
A Distributed Architecture of Sensing Web for
Sharing Open Sensor Nodes

Ryo Kanbayashi? and Mitsuhisa Sato

Graduate School of Science and Information Engineering, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan,
{kanbayashi,msato}@hpcs.cs.tsukuba.ac.jp

Abstract. Sensing Web is a conceptual framework to shares sensors
open in wide-area network with keeping privacy. Sensing Web targets
large data such as image data or voice data, which may include privacy
information. In this paper, we propose an architecture named SW-agent
to realize the idea of Sensing Web. SW-agent protects privacy infor-
mation with elimination of privacy information and appropriate access
control. The elimination is done with data processing by remote execu-
tion program shipped to a node near a sensor. We found that SW-agent
can execute remote execution program with up to 7% overhead in per-
formance comparing its direct execution.

1 Introduction

Today, the need for real-world information is increasing rapidly. For example,
services such as Google Street View [1] enable people to see selected street views
on a web map without physically going to that street.

At the same time sensor devices such as video cameras, infrared sensors
and microphones are being installed in buildings on roads and in station yards.
Therefore, Ubiquitous Sensor Networks(USNs) are a promising technology for
making use of these sensors. So far, however, only the owners of USN’s have
implemented major applications, and these closed networks are generally avail-
able only to the owners. For example, these are applications such as surveillance
cameras in stores or cameras showing traffic flow with fixed point cameras, but
the sensor data is available only to the respective owners and selected employees.

A concept called Sensing Web[2] is to enable people to share sensors openly
in a wide-area network. The goal of the Sensing Web is to allow people to access
actual sensor data in the same way they access the World Wide Web (WWW).
In the Sensing Web, new applications or services using sensors can be created
for implementation on both open and closed systems. Consider that you lose an
object, a lost property finder service accessible with the Web browser through
the Sensing Web might be used to find the missing object.

Different from existing sensor grids[3], Sensing Web is a open system. In
addition, target data and target application are different. Most important re-
quirement of Sensing Web is privacy protection[4]. Previous sensor grids target
simple data such as the temperature and humidity data, which don’t include

? Now at Fujitsu Limited. kambayashi.ryo@jp.fujitsu.com

privacy. In contrast, Sensing Web targets data such as image data or voice data,
which includes many privacy information. Transmission of data including privacy
information puts the information in danger. Therefore, an appropriate privacy
protection method is needed. Handling data in network for acquisition of sensor
data is also an important requirement. The data such as image data or voice
data may be large, although the required information in the data may often be
small. Transmission of all sensor data consumes network resources excessively.
A method for acquisition of sensor data which consumes little network resources
is needed. In addition, consideration of problems arise from several privileges of
sensors and machines managing the sensors is needed. Since, unlike sensor grids,
these resources of Sensing Web is offered by general public. Administration poli-
cies of these are also different from sensor grids.

We propose a distributed architecture named SW-agent as a prototype sys-
tem of Sensing Web．Protection of privacy can be realized with elimination of
privacy information and a access control mechanism. Elimination of privacy is
done with data processing by remote execution program shipped to a node near
a sensor. Reduction of communication traffic can also be done with elimination
of useless data in a similar way.

Contribution of our research is following: First of all, we reveal issues of
design for sharing sensor data on open systems, which will emerge in the future.
We have designed and implemented a system called SW-agent. We develop a
prototype of SW-agent and report its basic performance.

Remainder of the paper describes SW-agent and is organized as follows. Sec-
tion 2 presents an overview of the Sensing Web．Section 3 presents the design
of SW-agent, which is composed of program shipping facility, privacy protection
model, and authorization for access control. Section 4 presents prototyping of
SW-agent. Section 5 describes an overview of related work. Our conclusions and
future work are discussed in Section 7.

2 Sensing Web Project

The Sensing Web Project[2] is a three-year project launched in the fall of 2007.
Goal of the project is to develop information technologies necessary for sharing
the data of USNs spreading across society openly like current WWW.

