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Abstract We consider a credit risk model with two industrial sectors, where defaults of corporations
would be influenced by two factors. The first factor represents the macro economic condition which would
affect the default intensities of the two industrial sectors differently. The second factor reflects the influences
of the past defaults of corporations against other active corporations, where such influences would affect
the two industrial sectors differently. A two-layer Markov chain model is developed, where the macro eco-
nomic condition is described as a birth-death process, while another Markov chain represents the stochastic
characteristics of defaults with default intensities dependent on the state of the birth-death process and the
number of defaults in two sectors. Although the state space of the two-layer Markov chain is huge, the
fundamental absorbing process with a reasonable state space size could capture the first passage time struc-
ture of the two-layer Markov chain, thereby enabling one to evaluate the joint probability of the number
of defaults in two sectors via the uniformization procedure of Keilson. This in turn enables one to value
a variety of derivatives defined on the underlying credit portfolios. In this paper, we focus on a financial
product called CDO, and a related option.

1. Introduction
It is often observed that the corporate defaults at the time of a recession tend to cluster in a
relatively short time period. This clustering phenomenon may result from the complex busi-
ness interactions among many corporations affected simultaneously by the recession. One of the
most prevalent approaches to cope with such business interactions would be a doubly stochas-
tic model, where corporations are related through their exposure to common risk factors, and
the co-movements of such factors induce the correlated corporate defaults. However, the dou-
bly stochastic model approach assumes that, given a state of the exogenous process describing
the macro-economic condition, individual corporate defaults occur independently. Some empiri-
cal studies such as Das et al.(2007) and Azizpour and Giesecke(2008), for example, report that
the doubly stochastic approach is inadequate so as to capture the default clustering, and sug-
gest the importance of introducing the feedback mechanism from default events. Collin-Dufresne
et al.(2003) also claim that default events are often accompanied by significant increases of the
credit spreads of corporate bonds and CDSs of other corporations. Accordingly, in the credit risk
management and derivatives pricing, it is important to cope with two different factors affecting
corporate defaults simultaneously: the macro-economic condition and the default contagion or the
default feedback effect.

In order to cope with this challenge, many different models have been proposed in the literature.
Jarrow and Yu(2001) investigate the pricing of risky debt in the primary-secondary framework,
where the default intensity of primary corporations depend only on the macro-economic condition,
while that of the secondary corporations depend on both the macro-economic condition and the
number of the primary corporation defaulted by the present time. Yu (2007) extends this paper by
introducing the concept of the total hazard construction, where the default intensities of corpora-
tions are affected by common exogenous factors as well as the number of defaulted corporations in
the portfolio. Frey and Backhaus(2006) apply Markov process techniques to construct and analyze
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interacting default intensities, where the default intensities of active corporations are exogenously
specified and the dependence structure of the default times is endogenously determined. They also
use Monte Carlo simulation for pricing multi-name credit derivatives. Using the matrix-analytic
method, a closed form pricing formula for multi-name credit derivatives is given by Herbertsson
and Rootzen(2008), where default intensities are assumed to be constant between defaults but that
can jump at the times of default. The model, however, could tolerate only a rather small number
of corporations, say 15, because of the computational burden involved. Zeheng and Jiang(2009)
deal with multi-name credit derivatives pricing by developing a factor contagion model having the
heterogeneous conditionally independent portfolio and infectious default portfolio as special cases.
This model assumes that the default intensities are driven by external common factors as well
as defaults of other corporations in the portfolio. They suggest that the analytical formula for
pricing multi name credit derivatives can be derived via total hazard construction combined with
the recursive method.

In comparison with the literature discussed above, this paper proposes two new features. The
first feature is that two industrial sectors are incorporated explicitly, where the default contagion
within the same industrial sector and that from the other industrial sector are treated in a dis-
tinguishable manner. The second feature is to develop two-layer Markov chain model, where the
default phenomenon can be described in terms of a sequence of matrix convolutions, thereby en-
abling one to deal with the large number of corporations in each industrial sector. Combined with
the uniformization procedure of Keilson(1979), the time dependent joint probability of the number
of defaulted corporations in one industrial sector and that in the other industrial sector can be
computed with speed and accuracy, totally eliminating the necessity of Monte Caro simulation.

