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We numerically study thermodynamic and structural properties of the one-component Gaussian core
model at very high densities. The solid-fluid phase boundary is carefully determined. We find that
the density dependence of both the freezing and melting temperatures obey the asymptotic relation,
log T f , log Tm ∝ −ρ2/3, where ρ is the number density, which is consistent with Stillinger’s conjec-
ture. Thermodynamic quantities such as the energy and pressure and the structural functions such
as the static structure factor are also investigated in the fluid phase for a wide range of temperature
above the phase boundary. We compare the numerical results with the prediction of the liquid theory
with the random phase approximation (RPA). At high temperatures, the results are in almost perfect
agreement with RPA for a wide range of density, as it has already been shown in the previous studies.
In the low temperature regime close to the phase boundary line, although RPA fails to describe the
structure factors and the radial distribution functions at the length scales of the interparticle distance,
it successfully predicts their behaviors at longer length scales. RPA also predicts thermodynamic
quantities such as the energy, pressure, and the temperature at which the thermal expansion coeffi-
cient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities
even at high densities and low temperatures is understood in terms of the decoupling of the length
scales which dictate thermodynamic quantities from the interparticle distance which dominates the
peak structures of the static structure factor due to the softness of the Gaussian core potential.
© 2011 American Institute of Physics. [doi:10.1063/1.3609277]

I. INTRODUCTION

Complex fluids such as colloidal suspensions and emul-
sions are often regarded as macroscopic models of atomic
or molecular systems. They are ideal benches to test liquid
theories developed to describe thermodynamic, dynamic, and
structural properties of atomic and molecular liquids.1 It is
not only because the size of constituent unit of complex flu-
ids are much larger than atomic counterpart but also because
their interparticle interactions can be tailor-made and tuned
relatively easily. While the pair interactions of atomic sys-
tems are exclusively characterized by short-ranged and strong
repulsions with weak and longer-ranged attractions, leading
to the typical phase diagram demarcating gas, liquid, and
crystalline phases,1 those for the complex fluids are far more
diverse. This diversity leads to very rich and often counter-
intuitive macroscopic behaviors.2 Among those interactions,
the ultra-soft potentials have attracted particular attention re-
cently in the soft-condensed matter community.3–28 The ultra-
soft potentials are isotropic repulsive potential characterized
by weak and bounded repulsion at short distance and the mild
repulsive tails whose steepness is much smaller than the typ-
ical atomic potential. These potentials are realized in many
complex fluids such as star-polymers,22–25 dendrimers,3, 29, 30

and the polymers in good solvent.7, 31–34 Thermodynamic
phase diagrams of the ultra-soft particle systems have very
distinct and exotic properties such as the re-melting from

a)Author to whom correspondence should be addressed. Electronic mail:
kunimasa@sakura.cc.tsukuba.ac.jp.

solid to fluid phase at high densities, the re-entrant peak at
the intermediate densities,4, 6, 8, 11, 21, 22, 26 negative thermal ex-
pansion coefficient,5, 10 and the cascades of the various crys-
talline phases at very high densities.22, 26 The Gaussian core
model (GCM) is one of the simplest examples of the ultra-
soft potential systems. GCM consists of the point particles
interacting with a Gaussian shaped repulsive potential;

v(r ) = ε exp[−(r/σ )2], (1)

where r is the interparticle separation, ε and σ are the param-
eters which characterize the energy and length scales, respec-
tively. GCM was first introduced by Stillinger4 and has been
studied by many groups.5–16 Despite of its simple form of
the pair potential, GCM exhibits many typical thermodynamic
behaviors of the ultra-soft particles. According to thermody-
namic phase diagram obtained by numerical simulations,4, 8

GCM basically behaves such as hard spheres at very low den-
sities and temperatures; the crystalline structure in the solid
phase is fcc and the freezing/melting temperatures sharply
increase with density. However, as the density increases fur-
ther, the freezing temperature reaches a maximal value and
beyond this point it changes to a decreasing function of the
density. This re-entrance takes place at ρσ 3 ≈ 0.25, where ρ

is the number density. Concomitantly, the crystalline structure
changes from fcc to bcc. Recently, thermodynamic and trans-
port anomalies of the fluid phase in the vicinity of the reen-
trant peaks are investigated.10, 12–16 Microscopic and struc-
tural properties such as the static structure factor in the fluid
phase are also reported and documented.6, 7, 9, 11 These studies
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revealed that, as the density increases beyond the reentrant
peak but at a fixed temperature, thermodynamic and struc-
tural properties of GCM becomes more ideal-gas-like, sig-
naled by the lowering of the peak of the structure factors and
the better agreement with simple approximations such as the
random phase approximation (RPA). Most of the studies in
the past, however, have focused on the densities not far from
the reentrant peak or the relatively high temperatures. Less
attention has been paid for the high density and low tempera-
ture regimes, especially in the vicinity of the solid-fluid phase
boundary. Near the phase boundary line, the thermodynamic
and structural properties are expected to be highly non-trivial
even at the high density limit. Based on the duality argument
of the ground state of GCM in the reciprocal space, Stillinger
has conjectured that the freezing and melting temperatures,
T f and Tm , are given by an asymptotic form;