However, natures of information handled on the WWW and the Sensing
Web differ. On the WWW, privacy information can be removed or otherwise
protected because most of the information is entered by humans. In contrast, it
can not be removed because the information is actual sensor data automatically
collected by sensors. Existing sensor usage, including sensor grids, need not to
consider privacy protection because these are closed system. However, privacy
protection should be considered as mandatory on Sensing Web because it is open
system. Focusing on handling of privacy information is a notable characteristic
of Sensing Web.

Realization of following elemental technologies is important on the Sensing
Web.

The Internet

Sensor Network Stand-alone sensor

User
Fig. 1. A typical environment

Camera

①Deploy of Binary ProgramBinary Program
ClientProgram

②Processing of Data
②Return Data

③Use of Data

Deployed Program
Executor ofSW-agent

Client

Machine having sensor

Fig. 2. Program Shipping Facility

– Sharing Sensor Data through Service/Request Matching: The information
user requested is offered by matching the request and sensor data.

– Privacy Information Management in Sensor Data Acquisition: Privacy in-
formation in sensor data is handled properly on acquisition of sensor data.
When sensor data is acquired, it is handled in symbolized form including
no privacy information, which protects privacy information from leaking the
information to malicious people.

– Information Integration for Presenting the Real World Information: Actual
sensor data acquired from real world is integrated and offered to users as
appropriate applications.

Our research develops a system, which realizes Sensing Web. Especially, so-
lution to privacy information management in sensor data acquisition is offered.

3 Design of SW-agent

In this section, we present the design of SW-agent as a distributed architecture
to realize the concept of Sensing Web. SW-agent is composed of two elements:
program shipping facility, privacy protection model.

3.1 Architecture for Sensing Web

Figure 1 shows a typical environment of the Sensing Web, which currently is
composed of closed sensor networks and standalone sensors such as Web cameras.
Because these sensors are managed by several PCs connected to the Internet,
these sensors are accessible through the Internet.

From the design’s point of view, the Sensing Web is characterized by two
property: privacy information and large sensing data. Although several sensor
grids[3] were already proposed, it targets simple data such as the temperature
and humidity data, which don’t include privacy. The Sensing Web targets image
data and human voice data, which may include many privacy information[4].
The size of data acquired by intelligent sensors such as video cameras may be
large and often the data includes many useless information.

To realize the concept of Sensing Web, we propose SW-agents as a distributed
architecture for Sensing Web. The SW-agent is an agent program installed near
to the sensor to execute applications handling the sensor data. The system ad-
ministrator sets up the SW-agent near to the sensor. At a minimum, directory
service providing information about a sensor’s location, user authentication and
user authorization are needed for access to sensors.

The application developer uploads his or hers application handling the sen-
sor data to the SW-agent by Program Shipping Facility. The client application
communicates with its shipped application program to provide a service.

The SW-agent provides several methods to protect privacy information by
monitoring the access to the device and the traffic to the client through the
network.

Prior to the use of sensor data, sensor data were typically accumulated in
storage and then accessed in sensor grids. However, as stated above, the re-
quired information in the sensor data is relatively small in comparison with the
total amount of sensor data. Transmission of whole data consumes network re-
sources excessively because the amount of whole data, such as images from video
cameras, is large. Furthermore, the people captured in images may not prefer
accumulation of the sensor data out of concern for the leaking of privacy infor-
mation. Therefore, the Sensing Web handles requested data by data processing
near sensors without accumulating and storing data to storages.

3.2 Program Shipping Facility

The Program Shipping Facility allows a binary program of an application to be
deployed near a sensor, shown in Figure 2. Arrows on Figure 2 represents flow
of processed sensor data. We describe the deployment as “program shipping”.
Program shipping has following advantages:

– Flexible data processing: Users can process sensor data flexibly through fa-
miliar program languages. The flexible data processing extract required in-
formation only out of a large amount of sensor data.