We consider a credit risk model with two industrial sectors A and B with MA and MB active
corporations respectively at time t = 0, where defaults of corporations would be influenced by
two factors. The first factor represents the changes of the macro economic condition which would
affect the default intensities of the two industrial sectors differently. The second factor reflects
the influences of the past defaults of corporations against other active corporations, where such
influences would affect the two industrial sectors differently as for the macro economic factor. The
effect of the macro-economic condition to one industrial sector can also be different from that to
the other industrial sector, although all corporations in each industrial sector are assumed to be
affected uniformly. In order to incorporate such interactions between the macro economic condition
and defaults as well as the contagion phenomenon among the defaults, a two-layer Markov chain
model is developed, where the macro economic condition is described as a birth-death process, while
another Markov chain represents the stochastic characteristics of defaults with default intensities
dependent on the state of the birth-death process, the number of defaults in A and that in B by
time t. Although the state space of the two-layer Markov chain is huge, the fundamental absorbing
process with a resonable state space size could capture the first passage time structure of the two-
layer Markov chain, thereby enabling one to evaluate the joint probability of the number of defaults
in A and that in B by time t via the uniformization procedure of Keilson with speed and accuracy.
This in turn enables one to value a variety of derivatives defined on the underlying credit portfolios.
In this paper, we focus on a financial product called“ Collateralized Debt Obligation (CDO)”,
and a related CDO option of European type.

CDO is a structured product that securitizes a reference portfolio of default risky instruments
such as loans or bonds or CDSs. A credit default swap offers protection against default of a certain
underlying entity over specified time horizon. In the CDO scheme, given a reference portfolio, the
associated credit risk is divided into tranches of increasing seniority, where a tranche is defined
by a pair of an attachment point and a detachment point of the cumulative aggregate loss of the
reference portfolio. Here, the attachment point Ka means that the protection buyer (the CDO
issuer) is fully responsible for the portfolio loss up to Ka. On the other hand, the protection seller
(the tranche investor) compensates the portfolio loss beyond Ka up to Kd for the protection buyer,
where Kd is the detachment point. Predetermined premiums are paid to the protection seller by
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the protection buyer according to a predetermined schedule up to the maturity year in such a way
that no-arbitrage condition of the credit derivatives market is satisfied.

The principal entity of interest is a reference portfolio consisting of MA corporations in an
industrial sector A and MB corporations in another industrial sector B. As time progresses, some
of them would default. Let DA(t) and DB(t) be the number of defaulted corporations in A by
time t and that in B respectively. It is assumed that each default in A results in the bad debt of
BDA, which is called the notional amount. It is also assumed that the recovery rate of the bad
debt for a default in A is given by RA. We deffine BDB and RB similarly. The cumulative loss up
to time t denoted by l(t) is then given by

l(t) = BDA · (1−RA) ·DA(t) + BDB · (1−RB) ·DB(t) .(1.1)

For analytical convienence, we also define MA(t) and MB(t) as the number of corporations in A
still active at time t and that in B respectively, i.e.,

MA(t) = MA −DA(t) ; MB(t) = MB −DB(t) .(1.2)

We now turn our attention to the procedural details of the CDO contract characterized by an
attachment point Ka, a detachment point Kd, τ = (τ0, · · · , τK) specifying the sequence of time
epochs at which the contract would be exercised with τ0 = 0, and the contruct premium c[Ka,Kd].
The protection seller taking the credit exposure to the tranche with Ka and Kd will bear full losses
occurring in the portfolio in excess of Ka but up to Kd. Such a tranche is denoted by [Ka,Kd]-
Tranche. Let L[Ka,Kd](t) be the cumulative amount paid by the protection seller to the protection
buyer by time t. One then sees that

L[Ka,Kd](t) =





0 if l(t) ≤ Ka

l(t)−Ka if Ka ≤ l(t) ≤ Kd .
Kd −Ka if Kd ≤ l(t)

(1.3)

At time τk (k = 1, · · · ,K with τ0 = 0), the protection seller pays to the protection buyer by
the amount of PAYsell→buy(τk) specified by the tranched loss increment, i.e.

PAY sell→buy(τk) = L[Ka,Kd](τk)− L[Ka,Kd](τk−1) , k = 1, 2, · · · ,K .(1.4)

It should be noted from (1.3) that once the cumulative payment from the protection seller to the
protection buyer reaches Kd −Ka, PAY sell→buy remains to be 0 from that point on. In exchange,
a payment would be made from the protection buyer to the protection seller at each time epoch
τk (k = 0, 1, · · · ,K). This payment amount, denoted by PAYbuy→sell, is based on the unit premium
c[Ka,Kd] agreed upon at time τ0 = 0, which is applied to the hedge interval, i.e. (Kd −Ka) minus
the cumulative payment made by the protection seller to the protection buyer up to time τk. More
formally, one has

PAY buy→sell(c[Ka,Kd], τk) = c[Ka,Kd]

(
(Kd −Ka)−

k∑

j=1

PAY sell→buy(τj)
)
.