log T f , log Tm ∝ −ρ2/3 (2)

in the high density limit.4 However, this conjecture has not
been confirmed numerically. Recently, we studied the nucle-
ation and glassy dynamics of the one-component GCM in
the supercooled state at the unprecedentedly high densities,
0.5 ≤ ρσ 3 ≤ 2.35 It was found that the crystal nucleation rate
decreases drastically as the density increases and concomi-
tantly dynamics of the constituent particles becomes very
sluggish. The density time correlation function exhibits typi-
cal behavior of the supercooled liquids near the glass transi-
tion point, such as the two-step and non-exponential structural
relaxation. The relaxation time steeply increases as the tem-
perature is lowered at a fixed density. Surprisingly, these are
well described by the mode-coupling theory, implying that the
high density and one-component GCM is more amenable to
the mean-field picture of the glass transition than other typical
glass formers. These observations call for more detailed anal-
ysis of the high density GCM at the low temperature regime.
Especially, it is tempting to consider GCM in the high den-
sity limit as the ideal and clean model system to study the
glass transition. Thermodynamic and structural characteriza-
tion are prerequisites for dynamical study35, 36 but the detailed
study is lacking.

In this work, we numerically investigate thermodynamic
and structural properties of the one-component GCM up to the
density ρσ 3 = 2.4. We determine the solid-fluid phase bound-
ary and show that the Stillinger’s scaling, Eq. (2), holds at
ρσ 3 � 1.2. Thermodynamic and microscopic structural prop-
erties of GCM are also analyzed carefully over a wide range of
temperature and density. The potential energy, pressure, ther-
mal expansion coefficient, and the static structure factors are
evaluated and compared with the prediction of the liquid state
theory. Surprisingly good agreement with the RPA is found
for thermodynamic quantities for a wide range of tempera-
ture, including the low temperature regimes where the same
approximation poorly describes the static structure factor and
radial distribution function. This counterintuitive observation
can be attributed to the ultra-soft nature of GCM for which
the microscopic structure near the first shell of the system de-
couples with the macroscopic properties.

This paper is organized as follows. In Sec. II, technical
details of simulations and the method to compute the phase

boundary are discussed. In Sec. III, we present simulation re-
sults for the phase diagram, thermodynamic quantities, and
structural functions. We compare the simulation results in the
fluid phase with RPA predictions in Sec. IV. We summarize
and discuss the results in Sec. V.

II. SIMULATION METHOD

A. Molecular and Monte Carlo simulation

Thermodynamic state of GCM is fully characterized by
the density ρ and temperature T . In this work, we focus
on the density and temperature range of 0.3 < ρ∗ < 2.4 and
10−6 < T ∗ < 1, where ρ∗ ≡ ρσ 3 and T ∗ ≡ kBT/ε. In or-
der to analyze thermodynamic properties and determine the
solid-fluid phase boundary, molecular dynamics (MD) simu-
lations with Nosé thermostat are carried out under the periodic
boundary conditions. To integrate the equations of motion,
we use a reversible algorithm similar to the Velocity-Verlet
method37 with time steps of 0.1τ , which is sufficiently short
to preserve the Nosé Hamiltonian. Here τ =

√
mσ 2/ε is the

time unit, where m is the mass of a particle. For evaluation of
the free energy of the reference state (see below), Monte Carlo
(MC) simulation is used. In a trial MC move, the maximum
displacement of a particle is adjusted to keep the acceptance
ratio about 50%. In both simulations, the total number of par-
ticles is N = 3456. This is twice the cube of an integer (in this
case 12), a natural choice for the bcc crystal in a cubic simu-
lation box. The cutoff length of the potential is taken as 5σ .
The pair potential at the cutoff length is 1.4 × 10−11ε which
is much smaller than the typical kinetic energy at the lowest
temperature studied in this work.

B. Evaluation of the free energy

The chemical potential as a function of the temperature
and pressure, μ(T, P), is required in order to determine the
phase boundary. We evaluate it using the free energy f (T, ρ)
and pressure P(T, ρ).