– Utilization of existing code: A program using a sensor can be used with little
change. This advantage is important because most of users will have their
own application using a sensor in a diffusion process of the Sensing Web.

– Usability: Users can use languages familiar to them. That is, users do not
need to learn a special language.

A binary program is deployed through a procedure of web services, which
make flexible deployment such as automatic deployment based on the algorithms
possible.

Sensor information from the shipped program can be acquired by two means.
The first is acquisition of data by web services. Users can acquire the data
through pre-defined web service procedures. This technique is useful for acquisi-
tion of small amounts of data, such as the coordinate data from the lost property
finder service. A flexible and user-customizable data access interface can be re-
alized on web services because an arbitrary procedure can be defined. Flexible
data access interface bridges the gap between sensor data and request of user. In

addition, the use of a web service enhances the compatibility of the Sensing Web
with the World Wide Web. In addition, use of web service enhance compatibility
of Sensing Web between Web. The second way is to use stream communication.
If the size of processed data is large or data transfer is performed continuously,
stream communication should be used because the overhead of remote procedure
calls becomes a problem.

The SW-agent also performs sandboxing for the shipping program. Although
shipping is performed by authorized users only, the machines managing the sen-
sors used by the shipping program need ready protection from possible malicious
users. Otherwise, the sensors and machines for shipping are not contributed by
the owner. Therefore, sandboxing is important for the Sensing Web.

SW-agent also provides virtual devices abstracting the sensor devices. Con-
sequently, users can acquire sensor data with a unified procedure using a virtual
device without concern for the differences between environments.

3.3 Privacy Protection Model

The SW-agent protects privacy by running the remote execution program near
sensors. Users can access all sensor data by deployment of a program, but users
also are obligated to eliminate privacy information before sending data to a client
through a network. The elimination is achieved through symbolization of sensor
data. For example, we show protection on an application that surveys people
passing on a road. The protection is achieved by following.

1. Authorization of User: A user who wants to deploy a program must acquire
authorization from an access control service of the SW-agent.

2. Deployment of Program: The user deploys a binary program to a machine
near a sensor, which manages the sensor. Then, the deployed binary program
is started by the executor of SW-agent.

3. Elimination of Privacy Information: The program applies image processing
to the image data acquired from the surveillance camera and outputs the
number of passages per unit time.

4. Access to Privacy Eliminated Data: The user uses the processed information,
which does not include privacy information.

In this application, video data from the surveillance camera may include
confidential information, such as images of pedestrians’ faces. However, this in-
formation is eliminated with symbolization by the shipping program. Therefore,
the proposed model can enable a user to get sensor data while protecting the
privacy of the sensor data.

However, if an inconsiderate user is authorized, data including privacy infor-
mation may be sent to to the general public because the proposed model allows
an authorized user to acquire all sensor data. Therefore, proper authorization is
important in the SW-agent.

3.4 Authorization for Access Control

First of all, it is important who have the authority of access control for pri-
vacy information. Naturally, captured person, who privacy information belongs

to, should be able to authorize. However, authorization by captured people is
difficult, which needs the people to carry a special device which notices sensor
authorized users or interaction between the people and sensors. Therefore, in
SW-agent, owners of sensors authorize the accesses instead of captured people.
For the representation, SW-agent targets sensors whose owner can represents
captured people such as cameras on home.

Appropriate authorization model is also needed. Authorization model for
Sensing Web should satisfy followings;

– Performance: Processing costs needed for the model should not be large.
– Management Costs: Management costs for the model should not be high.
– Usability for Users and Owners: Both users and sensor owners should be

able to apply for authorization without encountering problems.
– Transparent Use of Sensors Scattered across Different Organizations: Sensors

used in the Sensing Web are scattered across different organizations. Users
should be able to use these sensors transparently.

In the Sensing Web, sensors are classified into the following two units.