From (1.4), this then leads to

PAY buy→sell(c[Ka,Kd], τk) = c[Ka,Kd]

(
(Kd −Ka)− L[Ka,Kd](τk)

)
.(1.5)

The financial interactions between the protection seller and the protection buyer are illustrated in
Figure 1.1.

In formulating CDO contracts, the key question is how to determine the unit premium c∗[Ka,Kd]
at equilibrium which assures no-arbitrage in the credit derivatives market. We assume that there
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Figure 1.1: Protectionleg and Premiumleg

exists a risk-neutral martingale measure P under which all price processes discounted with the
interest rate r are martingales. Furthermore, it is assumed that r is deterministic. In this paper,
all expectations are taken with respect to this measure. Then the unit premium c∗[Ka,Kd] should
satisfy

K∑

k=1

e−rτkE
[
PAY sell→buy(τk)

]
=

K−1∑

k=0

e−rτkE
[
PAY buy→sell(c∗[Ka,Kd], τk)

]
.(1.6)

The left hand side of Equation (1.6) is called the protectionleg while the right hand side is called
the premiumleg. From (1.4) and (1.5), Equation (1.6) can be solved for c∗[Ka,Kd] as

c∗[Ka,Kd] =

∑K
k=1 e−rτkE

[
L[Ka,Kd](τk)− L[Ka,Kd](τk−1)

]

∑K−1
k=0 e−rτkE

[
(Kd −Ka)− L[Ka,Kd](τk)

] .(1.7)

Following [11] and [8], we next consider a CDO contract possibly to be entered at a future point
τ0 = t0 with option of not exercising it. More formally, an option is offered to the protection buyer
concerning whether or not to enter a CDO contract with a tranche [Ka,Kd], the contract epoch
vector τ = (τ0, · · · , τK) to be commenced at τ0 = t0 > 0 and the predetermined contract premium
c̃[Ka,Kd]. In order to evaluate the value of this option at time 0, we introduce the Mark-to-Market
value for the protection buyer at time τ0, denoted by MtM(τ0), which is given by

MtM(τ0) =
K∑

k=0

e−rτkE
[
PAY sell→buy(τk)

]
−

K∑

k=0

e−rτkE
[
PAY buy→sell(c̃[Ka,Kd], τk)

]
.(1.8)

This future value is generally uncertain because the market premium at time τ0 will differ from
the contract premium c̃[Ka,Kd], due to changes in the market’s view of the expectation of succesive
deafaults. One can see that the option value at time 0 for the protection buyer is given by

e−rτ0E
[
max

{
MtM(τ0), 0

}]
.(1.9)

Similarly, the same option can be offered to the protection seller, who would value the option at
time 0 as

e−rτ0E
[
max

{−MtM(τ0), 0
}]

.(1.10)
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The two-layer Markov chain model proposed in this paper enables one to see the impact of
contagion effect by developing efficient computational algorithms for evaluating the risk neutral
CDO contract premium c∗[Ka,Kd] based on (1.7) and the option values in (1.9) and (1.10), when
both the macro economic factor and the effects of default interactions across two industrial sectors
are present.

This paper consists of six sections apart from this introduction section. In Section 2, the two-
layer Markov chain model is formally introduced for capturing the effects of the macro economic
condition on individual defaults, as well as the impact of defaults on performance of active corpo-
rations. Section 3 is devoted to dynamic analysis of the fundamental absorbing trivariate process
and its first passage time structure. The joint probability of the number of defaults in A and that
in B by time t is analyzed explicitly in Section 4, and the computational algorithms for evaluating
the joint probability are developed in Section 5. Evaluation of CDO premiums and prices of CDO
option of European type is discussed in Section 6, and numerical examples are presented in Section
7. Finally, some concluding remarks are given in Section 8.

2. Model Description
Let {J(t) : t ≥ 0} be a Birth-Death process on J = {0, 1, · · · , J}, describing the macro economic
condition at time t, governed by upward transition rates ν+

i , (i = 0, 1, · · · , J − 1) and downward
transition rates ν−i , (i = 1, · · · , J). When J(t) = i ∈ J , individual active corporations in A and
B would have the default intensities ξA(i) and ξB(i) respectively. In addition, at the time of a
state change of J(t), at most one active corporation in A or B may default instantaneously with
certain probability, but never both at a time. A default occurs with probability 1−Θij , and ΘA

ij

and ΘB
ij represent the probability of this default to occur in A and that to occur in B respectively.