We calculate the free energy using the thermodynamic
integration method combined with the particle insertion
method38 for the fluid phase and the Frenkel-Ladd method39

for the crystalline phase. This procedure is the same as the one
employed by Prestipino et al.8 for lower densities. The free
energy of the system is the sum of the ideal fid and excess
part fex . fid is given by fid (T, ρ) = kBT (log �3ρσ 3 − 1),
where � =

√
2π¯2/mkBT is the de Broglie thermal wave-

length. According to the thermodynamic integration scheme,
fex (T, ρ) can be evaluated by integrating over the energy and
pressure from the reference state point (T0, ρ0) to the target
state point (T, ρ) using the following equations:

fex (T, ρ0)

T
= fex (T0, ρ0)

T0
+

∫ T

T0

dT ′ u(T ′, ρ0)

T ′2 ,

fex (T, ρ)

T
= fex (T, ρ0)

T
+

∫ ρ

ρ0

dρ ′
{

P(T, ρ ′)
ρ ′2T

− 1

ρ ′

}
,

(3)
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where u is the potential energy per particle. For the fluid
phase, the reference free energy fex (T0, ρ0) is calculated by
the particle insertion method37, 38 and the pressure is evalu-
ated from the virial equation. In this method, the free energy
is expressed in terms of the energy cost to insert one particle
into the system as

fex (T0, ρ0)

T0
= −kBlog

〈
exp

(
− Ein

kBT0

)〉
− P0

ρ0T0
+ 1, (4)

where Ein is the interaction energy of an inserted particle with
other particles in the system. The average should be taken
over the ensemble of randomly inserted particles. For the
crystalline phase, on the other hand, the reference free energy
is computed using the Frenkel-Ladd method37, 39 which is a
different kind of thermodynamic integration technique. In this
method, we consider a hybrid Hamiltonian Ṽ (λ), which inter-
polates between the Hamiltonian of the original system V and
that of the Einstein crystal Vein as Ṽ (λ) = V + (1 − λ)Vein ,
where λ is the switching parameter. The free energy of the
original system can be computed by the following equation,
which is the integral over λ of the Hamiltonian of the hybrid
system evaluated from the simulation:

fex = fex,ein + 1

N

∫ 1

0
dλ〈V − Vein〉λ, (5)

where 〈· · ·〉λ is the ensemble average under a hybrid Hamil-
tonian Ṽ (λ) and fex,ein is the excess part of the free energy
of the Einstein crystal. We choose (T ∗

0 , ρ∗
0 ) = (0.1, 0.01) and

(T ∗
0 , ρ∗

0 ) = (0.0794, 0.28) as the reference states for the fluid
and crystalline phases, respectively. The ensemble averages
in Eqs. (4) and (5) are evaluated using the MC simulations.
The integration over λ in Eq. (5) is calculated by slicing λ to
the grids of the width of 0.05 and evaluating the value of the
integrand at each grid point from independent MC simula-
tions. Likewise, the integral over the isothermal and isochoric
pathways in Eq. (3) is computed by slicing the pathways into
many grid points. The energy and pressure at each grid point
are computed using the MD simulations. The free energy for
both the fluid and crystalline phases are obtained by combin-
ing these data points and the reference free energy. In order
to determine the solid-fluid phase boundary over the density
range of 0.3 < ρ∗ < 2.4 with satisfactory accuracies, more
than 800 grid points were necessary.

III. SIMULATION RESULTS

A. Phase diagram

In his pioneering work, Stillinger has conjectured that the
solid-fluid phase boundary is asymptotically given by Eq. (2)
in the high density limit.4 This conjecture is based on the anal-
ysis of the density dependence of the potential energy of vari-
ous crystalline structures (bcc, fcc, etc.) at T = 0. According
to his analysis, the potential energy is expressed as

u = −ε

2
+ π3/2ρσ 3ε

2

{
1 + A exp(−Kρ2/3) + · · ·} , (6)

where A and K are constants which depend on the crystalline
structure. Stillinger argued that this density dependence re-
mains qualitatively unchanged at finite temperatures. Since

8

RPA

FIG. 1. The freezing (T ∗
f ) and melting (T ∗

m ) temperatures of GCM as a func-
tion of density (open up/down triangles). The result of Prestipino et al. is also
plotted (filled circles with short-dashed line) (Ref. 8). The long-dashed line
is the threshold temperatures, Tth , above which RPA gives a reasonable de-
scription of the system (see Sec. IV). Open squares and dotted line indicate
the temperature below which the thermal expansion coefficient becomes neg-
ative, Tα , obtained from simulation and RPA, respectively. The short-dashed
line at ρ∗ ≈ 0.15 demarcates the fcc (left) and bcc (right) crystalline phases.

the ordered structure of the crystalline phase is responsible
for the term exp(−Kρ2/3) in Eq. (6), the energy difference
between the crystalline and fluid phase at the phase bound-
ary should also be proportional to this term. This argument
leads us to a conjecture that the melting/freezing temperature
is proportional to this factor, which is Eq. (2). Here we verify
this argument numerically.