– Sensor Network: Sensors belonging together, which are managed as a sen-
sor network. Typically, the sensors are owned by an organization such as a
research institute or a company.

– Standalone Sensor: A sensor exists singularly. Typically, these sensors are
owned by an individual.

Virtual Organization (VO) [5] is a promising model for the management of
resources by grouping the resources. Grouping sensor networks by VO enables
users to use sensors scattered across different organizations transparently. How-
ever, VO can’t be applied to standalone sensors because there is no administra-
tor for standalone sensors. Each standalone sensor is managed by an individual.
Therefore, separate authorization is needed for each standalone sensor.

Authorization for standalone sensors may lead to much extra work for users.
For example, if a user needs to acquire authorization from each site in order
to run an application, which uses hundreds of sensors, the user has to send e-
mails to hundreds of administrators or access hundreds of web portals to create
an account. Therefore, an authorization model with few or no manual steps is
needed for standalone sensors.

For realization of separate authorizations which need only a few manual steps,
the Policy Based Model and Chain of Trust Model can be used. the Policy Based
Model authorizes users by matching the policies of sensors with the attributes of
users. The authorization is performed without any extra procedures by the user.
However, the expressiveness of the policy is limited by the expressiveness of the
attributes the users list, but a listing of attributes which allow arbitrary policy
decisions is difficult. The Policy Based Model is suitable for authorization which
needs a broad level of permission control, but it is not suitable for a precise level
of control.

Video Server

Executor
Shipping Program

ClientVirtual Sensor Device Virtual Stream Device

Remote Procedure Call
Reading sensor data

Client MachineMachine near sensor

Sending processed data
Sensor

of SW-agent

Fig. 3. Overview of executor part of SW-agent

The Chain of Trust Model authorizes users by a chain of trusts based on the
following rule: “friends of my friend are trustworthy.” A representative model of
the Chain of Trust is Pretty Good Privacy (PGP) [6], which can authenticate
users by a chain of trusts. For example, a user who has been allowed to access
sensor-A on a building can access sensor-B on the same building. However, the
effectiveness of the Chain of Trust Model depends on the activity level of owners
of the sensor.

The models described above can be used simultaneously in a mutually com-
plementary manner. In the future, we are planning the simultaneous use of mul-
tiple models based on the needs of the community.

4 Implementation of SW-agent

We implemented a prototype system of the SW-agent. Primarily, the execution
functionality for program shipping is implemented. Figure 3 shows an overview
of the execution environment.

The prototype is implemented based on BEE[7]. BEE emulates system calls
in different operating systems (OSs) such as Linux and Windows, which en-
ables a user to run a Linux binary on a different OS. Together, BEE and the
mechanism for deployment of an execution binary enable the operation of pro-
gram shipping. However, the prototype does not have a deployment mechanism
and can only run on Linux at this time. Using dynamic class loading and the
sandboxing mechanism of Java may be used for realization of remote execution.
However, Java programs consumes more memory, thus limiting the scalability
of the Sensing Web, which runs many processes on a machine. In addition, use-
ful native code libraries such as Open Computer Vision Library (OpenCV) [8]
cannot be used with implementations constructed with Java.

In the following sections, we describe our implementation of the SW-agent
in more detail.

4.1 Sandboxing for Secure Execution

Sandboxing is achieved by hooking system calls using the ptrace system call in
Linux. SW-agent changes the system call handler by ptrace, and forces system
calls to be handled by the modified call handler by modification of the stack data.
The modified handler determine whether each call is permitted with predefined
policies. If a call is permitted, the handler calls the original system call using
passed arguments. Otherwise, the handler blocks the request and returns an
error code. Currently, SW-agent supports open system call.

4.2 Virtual Devices

The prototype has two virtual devices: a Virtual Sensor Device and a Virtual
Stream Device. Virtual devices are realized by system call emulation, which
changes the system call handler with ptrace, as in sandboxing. We implemented
only the essential system calls: open, read, write, close, ioctl.