Accordingly, one has 0 ≤ Θij ,ΘA
ij ,Θ

B
ij ≤ 1 and Θij + ΘA

ij + ΘB
ij = 1. For the convenience of later

references, we summarize:
Definition 2.1

(a) ξA(i) [ ξB(i) ] : the default intensity of an active corporation in A [ B ] triggered by the

macroeconomic factor when J(t) = i.

(b) Θij : the probability of having no defaults upon occurrence of a transition of J(t) from

i to j.

(c) ΘA
ij [ ΘB

ij ] : the probability of having a default in A [ B ] upon occurrence of a transition

of J(t) from i to j.

As for the second factor reflecting the influences of the past defaults against other active
corporations, let MA(t) be the stochastic process on MA = {0, 1, · · · ,MA} describing the number
of active corporations in A at time t, and define MB(t) on MB = {0, 1, · · · ,MB} similarly. For
notational convenience, we write M(t) = [MA(t),MB(t)] with its state space M = MA ×MB =
{m = [mA,mB] : mA ∈ MA,mB ∈ MB}. Given M(t) = m = [mA,mB], we assume that the past
defaults in A and B would generate the default intensities of individual active corporations in A
and B in such a way that those intensities are proportional to the number of defaults occurred by
time t. More specifically, the default intensity of active corporations in A reflecting the second
factor is given by

ρA→A × (MA −mA) + ρB→A × (MB −mB).(2.1)

Similarly, this default intensity for active corporations in B is given by

ρA→B × (MA −mA) + ρB→B × (MB −mB).(2.2)

We note that the past defaults in A would affect an active corporation in A and that in B differently
where the default intensity for the former is given by ρA→A× (MA−mA) and that for the latter is
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described by ρA→B×(MA−mA). The default intensities ρB→A×(MB−mB) and ρB→B×(MB−mB)
can be interpreted in a similar manner.

In order to develop the integrated model, of interest is the trivariate stochastic process [J(t),M(t)]
defined on J ×M. Given [i,m] with m = [mA,mB], let ηA(i,m) and ηB(i,m) be the overall de-
fault intensities of an active corporation in A and an active corporation in B respectively. From
Definition 2.1, (2.1) and (2.2), one then sees that

ηA(i,m) = ξA(i) + ρA→A × (MA −mA) + ρB→A × (MB −mB),(2.3)
ηB(i,m) = ξB(i) + ρA→B × (MA −mA) + ρB→B × (MB −mB).(2.4)

Given [i,m], let the integrated industrial default intensities for A and B be denoted by λA(i,m)
and λB(i,m) respectively. Since there are mA and mB active corporations in A and B, one has

λA(i,m) = mA × ηA(i,m),(2.5)
λB(i,m) = mB × ηB(i,m).(2.6)

As before, we summarize the above definitions which would play a key role in our analysis.

Definition 2.2

(a) ηA(i,m) [ηB(i,m)] : the default intensity of an active corporation in A [B] triggered by the

macro economic factor as well as the past defaults in A and B when J(t) = i and M(t) = m

(b) λA(i,m) [λB(i,m)] : the integrated default intensity of the industrial sector A [B] triggered

by the macro economic factor as well as the past defaults in A and B when J(t) = i and

M(t) = m

Of interest is the time dependent dynamic behavior of the trivariate stochastic process [J(t),M(t)],
which would enable one to assess the joint distribution of the cumulative losses due to the defaults
occurred in A and in B by time t. Given a CDO tranche [Ka,Kd], these time dependent distribu-
tions then provide a computational vehicle to evaluate the price of the CDO tranche over a time
period [0, T ] subject to the condition that the price assures the no-arbitrage condition of the CDO
market. It then becomes possible to study how the underlying parameter values, representing in-
teractions between the macro economic condition, the industrial sector A and the industrial sector
B, would affect the CDO prices.

3. Fundamental Absorbing Trivariate Process and Its First Passage Time Structure
In this section, we analyze the dynamic behavior of the trivariate process [J(t),M(t)] = [J(t), (MA(t),MB(t))]
in detail. As we will see soon, the trivariate process can be formulated as a sophisticated bivari-
ate MMPP(Markov Modulated Poisson Process) with respect to two industrial sectors A and B,
which is both temporally and spatially inhomogeneous. Based on the uniformization procedure of
Keilson [7] combined with the dynamic first passage time analysis, the computational algorithms
will be developed for evaluating the joint distribution of the cumulative losses due to the defaults
occurred in A and in B by time t.