Figure 1 presents the phase diagram of GCM obtained
from our simulation. Both the freezing and melting temper-
ature T ∗

f and T ∗
m are shown in this figure, but their values

are very close to each other and indistinguishable in the scale
of the figure. As expected, the melting and freezing temper-
atures dramatically decrease as the density increases, down
to T ∗ ≈ 10−6 at the highest density we studied. The phase
boundary for ρ∗ � 0.7 obtained by Prestipino et al.8 is also
plotted, in order to confirm that the present result perfectly
matches with theirs for the density window where both re-
sults are available. The crystalline structure at high densities
is bcc, as has been verified by the direct MD simulation of the
nucleation.35, 36 In order to verify the scaling relation, Eq. (2),
we plot the logarithm of the melting temperature as a func-
tion of ρ2/3 in Fig. 2. One observes that the result rides on the
scaling function at ρ∗ � 1.2.

B. Potential energy and pressure

The first order transition from the crystalline to fluid
phase is accompanied with the discontinuous change in the
structural order and the potential energy. We show the temper-
ature dependence of the potential energy difference between
the two phases u∗

fluid (T f , ρ) − u∗
crystal (T f , ρ) as a function

of Tm in Fig. 3, where u∗ = u/ε is the dimensionless poten-
tial energy. This figure shows that the energy difference is
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∗

∗

FIG. 2. − log T ∗
m versus ρ∗2/3. The solid straight line is a guide for the eyes.

proportional to the melting temperature at the low tempera-
tures/high densities, verifying the assumption which Stillinger
has employed to conjecture Eq. (2). The entropy difference
between the two phases can be estimated from this energy
difference by sfluid (T f , ρ) − scrystal (T f , ρ) = {ufluid (T f , ρ)
− ucrystal (T f , ρ)}/T f . From the result of Fig. 3, the entropy
difference at the low temperature/high density limit can be
estimated as

s f luid (T f , ρ) − scrystal (T f , ρ) ∼ 0.45kB. (7)

This value should be compared with the results at lower den-
sities in the earlier work; 0.81kB at ρ∗ = 0.4 and 0.54kB at
ρ∗ = 1.0.4

Next we focus on the equation of state (EOS) of the high
density GCM, i.e., the pressure as a function of the density
and temperature. The dimensionless pressure P∗ ≡ Pσ 3/ε

is plotted in Figure 4. In Figures 4(a), 4(c), and 4(e),
we plot the isothermal cut of EOS and the isochoric cut in

FIG. 3. The potential energy difference between the crystalline and fluid
phases against the melting temperatures with the fit by a straight line of the
slope 1 (solid line).

Tα
Tm

Tm

Tm

Tα

)b()a(

)d()c(

)f()e(

RPA

FIG. 4. The equation of state of GCM. Filled and open circles are the results
for fluid and crystalline (bcc) phases, respectively. Solid lines are the results
from RPA (see Sec. IV). Left panels are P-ρ plots at T ∗ =7.94 × 10−3 (a),
5.0 × 10−4 (c), and 7.9 × 10−6 (e). The inset in (a) is the close up around the
freezing transition density. Right panels are P-T plots at ρ∗ = 0.33 (b), 0.99
(d), and 2.01 (f). T ∗

m and T ∗
α (see text) are indicated by arrows.

Figures 4(b), 4(d), and 4(f). The parameters T ∗ and ρ∗

for each adjacent figures have been chosen so as for them to
share the common freezing points; Figs. 4(a) and 4(b) share
the freezing point (T ∗

f , ρ
∗
f ) = (7.94 × 10−3, 0.33), 4(c) and

4(d) share (T ∗
f , ρ

∗
f ) = (5.0 × 10−4, 1.00), and 4(e) and 4(f)

share (T ∗
f , ρ

∗
f ) = (7.9 × 10−6, 2.01). Figure 4(a) shows that

the melting of the bcc crystalline phase (white circles) to the
fluid phase (filled circles) takes place at at ρ∗ ≈ 0.33. The
inset shows the narrow coexistence region around the transi-
tion density, at which the pressure becomes constant. Simi-
lar behaviors of the first order transition are also observed in
Figs. 4(c) and 4(e) but at much higher densities.