Virtual Sensor Device enables the user to access a sensor device transpar-
ently. The prototype supports emulation of a video device. We implemented the
essentials of the video4linux [9] API interface, which is a standard interface for
accessing video devices. For supporting video4linux interfaces, we implemented
emulations of ioctl. Virtual Sensor Device is exported as “/dev/sensor.” A pro-
gram can read data by calling the read function for “/dev/sensor.” Virtual Sen-
sor Device acquires sensor data from a video server. The video server provides
sensor data read from a real video device to Virtual Sensor Device through inter-
process communication. The video server is implemented as a process separate
from the executor. While normal device access uses a video device exclusively,
our implementation enable users to share a sensor device simultaneously.

Virtual Stream Device realizes easy and efficient data sending to multiple
clients. Virtual Stream Device abstracts the stream channel to clients and is
exported as “/dev/client.” Currently, the prototype supports sending data to a
clients only.

Unlike the specification of web services for stream data such as MTOM/XOP
[10][11], a user can set socket parameters for the Virtual Stream Device. This
capability means communication can be adopted to a network environment.
Furthermore, flexible transfer such as third-party transfer is possible by switching
transfer destinations.

4.3 Remote Procedure Call Interface

We used Simple Object Access Protocol (SOAP) for realization of remote proce-
dure call. SOAP supports not only primitive numeric values but also arrays and
structured data as the arguments and return values, which enables flexible data
access. Most codes for realizing remote procedure calls can be generated by our
generation tools. Users only have to write the definitions and implementations of
the procedures. We used the gSoap [12] for implementation. The code generation
tools invokes tools of gSoap internally.

4.4 User Scenario

In this section, we present the user scenario of SW-agent. An execution binary
for shipping is created by the following steps.

1. Describe Procedure Definition: A user describes the definition of a remote
procedure call of web services with the description format of gSoap. In gSoap,
a definition is described as a prototype definition on a header file.

2. Generation of Skelton Code: The user generates the skeleton code of a remote
procedure call with the generation tool of gSoap.

3. Implementation of Procedure: The user writes the implementation of the
generated skeleton code.

4. Generation of Execution Binary: The user makes an execution binary by
linking the object file generated from the implemented code and our offering
object file. Our offering object file includes the main function and something.
Linking should be static due to the constraints of BEE.

Deployment of the execution binary is also performed through a remote pro-
cedure call of the web service. Currently, the prototype does not support de-
ployment of an execution binary. We are planning to offer a client-side tool that
deploys an execution binary through SOAP.

5 Performance Evaluation and Experiment

In this section, we report the results of an experiment and a performance eval-
uation of the SW-agent. The objective of this evaluation and experiment is to
examine availability and especially performance characteristic of shipping pro-
gram facility. First, we examined the basic performance of shipping program
facility. Second, we conducted a sandboxing experiment.

• Basic Performance of System Call Emulation: SW-agent executes
most of a codes directly on processors, except for system calls. Therefore, a
program which has a system call is executed with the overhead of the system
call hooking.

First, we examined the overhead of system call hooking. The overhead is the
average execution time acquired by measuring the time of the getuid system call.
We calculated the average execution time by executing the system call 10,000
times on and not on SW-agent. A machine used for evaluation had Core2Duo
2.4GHz and 2GB memory, and ran Linux Kernel 2.6.24.

As a result, the direct execution time was approximately 0.25 µsec. The
execution time of SW-agent was approximately 15 µsec. This result means that
overhead of SW-agent is approximately 15 µsec. The impact of this overhead on
applications is examined in the following evaluations.

• Performance of Virtual Sensor Device: We have examined perfor-
mance of Virtual Sensor Device. The performance is the average time calculated
by measuring the time required to acquire 10,000 frames. We measured the exe-
cution time by using both the real sensor device directly and the Virtual Sensor
Device. The frame size was 640x480. A machine used for evaluation was same as
prior evaluation. Capturing board attached to the machine is Buffalo CBP-AV,
whose frame-rate is 30fps and resolution is 640x480.

