details of the hardware
configuration are described in Ref. 38. In short, this system has a depth resolution of 8.3 μm
in air and a measurement speed of 30,000 A-lines/s. The measurements are performed with
several ESNR configurations, which are controlled by a neutral density filter placed in front of
the sample. For each ESNR configuration, 64 A-lines were successively obtained and utilized
for the estimation.

The estimations are shown in Fig. 7, where the red dots and green dots represent the estima-
tions obtained by a mean estimator and MCB estimator, respectively. The red and green curves
denote the corresponding estimations obtained by the Monte-Carlo simulations, and they are
identical to those in Fig. 3. The experiment is in good agreement with the Monte-Carlo simula-
tion, and the MCB estimator enables better estimation than the mean estimator.

The estimation was not performed for ESNR less than 8 dB because of the difficulty in the
experimental determination of ESNR, which arises from the non-uniform SNR of each detec-
tion channel of the PS-SS-OCT. Because the modulation efficiency of the source polarization
of the system is not perfect, the SNR of the modulated channels are 8 to 10 dB lower than
those of the non-modulated channels. The ESNR (γ), which is a significant parameter for the
estimation, becomes unreliable in this low ESNR range; hence, δE also becomes unreliable.
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Fig. 8. B-scan images of in vitro chicken breast muscle. (a) is an intensity image, and (b) is
a log-scaled ESNR image. (c) is a single raw phase retardation image. (d) and (e) are phase
retardation images obtained from mean and MCB estimators based on 128 B-scans. The
white dashed lines denote the positions of the depth signal shown in Fig. 9.

5.2. In Vitro Chicken Breast Muscle

The MCB estimator was applied to an in vitro chicken breast muscle, which is commonly uti-
lized as a standard sample of PS-OCT evaluation. A 10-mm region on the sample was scanned
to obtain a B-scan that consists of 512 A-lines. The B-scan measurements were successively
performed 128 times at the same location on the sample; hence, 128 measurements were per-
formed at a single point of an OCT image. Before applying the estimator, data points whose
ESNR is lower than 8 dB were discarded because of their unreliability (see the last paragraph
of Section 5.1). The remaining data points were substituted by the mean and 4th order MCB
estimators to form estimated-phase retardation images.

Figure 8 shows the intensity image (a), ESNR image (b), a raw (non-avaraged) phase retar-
dation image (c) and estimated phase retardation images formed by the mean estimator (d) and
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Fig. 9. Plots of A-line signals versus penetration depth. The red dots represent phase retar-
dation values of raw phase retardation (a), obtained by mean estimator (b), and obtained by
4th order MCB estimator (c). Dashed curves represents corresponding ESNR values. The
ESNR of (a) is a raw and non-averaged ESNR signal, while the ESNR of (b) and (c) are
averaged ESNR of A-lines which have been taken at the same location on the sample and
been utilized for the estimation.

MCB estimator (e). Although the mean estimator significantly reduces the noise as shown in
Figs. 8(c) and 8(d), the contrast of the fringe shown in Fig. 8(d) is still erroneously decreases in
a deeper region. This is because, with low ESNR, the mean estimator underestimates the phase
retardation when the true phase retardation is close to π , and overestimates the phase retarda-
tion when the true phase retardation is close to zero, as discussed in Section 4.2.1. On the other
hand, the MCB estimator provides higher contrast of the fringe, as shown in Fig. 8(e). It should
be noted that with the MCB estimator, the fringe contrast decreases in a very deep region. This
may be attributed to OCT signal crosstalk due to multiple scattering and the limitations of MCB
discussed in Section 4.2.1.

The red dots in Figs. 9(a)–9(c) respectively show examples of depth resolved phase retar-
dation signals extracted from a raw phase retardation image (a) and from phase retardation
images obtained by the mean estimator (b) and the MCB estimator (c). The transversal loca-
tions of these signals are indicated by dashed lines in Figs. 8(c)–8(e). The dashed curves present
corresponding depth-resolved ESNR signals in a logarithmic scale. The ESNR of Fig. 9(a) is a
non-averaged ESNR signal, while the ESNR of Figs. 9(b)–9(c) are averaged ESNR of A-lines
which have been taken at the same location on the sample and been utilized for the estimation.
It should be noted that the ESNR in the air is not 0 dB but around 3 dB because of the reason
discussed in Section 3.1. The phase retardation is cumulative along depth; hence, a clear fringe
pattern is observed in the estimated phase retardation by both methods. A clear decay was ob-
served in the contrast of phase retardation fringe in the mean estimator image, caused by ESNR
decreasing along the penetration depth; however, this did not happen in estimation using the
MCB method.