Figure 4(b) shows the equation of state at ρ∗ = 0.33 over
the temperature range of 1.0 × 10−3 < T ∗ < 1.0. At this rel-
atively low density, the pressure is a monotonically increas-
ing function of the temperature, which is usual behavior of
ordinary fluids. However, at higher densities, as shown in
Figs. 4(d) and 4(f), there exists the temperature regime in
which the pressure becomes a decreasing function of tem-
perature. In this regime, the thermal expansion coefficient α

= V −1(∂V/∂T )P becomes negative. We determine the
threshold temperature Tα at which α changes its sign by fit-
ting the pressure by a smooth polynomial function and plot
Tα in Fig. 1 (open squares). At low densities, Tα is located in
the vicinity of the phase boundary. With increasing density,
however, the difference between Tα and Tm increases mono-
tonically. Although the existence of the anomalous negative
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FIG. 5. The static structure factors in the fluid phase at the freezing temper-
atures for ρ∗ = 0.33 (©), 1.00 (�), 1.65 (�), and 2.01 (). The dotted lines
are the results obtained by the Fourier transformation of g(r ). The solid lines
are the results of RPA (see Sec. IV). The inset is the semi-log plot of the main
figure for S(k) ≤ 10−1 at low k’s.

thermal expansion coefficient of GCM has been reported in
the literatures,4, 5 its high density behavior has not been ex-
plored. We shall discuss this result and its asymptotic behav-
ior of Tα at high densities in Sec. IV.

C. Static structure factor

In Figure 5, we show the static structure factors S(k)
in the fluid phase just above the freezing temperatures.
S(k) obtained from the Fourier transformation of the radial
distribution function g(r ) is also shown. At all densities,
S(k)’s exhibit sharp peaks similar to those of the ordinary
simple fluids, such as the hard sphere and Lennard-Jones
fluid, near the freezing temperatures. The peak position kmax

shifts to high k’s as the density increases, kmax ∝ ρ1/3, as
one should expects at high densities. Note that, however,
the height of the first peak is about 3.1 at all densities,
which is slightly higher than the universal value 2.85
for the ordinary fluids which is known as Hansen-Verlet
criterion.1, 40

IV. RANDOM PHASE APPROXIMATION ANALYSIS

A. Random phase approximation

It is known that the thermodynamics and microscopic
structure of the GCM fluid in high densities and temperatures
are described by the RPA remarkably well.6, 7 RPA is one of
the approximation schemes of the liquid theory and a kind of
the mean-field theory for the thermodynamics and structure
of liquids.1 In this section, we discuss how this approxima-
tion works at much lower temperatures.

It is convenient to divide thermodynamic quantities into
uniform and fluctuation parts as follows. The potential energy
can be represented as

u = −ε

2
+ π3/2ρσ 3ε

2
+ �u, (8)

where the first two terms are the uniform part and �u is the
fluctuation part. �u can be expressed as

�u = 1

4π2

∫ ∞

0
k2ṽ(k)S(k) dk, (9)

where

ṽ(k) = π3/2εσ 3 exp(−k2σ 2/4) (10)

is the reciprocal expression of v(r ). Likewise, the pressure can
be written, using the virial equation, as

P = kBTρ + π3/2ρ2σ 3ε

2
+ �P, (11)

where the first two terms are the uniform part and the third is
the fluctuation part which can be written as

�P = ρ

4π2

∫ ∞

0
(k2 − k4σ 2/6)ṽ(k)S(k) dk. (12)

In RPA, the direct correlation function of the system is ap-
proximated as cRPA(r ) = −βv(r ), where β = 1/kBT . This
approximation makes it possible to express various static
quantities in simple and analytic forms. The static structure
factor can be expressed as

SRPA(k) = 1

1 + ρβ ṽ(k)
. (13)

The fluctuation parts of the potential energy and pressure are
expressed as7

�uRPA = − ε

2γ
Li3/2(−γ ),

�PRPA = −ρε

2γ
{Li3/2(−γ ) − Li5/2(−γ )}, (14)

where γ = π3/2ρσ 3ε/kBT is a dimensionless coupling pa-
rameter and Liν(x) is the ν-th polylogarithm function.7, 9 Fur-
thermore, the radial distribution function at r = 0 can be ex-
pressed analytically as

gRPA(r = 0) = 1 + 1

π3/2ρσ 3
Li3/2(−γ ). (15)

The second term on the right-hand side of this expression is
negative for arbitrary densities and temperatures. At a very
low temperature, the modulus of this term becomes larger
than the first, leading to an unphysical negative g(r = 0). We
refer to this temperature as the threshold temperature Tth . We
plot Tth in Fig. 1 (long-dashed line). At high densities, Tth can
be expressed analytically as

kBTth

ε
= π3/2ρσ 3 exp

[
−

(3π2

4
ρσ 3

)2/3
]

, (16)

which is obtained by the asymptotic expansion of polyloga-
rithm function of Eq. (15) (see the Appendix). Interestingly,
the threshold temperature follows the same asymptotic scal-
ing law log Tth ∝ −ρ2/3 as the melting and freezing temper-
atures, Eq. (2). Note that this asymptotic expression is very
accurate down to moderate densities ρ∗ ∼ 1.
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TABLE I. RPA results compared with simulation results for the fluctuation
parts of the potential energy and pressure at the threshold temperatures for
various densities.