As a result of the experiment, the execution time required to acquire frame
data was approximately 33375 µsec by direct access and approximately 33376
µsec by the Virtual Sensor Device. This result means that the overhead of the

Table 1. Evaluation Configurations

Name Machine Network

Local Machine-B to Machine-B omni.hpcc.jp
LAN Machine-A to Machine-B omni.hpcc.jp
WAN Machine-A to Machine-B hpcs.cs.tsukuba.ac.jp to omni.hpcc.jp

Table 2. Execution Time of Remote Procedure Calls

Network Procedure Native SW-agent Overhead

Local Procedure-A 31 µsec 1117 µsec 351%
Procedure-B 35 msec 37 msec 107%

LAN Procedure-A 1103 µsec 1449 µsec 131%
Procedure-B 36 msec 38 msec 106%

WAN Procedure-A 6903 µsec 7396 µsec 107%
Procedure-B 78 msec 79 msec 102%

Virtual Sensor Device is approximately 1 µsec. This overhead is because of sys-
tem call hooking by ptrace and inter-process communication between the video
server and the executor part of the SW-agent. This overhead is smaller than
that of a former evaluation. We assume that this decrease occurs because the
Virtual Sensor Device omits some device calls which the direct access needs,
such as the order of starting capture. The overhead of the Virtual Sensor Device
is sufficiently small.

• Performance of Remote Procedure Call: We examined the perfor-
mance decline of the remote procedure call resulting from system call emulation.
We measured the execution time on and not on SW-agent, as well as the execu-
tion time on the three transition paths shown in Table 1. In the evaluation, we
used two procedures: procedure-A, procedure-B. Procedure-A has no arguments
and returns an integer value. Procedure-B has no arguments and returns 900
Kbytes of data, equivalent to 640x480 video frame data. The communication
data between the shipping program and the client is base64 encoded and then
transmitted as XML messages using the HTTP protocol. For examination of av-
erage execution times, we executed procedure-A 10,000 times and procedure-B
100,000 times. The network latency on the WAN was approximately 2 msec. For
the examination, we used two machines: Machine-A, Machine-B. Machine-A had
Core2Duo 2.2GHz, 2GB memory, and Gigabit Ethernet, and ran Linux Kernel
2.6.24. Machine-B had Xeon 3.0GHz, 2GB memory, and Gigabit Ethernet, and
ran Linux Kernel 2.6.9. Version of gSoap library used for implementation of web
service is 2.7.

Table 2 shows the execution time of each configuration and the ratios of the
overhead. The result shows that the overhead of procedure-A is greater than
that of procedure-B. This is because the system call dominates a larger part
of the total execution time in procedure-A. The result also shows that a larger
network environment has smaller overhead with both procedures. This is because
the overhead of system call hooking becomes smaller as the data transition time

increases. The WAN performance is important in the Sensing Web, which shares
sensors on the Internet. The overhead on WAN is sufficiently small.

• Basic Performance of Stream Data Transmission: We evaluated
the stream data transmission between the shipping program and client. The
performance of stream data transmission is dependent on the data transmis-
sion bandwidth. We measured the bandwidth of the Virtual Stream Device and
MTOM/XOP on LAN and WAN.

On burst transfer through a raw socket, the max bandwidth for LAN was ap-
proximately 871 Mbps and approximately 134 Mbps for WAN. As a result of the
measure, the max bandwidth of the Virtual Stream Device for LAN was approx-
imately 876 Mbps and approximately 134 Mbps for WAN. The max bandwidth
of MTOM/XOP for LAN was approximately 860 Mbps and approximately 128
Mbps for WAN. This result shows that the performance of both stream trans-
missions was almost equivalent to a normal raw socket.

