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Recently, X. Chen et al. proposed a new approach to the gauge invariant decomposition of the nucleon

spin into the helicity and orbital angular momentum of quarks and gluons. The key ingredient in their

construction is the separation of the gauge field into physical and ‘‘pure gauge’’ parts. We suggest a simple

separation scheme and show that the resulting gluon helicity coincides with the first moment of the

conventional polarized gluon distribution measurable in high energy experiments.
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Despite its intuitive clarity, the decomposition of the
nucleon spin into the helicity and orbital angular momen-
tum of quarks and gluons has remained one of the most
elusive problems in QCD spin physics [1]. The current
unsatisfactory situation may be epitomized by the follow-
ing dilemma: On one hand, continuous efforts have been
made both at experimental facilities and by the theorists to
assess the gluon helicity contribution�G [2] defined as the
first moment of the polarized gluon distribution. On the
other hand, since the seminal work of Ji [3], it has been
widely recognized by the community that the gluonic
angular momentum cannot be decomposed into helicity
and orbital parts in a gauge invariant way. This implies that
�G extracted from measurements and global QCD analy-
ses has unfortunately no natural counterpart in Ji’s frame-
work, making one wonder what exactly the physical
meaning of �G is. The case of the gluon orbital angular
momentum is even murkier since there is no known way of
directly measuring it, nor is its operator representation
available.

Recently, however, the situation took an interesting turn
when Chen et al. proposed a new, complete decomposition
of the nucleon spin [4,5]. The key ingredient in their
construction is the separation of the total gauge field into
‘‘physical’’ and ‘‘pure gauge’’ parts

A� ¼ A�
phys þ A�

pure;

F
��
pure ¼ @�A�

pure � @�A
�
pure þ ig½A�

pure; A�
pure� ¼ 0;

(1)

which transform differently under gauge transformations

A�
phys ! UyA�

physU; A�
pure ! UyA�

pureU� i

g
Uy@�U:

(2)

The separation (1) is not unique, and accordingly, the gluon
helicity contribution is scheme dependent. Chen et al.
imposed a subsidiary condition that can be used to con-
struct A

�
phys perturbatively, and found that the correspond-

ing gluon helicity indeed differs from �G [6]. [See, also,
[7].] While their scheme has some attractive physical
features, how to test their predictions in experiment is
currently unknown. The experimental observability is a

prerequisite for a good definition of the gluon helicity.
One then asks the question: ‘‘Is there a separation scheme
(1) in which the gluon helicity coincides with�G?’’ In this
paper we answer this question positively in the hope that
the conflicting opinions about the nature of the gluon
helicity are reconciled with each other.
The original proposal by Chen et al. [4,5] achieves a

complete decomposition of the QCD angular momentum

operator ~J into quarks’ and gluons’ helicity and orbital
angular momentum. This was further elaborated by
Wakamatsu [8,9], where the covariant generalization of
the decomposition was derived. The result for the QCD
angular momentum tensor M��� is [9]

M
���
quark-spin ¼

1

2
����� �c�5��c ; (3)

M
���
quark-orbit ¼ �c��ðx�iD� � x�iD�Þc ; (4)

M���
gluon-spin ¼ F��

a A�a
phys � F��

a A�a
phys; (5)

M
���
gluon-orbit ¼ F

��
a ðx�ðD�

pureA
phys
� Þa � x�ðD�

pureA
phys
� ÞaÞ

þ ðD�F
��Þaðx�A�a

phys � x�A�a
physÞ; (6)

where D�
pure � @� þ igA�

pure and a; b ¼ 1; 2; � � � ; 8 are the

color indices. We use the convention �0123 ¼ þ1. The
second term on the right hand side of (6) is gauge–invariant
on its own, and Chen et al. included it in the quark–orbital
part. (This would result in the change D� ! D�

pure in (4).)

Following Wakamatsu [8], we have relocated it to the
gluon–orbital part. With this modification the quark part
agrees with Ji’s decomposition and can be extracted from
GPD analyses [3]. The decomposition of the gluon spin
into the helicity (5) and orbital (6) parts has been made
possible at the cost of introducing nonlocality: In general,
A�
phys and A�

pure are nonlocally related to the total A�.