ρ 0.10 0.33 1.00 3.00
Tth 0.823 0.535 0.159 0.689 × 10−2

�uRPA/�u 0.97 0.94 0.94 0.98
�PRPA/�P 1.07 0.96 0.92 0.94

B. High temperature regime

We first assess the validity of RPA at temperatures above
Tth . Table I shows the ratio of RPA to simulation results of
the fluctuation parts of the potential energy and pressure at
T = Tth . The deviations are smaller than 10% and they mono-
tonically become smaller as the temperature increases, imply-
ing the thermodynamic quantities are well-described by RPA
even at Tth .

We also computed the radial distribution function g(r ).
Figure 6 shows g(r ) obtained from simulation (open circles)
and RPA (solid lines) at T = Tth and at much higher tem-
peratures at which gRPA(r = 0) = 0.83, for several densities.
At high temperatures, agreement of simulation results with
RPA is excellent in all densities and for all r ’s. At T = Tth ,
however, RPA works poorly around r = 0, as expected from
Eq. (15). On the other hand, RPA’s results perfectly match
with the simulation results at larger r ’s including the first shell
peaks. The reason why thermodynamic quantities are well de-
scribed by RPA even at Tth whereas agreement of g(r ) near
r = 0 is poor can be attributed to the fact that the short-range
part of g(r ) does not contribute to both the potential energy
and pressure, as we shall discuss in Subsection IV C.

(a) ρ  = 0.10 (b) ρ  = 0.33

(c) ρ  = 1.00 (d) ρ  = 3.00

FIG. 6. The radial distribution function in the high temperature regime for
(a) ρ∗ = 0.10, (b) 0.33, (c) 1.00, and (d) 3.00. Circles and lines are simu-
lation and RPA results, respectively. Two results in each panel correspond
to the results at the threshold temperature (T ∗ = 0.823, 0.535, 0.159, and
0.689 × 10−2) and higher temperature at which gRPA(r = 0) = 0.83 (T ∗
= 5.76, 5.35, 4.30, and 2.29).

C. Low temperature regime

We move to temperatures below Tth and discuss the valid-
ity of RPA in describing thermodynamic properties of GCM
at high densities. In Fig. 5, the static structure factors ob-
tained from RPA, SRPA(k), are shown in the solid lines. It
is obvious that RPA cannot capture even the qualitative be-
haviors of S(k); SRPA(k) remains flat at higher k’s and does
not possess any prominent peak. However, as the main panel
and inset of Fig. 5 shows, RPA correctly predicts the low k’s
behavior up to just below the wavevector at which the first
peaks are located. It is in stark contrast with ordinary simple
atomic fluids for which RPA works poorly for the whole range
of wavevectors.41, 43 The excellent agreement implies that
the mean-field character of the dense GCM still survives in
the length scales slightly longer than the typical interparticle
distance.

Next, we compare RPA with simulation results for ther-
modynamic quantities. We first look at the equation of state.
In Fig. 4, the pressure obtained from RPA are plotted in
solid lines. As shown in Figs. 4(a) and 4(b), the deviation
of the values of RPA from those of simulation is very large
at ρ∗ = 0.33 and the discrepancies increase with decreasing
temperature. RPA also predicts a fictitious negative thermal
expansion coefficient at this density as shown in Fig. 4(b). In
high densities, however, agreement of RPA with simulation is
excellent for all temperatures down to the freezing temper-
atures as shown in Figs 4(c)–4(f). This is very surprising
because the temperatures in these figures are far below Tth ,
where RPA fails to describe overall shapes of S(k) as shown
in Fig. 5.

We also calculated Tα,RPA by solving ∂ PRPA/∂T = 0 and
plotted in Fig. 1 (dotted line). Agreement of Tα,RPA with the
simulation result is perfect except for the vicinity of the re-
entrant melting region. The asymptotic expression of Tα,RPA

which is valid at high densities can be written as (see the
Appendix)

kBTα,RPA

ε
= π3/2ρσ 3 exp

[
−

(
15π2

4
ρσ 3

)2/5

− 2

]
. (17)

This asymptotic expression works well down to ρ∗ ∼ 1 as
in the case of Tth . Interestingly, the density exponent 2/5
in this expression is smaller than 2/3 for Tth and Tm (see
Eqs. (2) and (16)). Because of this difference, Tα monotoni-
cally deviates from Tm as the density increases and it even-
tually becomes larger than Tth in the high density limit (not
shown).