6 Related Work

There are many works which deal sensor networks[13–18]. However, most of
these works target special sensor device such as mote[19], which can work au-
tonomously with a simple processor, small amount of memory, and a wireless
network. Therefore these researchs differs in hardware constraints and data char-
acteristic from our project which targets sensor devices such as video camera and
microphones, which produces large amount of media data.

Hourglass[20] aims to integrate multiple sensor networks. The integration
enable people to use sensors on multiple sensor networks, which are scatterd
across different organizations and geographically separated, trnsparently as well
as SW-Agent. Hourglass deploys its compornents which collaborate with other
compornents on sensor networks. The deployed compornents make up the data
flow path of sensor data. When size of sernsor data is large, they can be re-
duced by deployment of some compornents which process the data on data flow
path. Cougar[21] provides DB like access interface to user, which hides differ-
ence between multiple sensor networks. Sensor data is acquired by querying using
special query language, which is distributed over the sensor networks if needed.
However, these does not consider privacy problem and authentication. Unlike
our research, Cougar targets special devices such as mote and does not consider
conpatibility with World Wide Web.

There has already been a proposal to utilize the data acquired from sensors
installed in the real world. Open Geospatial Consortium (OGC) proposed Sen-
sor Web Enablement (SWE) [22], which is embraced in several projects. Buyya
et al. proposed Open Sensor Web Architecture (OSWA) in [3] and implemented
it in [23]. IrisNet[24] aims to realize worldwide sensor web which integrates com-
modity off-the-shelf sensor devices such as Web cameras. However, these can
not process stream data efficiently because they acquire sensor data by query
language with poor expressiveness that for processing stream data. Therefore,
they cannot avoid sending all the data to a client. In addition, OSWA and Iris-
Net does not consider privacy. In contrast, SW-agent can process stream data

efficiently with remote execution program and has a mechanism for protecting
privacy.

Some systems can already realize remote program deployment [25]. However,
most of these can run a system-specific binary only. Users are forced to learn a
system-spennnnncific rule to prepare the program. Therefore, these cannot be
used for realization of the Sensing Web, which is targeted toward casual sensor
sharing.

Issues of privacy information in pervasive computing are discussed on [4,
26–28].

7 Conclusion and Future Work

In this paper, we described an overview of Sensing Web and presented that
the research issues for realizing it are privacy protection and consumption of
communication resources. We proposed a architecture named SW-agent. SW-
agent can resolve the issues by shipping a program, which eliminates privacy
information and needless data, into the node near a sensor and with access
control based on the authentication mechanism.

We implemented a prototype system, tested the sandboxing function and
then evaluated the basic performance. The results of our examination showed
that SW-agent can execute remote execution program with up to 7% overhead in
performance comparing direct execution, which is acceptable for Sensing Web.

In the future, we intend to work on the following:

– Currently our prototype has no authorization system and deployment sys-
tem. We plan to construct an appropriate authorization model based on
the needs of a community and implement an authorization system based
on it. In addition, we plan to implement a deployment service. After these,
demonstration experiments for validation of architecture and each models of
SW-agent. In the experiments, validation in the perspective of user will be
commited.

– Mutual use of processed information between shipping programs may achieve
more flexible and efficient sensor use in terms of both usability and network
resource consumption. We plan to investigate it with a work-flow model on
mutually connected shipping programs.

Acknowledgment

We would like to thank Dr.Yuich Ota and Dr.Itaru Kitahara, and Takashi Tsushima

(Graduate School of Systems and Information Engineering in University of Tsukuba)

for technical advices and supports. The authors achnowledges the contribution of all the

members of the Sensing Web Project. The present study was supported by Effective and

Efficient Promotion of the Coodination Program of Science and Technology Projects

in the Special Coodination Funds for Promoting Science and Technology, which is

conducted by MEXT of Japan, and Japan Science and Technology Agency(JST).