Let us focus on the gluon helicity operator (5). We go to
the infinite momentum frame and use the light–cone coor-
dinates x� ¼ 1ffiffi

2
p ðx0 � x3Þ. In the framework of Chen et al.,

the gluon helicity contribution is given by the nucleon

PHYSICAL REVIEW D 84, 041701(R) (2011)

RAPID COMMUNICATIONS

1550-7998=2011=84(4)=041701(4) 041701-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.041701


matrix element of the ��� ¼ þ12 tensor component
of (5)

�1

2Pþ hPSjFþ�
a ð0Þ�þ�

�� A
�a
physð0ÞjPSi: (7)

On the other hand, the conventional and experimentally
accessible gluon helicity is given by the first moment of the
polarized gluon distribution (see, e.g., [10,11])

�G¼
Z 1

0
dxB�gðxBÞ

¼ 1

4Pþ
Z 1

�1
dy��ðy�ÞhPSjFþ�

a ð0Þ

�P exp

�
�ig

Z 0

y�
Aþðy0�Þdy0�

�
ab

��þ�
��F

þ�
b ðy�ÞjPSi; (8)

where xB is the usual Bjorken variable and the Wilson line
is in the adjoint representation. (P denotes path–ordering.)

If we insist that the two definitions (7) and (8) are
equivalent, we must have that, using the notation x� ¼
ðx�; ~xÞ with ~x ¼ ðxþ; x1; x2Þ,

A�a
physðxÞ¼

??�1

2

Z 1

�1
dy��ðy��x�Þ

�P exp

�
�ig

Z x�

y�
Aþðy0�; ~xÞdy0�

�
ab
F
þ�
b ðy�; ~xÞ:

(9)

Does this identification make sense? The right hand side
obeys the gauge transformation law (2) as expected for
A�
phys, but it is far from obvious that the difference A�

pure ¼
A� � A�

phys is pure gauge. Remarkably, however, there

exists a special, but very simple scheme of separation (1)
in which (9) becomes an identity rather than a definition
[12].

In order to find such a scheme, we first observe that (9)
immediately implies that

Aþ
phys ¼ 0: (10)

This motivates us to write, denoting fields as matrices in
the adjoint representation,

Aþ ¼ Aþ
pure ¼ � i

g
VW@þðVWÞy ¼ i

g
@þðVWÞðVWÞy;

(11)

where

VðxÞ ¼ P exp

�
�ig

Z x�

�1
Aþðx0�; ~xÞdx0�

�
;

Wð ~xÞ ¼ P exp

�
�ig

Z ~x

1 ~n

~Að�1; ~x0Þ � d~x0
�
:

(12)

Note that W is evaluated at x� ¼ �1 where the plus
(minus) sign corresponds to the choice x� ¼ þ1

(x� ¼ �1) in the lower limit of the integration in V.
The path to spatial infinity (denoted as ‘ ~x ¼ 1 ~n’ with ~n
being a constant vector) is arbitrary assuming that the field
strength vanishes at x� ¼ �1.
Promoting (11) to a four–dimensional relation, we

define

A�
pure � � i

g
VW@�ðVWÞy; (13)

which guarantees that F��
pure ¼ 0, and

A�
phys � A� � A�

pure: (14)

In order for A�
pure to transform according to (2) under gauge

transformation, we require that

lim
x�¼�1
~x!1 ~n

@�Uðx�; ~xÞ ¼ 0; (15)

that is, we allow only for global gauge rotations as
ðx�; ~xÞ ! ð�1;1 ~nÞ. A

�
pure should vanish (by a gauge

choice) in the same limit and this is already implied by
(13). Except for this minor qualification, our separation
scheme is independent of the gauge choice.
Still, it will be very convenient in the following to

consider the light–cone gauge which has a special status
in our scheme and which can be accessed by setting
U ¼ VW (consistently with (15)). Denoting fields in the
light–cone gauge with a tilde, we find

~A
�
phys ¼ ðVWÞyA�

physVW; ~A
�
pure ¼ 0; (16)

so that ~A� ¼ ~A�
phys in this gauge. The residual

(x�–independent) gauge symmetry in the light–cone gauge
is essentially contained inWð ~xÞ. It may seem more natural

to let ~A�
pure carry these degrees of freedom. However, we

have absorbed them in ~A
�
phys for our purpose. The point is

that, by using these degrees of freedom, one can fix the

boundary condition for ~A� ¼ ~A�
phys as x

� ! �1.