5.3. In Vivo Posterior Eye Measurement

To show the utility of the distribution transform for correcting the contrast of phase retardation
images without successive mean averaging, we applied this transform to a phase retardation
image of an in vivo human eye. Here, only a single phase retardation image is utilized. The
measurement was performed by PS-SS-OCT with a 1.0 μm probe beam with a depth resolution
of 11.0 μm in tissue and a scanning speed of 30,000 A-lines/sec [39]. A 6-mm region on
the retina was scanned once, and a B-scan with 2048 A-lines were obtained. The distribution
transform was then applied to the phase retardation image.

Figure 10 shows the intensity (a), ESNR (b), raw phase retardation (c), and distribution-
transformed phase retardation tomography (d). In the phase retardation images, the pixel which
has lower SNR than 5dB in the intensity image was masked and appeared as a black. It is
known that the sensory retina at the macular region has a very small or no birefringence because
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the nerve fiber layer is very thin in the parafoveal region or absent at the fovea. However, in
the raw phase retardation tomography (Fig. 10(c) and its magnified version of Fig. 10(e)), the
inner retina mainly appears as blue, which indicates moderate phase retardation in the sensory
retina. In contrast, the same part of the retina appears as green in the distribution-transformed
phase retardation image (Fig. 10(d) and its magnified version of Fig. 10(f)), which indicates
the absence of birefringence in the sensory retina. The distribution-corrected phase retardation
image can describe the birefringence properties of the eye more reasonably.

6. Discussion

6.1. Full-Step MCB Estimation of In Vivo Tomography

As discussed above, the MCB estimator involves two steps, the distribution transform and en-
semble mean operation. The distribution transform is a point-to-point function, i.e., the inputs
of the distribution transform function are ESNR and δM of a single pixel, and the output is a
single value of δE that is also associated with the single pixel. On the other hand, the mean
operation requires multiple sampled values.

Because of this property, the mean operation requires multiple phase retardation images
measured at exactly the same location on the sample, while the distribution transform func-
tion requires only one image. This is an undesirable requirement for in vivo measurement.

This limitation can be overcome by three strategies. The first strategy is to apply only the
transform function, as explained in Section. 5.3. This strategy is useful for qualitative observa-
tion; however, is not sufficient for quantitative assessment.

The second strategy is the use of the local mean as an alternative to the ensemble mean, in
which the phase retardation values within a predefined special extent, known as a kernel, are
averaged.

The third strategy is the use of slope fitting. Depth-oriented slope fitting of phase retardation
has been widely utilized for the quantification of birefringence [12, 26, 40]. The slope fitting,
i.e., least square linear fitting, is a maximum likelihood estimation with an assumption of sym-
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metric distribution of noise, and the mean is a special case of linear fitting in which the slope
is predefined as zero. Both the slope fitting and the mean are maximum likelihood estimations
with the assumption of symmetric noise distribution; hence, the slope fitting would be applica-
ble as an alternative to the mean operation. In the proposed scheme, the slope fitting of phase
retardation is applied along the depth after the distribution transform. This would provide better
estimation of birefringence of a biological specimen than the standard slope fitting without a
distribution transform.

6.2. Applicability of MCB Estimator to Other PS-OCT Algorithms

It is known that a similar systematic error exists in other PS-OCT algorithms including the
widely utilized Hee’s algorithm [8, 26]. Although the MCB estimator presented in this paper
cannot be directly applied to other PS-OCT algorithms, it may be possible to design a tailored
MCB estimator for the other algorithms by using Eqs. (11)–(13). In this designing process,
the noise model of the PS-OCT should be properly customized for the PS-OCT algorithm of
interest. Then, DM of Eq. (13) is determined by a Monte-Carlo simulation, and DT is defined
by the simulation parameters.

In our Jones matrix PS-OCT, the SNR of each detection channel does not independently
affect the error property; however, the ESNR γ dominates this property. Thus, B was deter-
mined for each γ value. However, this ESNR dependency is not warranted in other PS-OCT
algorithms. The independent factors of the error property should be carefully considered in the
design process.

7. Conclusion

We proposed a nonlinear method to estimate a correct phase retardation value from raw phase
retardation values measured via PS-OCT. This estimator involves of two operations, distribu-
tion transform and mean operation. The distribution transform function was designed to elim-
inate the asymmetric distribution of phase retardation, which causes a systematic error in the
mean estimation of phase retardation. The transform function was designed on the basis of
Monte-Carlo analysis of the error property of PS-OCT. The superior performance of the MCB
estimator, as compared to that of a standard mean estimator, has been demonstrated by numer-
ical simulations and experiments. The MCB estimator was also applied to an in vitro chicken
breast muscle, and it showed higher contrast of the phase retardation fringe than a standard
mean estimator. The distribution transform was applied to an in vivo human posterior eye, and
a reasonable phase retardation image was obtained. MCB can potentially improve the phase
retardation image quality of PS-OCT; moreover, it can further will enhance the ability of quan-
titative phase retardation measurement of PS-OCT.
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