References

1. Google Street View: http://www.google.com/help/maps/streetview/.
2. M. M. et al, Sensing Web Project - How to handle privacy information in sensor

data - (June 2008).
3. C. khong Tham, R. Buyya, SensorGrid: Integrating Sensor Networks and Grid

Computing, in: Special Issue on Grid Computing, 2005.
4. P. Bhaskar, S. I. Ahamed, Privacy in Pervasive Computing and Open Issues (2007).
5. I. F. et al, Physiology of the Grid:Making the Global Infrastructure a Reality,

Wiley, 2003, pp. 863–869.
6. Open PGP: http://www.openpgp.org/.
7. Y. Uemura, Y. Nakajima, M. Sato, Direct Execution of Linux Binary on Windows

for Grid RPC workers (March 2007).
8. Open Computer Vision Library: http://sourceforge.net/projects/opencvlibrary/.
9. video4linux: http://linux.bytesex.org/v4l2/.

10. SOAP Message Transmission Optimization: http://www.w3.org/TR/soap12-
mtom/.

11. XML-binary Optimized Packaging: http://www.w3.org/TR/xop10/.
12. The gSOAP Toolkit for SOAP Web Services and XML-Based Applications:

http://www.cs.fsu.edu/ engelen/soap.html.
13. Y.Yao, J.E.Gehrke, Query prcessing in sensor networks, In First Biennial Confer-

ence on Innovative Data Systems Research(CIDR 2003).
14. S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, The design of an acqui-

sitional query processor for sensor networks, in: Proceedings of the 2003 ACM
SIGMOD international conference on Management of data, SIGMOD ’03, ACM,
2003, pp. 491–502.

15. P. Levis, N. Patel, D. Culler, S. Shenker, Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks, in: Proceedings of
the 1st conference on Symposium on Networked Systems Design and Implementa-
tion - Volume 1, USENIX Association, 2004, pp. 2–2.

16. J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, D. Ganesan,
Building efficient wireless sensor networks with low-level naming, SIGOPS Oper.
Syst. Rev. 35 (2001) 146–159.

17. W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communi-
cation protocol for wireless microsensor networks, Hawaii International Conference
on System Sciences 8 (2000) 8020.

18. D. B. Johnson, D. A. Maltz, J. Broch, Dsr: The dynamic source routing protocol
for multi-hop wireless ad hoc networks.

19. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System architecture
directions for networked sensors, SIGOPS Oper. Syst. Rev. 34 (2000) 93–104.

20. J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer, M. Welsh,
Hourglass: An infrastructure for connecting sensor networks and applications, Tech.
rep. (2004).

21. Y. Yao, J. Gehrke, The cougar approach to in-network query processing in sensor
networks, SIGMOD Record 31 (2002) 2002.

22. G. Percivall, C. Reed, OGC Sensor Web Enablement Standard, Vol. 9 of Sensors
& Transducers, 2006, pp. 698–706.

23. X. Chu, Open Sensor Web Architecture:Core Service (December 2005).
24. P. B. Gibbons, B. Karp, Y. Ke, S. Nath, S. Seshan, Irisnet: An architecture for a

worldwide sensor web, IEEE Pervasive Computing 2 (2003) 22–33.

25. S. Brown, C. J. Sreenan, Updating software in wireless sensor networks: A survey,
Tech rep ucc-cs-2006-13-07, Dept. of Computer Science, University College Cork,
Ireland (2006).

26. M. Langheinrich, A privacy awareness system for ubiquitous computing environ-
ments.

27. M. Gruteser, G. Schelle, A. Jain, R. Han, D. Grunwald, Privacy-aware location
sensor networks, in: Proceedings of the 9th conference on Hot Topics in Operating
Systems - Volume 9, USENIX Association, 2003, pp. 28–28.

28. H. Chan, A. Perrig, Security and privacy in sensor networks, Computer 36 (2003)
103–105.