We are now ready to prove (9). The last factor can be
written as, suppressing color indices,

P exp

�
�ig

Z x�

y�
Aþðy0�; ~xÞdy0�

�
Fþ�ðy�; ~xÞ

¼ VWðxÞðVWÞyðy�; ~xÞFþ�ðy�; ~xÞ
¼ VWðxÞ ~Fþ�

physðy�; ~xÞ
¼ VWðxÞ @

@y�
~A
�
physðy�; ~xÞ; (17)

where in the second equality we have used the fact that
~F�� ¼ ~F��

phys in the light–cone gauge. [Remember that

matrices are in the adjoint representation so that, for in-

stance, the following identity holds: ðVWÞyabFþ�
b ¼

½ðVWÞyFþ�ðVWÞ�a ¼ ~Fþ�
a .] The right hand side of (9)

then becomes
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�1

2

Z
dy��ðy��x�ÞVWðxÞ @

@y�
~A�
physðy�; ~xÞ

¼VWðxÞ ~A�
physðxÞ�

1

2
VWðxÞð ~A�

physð1; ~xÞþ ~A�
physð�1; ~xÞÞ

¼A�
physðxÞ�

1

2
VWðxÞð ~A�

physð1; ~xÞþ ~A�
physð�1; ~xÞÞ; (18)

where we integrated by parts. Equation (18) differs from
A�
phys by the surface terms at x� ¼ �1. However, these

surface terms can be consistently eliminated. To see this,
suppose that (9) is valid. Then

A�
physð1; ~xÞ¼1

2

Z
dy�P exp

�
�ig

Z 1

y�
Aþðy0�; ~xÞdy0�

�

�Fþ�ðy�; ~xÞ;
A�
physð�1; ~xÞ¼�1

2

Z
dy�P exp

�
�ig

Z �1

y�
Aþðy0�; ~xÞdy0�

�

�Fþ�ðy�; ~xÞ: (19)

Going to the light–cone gauge, we get

~A
�
physð1; ~xÞ¼ ðVWÞyð1; ~xÞA�

physð1; ~xÞ

¼1

2
Wyð ~xÞ

Z
dy�P exp

�
�ig

Z �1

y�
Aþðy0�; ~xÞdy0�

�
Fþ�ðy�; ~xÞ;

¼�Wyð ~xÞA�
physð�1; ~xÞ

¼� ~A�
physð�1; ~xÞ; (20)

where, for definiteness, we have chosen x� ¼ �1 as the
lower limit of the integration in (12). (The other case
x� ¼ 1 is a trivial modification.) Therefore, the surface
terms in (18) cancel and this completes the proof of (9).

Note that the cancellation we have just observed is
nothing but the well–known antisymmetric boundary con-
dition of the gauge field in the light–cone gauge. Thus, in
the above proof we have implicitly chosen this boundary
condition by adjusting Wð ~xÞ. This conforms to the sign
function �ðy�Þ in (8), or equivalently, the principal value
prescription for the 1=xB pole in �gðxBÞZ 1

�1
dxBp:v:

�
1

xB

�
eiy

�PþxB ¼ i��ðy�Þ: (21)

Different prescriptions for the 1=xB pole lead to different

boundary conditions for ~A� ¼ ~A
�
phys at x

� ! �1, just like

the prescription for the 1=kþ pole of the gluon propagator
in the light–cone gauge [13]. It does not matter which
prescription one uses, since the difference is proportional
to 	ðxBÞ and vanishes under the assumption that the
xB–integral converges as xB ! 0. However, it does change
the appearance of �G. Had we chosen a different prescrip-
tion, say, 1=ðxB � i�Þ, we would have obtained a formula
for �G similar to (8), but with the step function 2
ðy�Þ in
place of the sign function �ðy�Þ. In the light–cone gauge,
this corresponds to the advanced boundary condition
~A�ð1; ~xÞ ¼ 0. For each different prescription, the surface

terms will be different. But they always vanish under the
corresponding boundary condition.
In conclusion, the gauge–invariant decomposition of the

gluonic contribution to the nucleon spin into helicity and
orbital parts is not possible if one restricts to local opera-
tors [3]. Once one allows for nonlocal operators, it be-
comes possible [4]. We have shown that the traditional
definition of the gluon helicity, �G, can be nicely accom-
modated in this latter approach, thereby dispelling any
concerns about the physical meaning of �G. After all,
�G is measurable, gauge invariant, and meets the criterion
by Chen et al. for a proper definition of the gluon helicity in
QCD.
By using the explicit relation between A�

phys and A
�, one

can write down the all–order expression for the gluon
orbital angular momentum (6) as well. While it is measur-
able as the difference between the total gluon contribution
(from the GPD) and �G, more direct access to the orbital
component would of course be desirable.
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