We made similar comparison for the potential energy in
Fig. 7. Figures 7(a) and 7(b) show the temperature depen-
dence of the potential energy in the fluid phase (filed circles)
and crystalline phase (open circles) at two densities. The uni-
form part of u is temperature independent (see Eq. (8)), al-
though it dominates the net values of u. In order to see the
temperature dependence of u more clearly, the fluctuation part
�u are shown in Figs. 7(c) and 7(d). One observes that agree-
ment of the simulation results with RPA is far better at high
densities; At ρ∗ = 0.33, RPA underestimates �u and discrep-
ancy from the simulation data are larger than the energy gap
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(c) ρ*  = 0.33

(b) ρ*  = 2.01(a) ρ*  = 0.33

(d) ρ*  = 2.01

fluid

FIG. 7. The temperature dependence of u and �u at ρ∗ = 0.33 ((a) and (c))
and ρ∗ = 2.01 ((b) and (d)). Filled and open circles represent the simulation
results for the fluid and crystalline (bcc) phase, respectively. Solid lines are
the RPA results for the fluid phase.

between the fluid and crystalline phases. At the higher density
ρ∗ = 2.01, the discrepancy is less 10% even at the freezing
temperature.

In order to quantify the accuracy of RPA for both the po-
tential energy and pressure, we plot the ratios of �u and �P
of simulation to those of RPA in Fig. 8 against the inverse
temperatures for several densities. The ratios decrease rapidly
as the temperature decreases at the low density ρ∗ = 0.33,
whereas, in the high density ρ∗ = 2.01, the ratios for both the
potential energy and pressure remain to be more than 80% for
the whole range of temperatures down to the melting temper-
ature.

Given that RPA poorly describes even the qualitative be-
haviors of S(k) and g(r ) at the high density and low temper-
ature regimes, it is very surprising and counterintuitive that
RPA is excellent at predicting quantitatively thermodynamic
quantities u and P . In order to rationalize this puzzling facts,
we look again the integral expressions of the thermodynamic

FIG. 8. Temperature dependence of the ratio of RPA to simulation values of
the fluctuation part of the potential energy (left) and the pressure (right) for
ρ∗ = 0.33 (©), 1.00 (�), and 2.01 (�). The range of temperatures in these
figures is much lower than the corresponding Tth . (T ∗

m/T ∗
th are 1.48 × 10−2,

3.14 × 10−3, and 2.55 × 10−4 for ρ∗ = 0.33, 1.00, and 2.01, respectively).

(a) (b)

(c) (d)

~
~

~
~

FIG. 9. The integrand of Eq. (9) (shaded areas), the integrand where S(k)
is replaced with SRPA(k) (solid lines) and S(k) (broken lines) for (a) T ∗
= 7.9 × 10−3 and ρ∗ = 0.33, (b) T ∗ = 5.0 × 10−4 and ρ∗ = 1.00, (c) T ∗
= 3.2 × 10−5 and ρ∗ = 1.65 and (d) T ∗ = 7.9 × 10−6 and ρ∗ = 2.01.

functions, Eqs. (9) and (12). These expressions show that both
�u and �P are expressed in terms of the integral of S(k)
multiplied with the pair potential over the wavevectors. In or-
der to see which length scales dominate the integrand, we
show the integrand of �u in Eq. (9) with simulated S(k) in
Fig. 9 (shaded area), along with those obtained using SRPA(k)
(solid line). At the low density ρ∗ = 0.33, the integrand with
simulated S(k) is peaked at the peak position of S(k) (bro-
ken line). This implies that �u at this density is dominated
by the contribution at the interparticle distance, just like or-
dinary atomic fluids. The integrand obtained using RPA fails
to account for this peak structure (solid line). However, with
increasing density, the peak position of the integrand shifts to
smaller wavevectors than the first peak position of S(k). Con-
comitantly, agreement of the integrand obtained from simu-
lation and RPA becomes better and better. This agreement
originates from the fact that RPA can account excellently for
the low wavevector behavior of the static structure factor as
shown in Fig. 5. At very high densities, the particles start over-
lapping and the characteristic interparticle distance decouples
with the length scales which dominate thermodynamic quan-
tities of GCM. This is the reason why RPA remains the excel-
lent approximation to predict thermodynamic quantities even
far below the threshold temperatures.

V. CONCLUSIONS

In this paper, we have presented a detailed analysis of
thermodynamic and structural properties of the high den-
sity one-component GCM. Special emphasis has been put for
static properties of the fluid phase. First, the solid-fluid phase
boundary of the system is carefully evaluated up to the un-
precedentedly high density ρ∗ = 2.4. Our result confirmed
the scaling conjectured by Stillinger for the freezing and melt-
ing temperatures, log T f , log Tm ∝ −ρ2/3, at ρ∗ � 1.2. The
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16

17

A4

FIG. 10. The validity of the asymptotic expressions for Tth and Tα,RPA. Open
circles and solid line are RPA values and its asymptotic expression, Eq. (16),
of Tth , respectively. Open squares, dotted line, and dashed line are RPA val-
ues and its two asymptotic expressions, Eqs. (17) and (A4), of Tα,RPA, respec-
tively.

potential energy difference between the crystalline and fluid
phases was shown to be linear in the freezing temperature
and the entropy difference is almost constant at high densities,
which verifies the assumption which Stillinger’s argument is
based upon. The thermodynamic and structural properties of
GCM in the fluid phase are analyzed in detail for a wide range
of temperature and density. The potential energy u, the equa-
tion of state P , the static structure factor S(k), and the ra-
dial distribution function g(r ) were evaluated by simulation.
We compare the simulation results with the RPA results. In
the high temperature regime, RPA provides almost perfect de-
scription for both thermodynamic quantities and the structural
factor S(k). RPA is rather poor at predicting g(r ) at r ≈ 0.
Threshold temperature Tth below which RPA fails to describe
g(r = 0) is relatively high. In the high density and low tem-
perature regime, RPA fails to capture the peak structure of
S(k) even qualitatively, whereas it predicts correctly the low
k’s behavior up to just below the wavevector at which the first
peaks are located. Despite of poor performance of RPA at de-
scribing the structural properties, RPA successfully describes
thermodynamic quantities such as the potential energy and
pressure at high densities. Agreement of RPA with simula-
tion results systematically improves as the density increases
even near the phase boundary. The temperature below which
the thermal expansion coefficient become negative is also ac-
curately calculated from RPA. By scrutinizing the role of the
microscopic structure of particles in the potential energy and
pressure, we concluded that the surprising success of RPA is
originated from the decoupling of the length scales which dic-
tate the thermodynamic quantities and the interparticle dis-
tance. This decoupling is attributed to the mild and long-
ranged repulsive tails of the pair potential of GCM. The fact
that RPA is an excellent approximation even at the vicinity of
the phase boundary, or even at the supercooled regime, at high
densities, hints that the mean-field description is valid for the
high density GCM and may play a crucial role to understand
(glassy) dynamics let alone thermodynamic properties.35, 36
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APPENDIX: DERIVATION OF EQS. (16) AND (17)

In this Appendix, we derive the asymptotic expressions
of Tth and Tα,RPA at high densities by using the asymptotic
expansion of the polylogarithm42

Liν(−x) = − (log x)ν

�(ν + 1)
+ O((− log x)ν−2), (A1)

where �(x) is the gamma function.
At T = Tth , Eqs. (15) and (A1) lead to

ρ∗ − 4

3π2
(log xth)3/2 + O((log xth)−1/2) = 0, (A2)

where xth = π3/2ρ∗/T ∗
th . When ρ∗ is sufficiently large, we

can neglect the third term on the left-hand side, leading to the
asymptotic expression of Tth of Eq. (16). Figure 10 shows that
this asymptotic expression is very accurate down to ρ∗ ∼ 1.
Likewise, at T = Tα,RPA, Eqs. (14) and (A1) lead to

ρ∗ − 4

15π2
(log xRPA)5/2 + 4

3π2
(log xRPA)3/2

+ O((log xRPA)1/2) = 0, (A3)

where xRPA = π3/2ρ∗/T ∗
α,RPA. If we neglect the third and

fourth terms on the left-hand side, we obtain

T ∗
α,RPA = π3/2ρ∗ exp

[
−

(
15π2ρ∗

4

)2/5
]

. (A4)

However, Fig. 10 shows that this expression is not accurate
even at very high densities. For sufficient accuracy, we have
to keep the third term on the left-hand side of Eq. (A3). If
we neglect only the forth term on the left-hand side, Eq. (A3)
becomes

4

15π2
s5/2 − ρ∗−2/5 4

3π2
s3/2 − 1 = 0, (A5)

where s = ρ∗−2/5 log(π3/2ρ∗/T ∗
α ). Since the second term on

the left-hand side of this equation is small due to the factor
ρ∗−2/5, we can expand the solution as s = s0 + ρ∗−2/5s1 + · · ·
and can solve the equation in each order of density. The first
order solution including s0 and s1 is

s =
(15π2

4

)2/5
+ 2ρ∗−2/5, (A6)

which leads to the asymptotic expression of Tα,RPA of
Eq. (17). Figure 10 shows that this expression is very accu-
rate down to ρ∗ ∼ 1.
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