In order to capture the dynamic behavior of the bivariate MMPP, we introduce a fundamental
absorbing trivariate process [J(t),Mm(t)] given m = (mA,mB) > 0, where the corresponding state
space is given by

Sm
def= J ×Mm = {(i, n) : i ∈ J , n = (mA,mB), (mA − 1,mB) or (mA,mB − 1) }.(3.1)

The fundamental absorbing trivariate process is constructed in such a way that its stochastic be-
havior is identical to that of [J(t),M(t)] if Mm(t) = m, while all other states are made absorbing.
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More specifically, the transition structure of [J(t),Mm(t)] is depicted in Figure 3.1 with corre-
sponding hazard rates listed in Table 3.1. If mA = 0 or mB = 0, or both, states with negative
index in the above definitions would be ignored. With this modification, the arguments to follow
would be valid for m ≥ 0, which we assume throughout the rest of the paper.
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Figure 3.1: Transition Structure of [J(t),M(t)]

(1): λB(i− 1,m) (5): ν+
i−1Θ

A
i−1,i (9): λB(i,m) (13): ν+

i ΘA
i,i+1 (17): λB(i + 1,m)

(2): λA(i− 1,m) (6): ν−i ΘB
i,i−1 (10): λA(i,m) (14): ν−i+1Θ

B
i+1,i (18): λA(i + 1,m)

(3): ν+
i−1Θ

B
i−1,i (7): ν−i Θi,i−1 (11): ν+

i ΘB
i,i+1 (15): ν−i+1Θi+1,i

(4): ν+
i−1Θi−1,i (8): ν−i ΘA

i,i−1 (12): ν+
i Θi,i+1 (16): ν−i+1Θ

A
i+1,i

Table 3.1: Associated Hazard Rates

In order to define [J(t),Mm(t)] in terms of hazard rate matrices, we decompose the state space
Sm in (3.1) into three mutually exclusive and exhaustive subspaces in the following manner.

S0
m

def= {(i, n) : i ∈ J , n = (mA,mB)}
SAm def= {(i, n) : i ∈ J , n = (mA − 1,mB)}(3.2)

SBm def= {(i, n) : i ∈ J , n = (mA,mB − 1)}
It can be seen that SAm corresponds to the set of states located in the first row of Figure 3.1.
Similarly, those states in the second row and those in the third row of Figure 3.1 constitute S0

m

and SBm respectively.
With this definition, let ν be the hazard rate matrix governing the transitions of [J(t),Mm(t)]

within S0
m. Based on the discussions in Section2, one sees that

ν
def=




0 ν+
0 Θ0,1

ν−1 Θ1,0 0 ν+
1 Θ1,2

. . . . . . . . .
ν−i Θi,i−1 0 ν+

i Θi,i+1

. . . . . .
ν−J ΘJ,J−1 0




.(3.3)

It is worth noting that ν is independent of m as indicated by its notation, provided that 0 < mA <

MA and 0 < mB < MB. In order to capture the transitions of [J(t),Mm(t)] from S0
m to SAm and
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those from S0
m to SBm, we define the two matrices ΛA(m) and ΛB(m) by

ΛA(m) def=




λA(0,m) ν+
0 ΘA

0,1

ν−1 ΘA
1,0 λA(1,m) ν+

1 ΘA
1,2

. . . . . . . . .
ν−i ΘA

i,i−1 λA(i,m) ν+
i ΘA

i,i+1
. . . . . .

ν−J ΘA
J,J−1 λA(J,m)




,(3.4)

and

ΛB(m) def=




λB(0,m) ν+
0 ΘB

0,1

ν−1 ΘB
1,0 λB(1,m) ν+

1 ΘB
1,2

. . . . . . . . .
ν−i ΘB

i,i−1 λB(i,m) ν+
i ΘB

i,i+1
. . . . . .

ν−J ΘB
J,J−1 λB(J,m)




.(3.5)

The entire hazard rate matrix governing [J(t),Mm(t)], denoted by V(m), can then be written as

S0
m SAm SBm

V(m) def=
S0

m

SAm
SBm




ν ΛA(m) ΛB(m)
0 0 0
0 0 0


 .(3.6)

We are now in a position to develop computational procedures for evaluating the dynamic
transition probabilities of [J(t),Mm(t)] based on the uniformization procedure of Keilson[7]. More
specifically, let

P(i,n)(i′,n′)(m, t) = P[J(t) = i′,Mm(t) = n′|J(0) = i,Mm(0) = n](3.7)

and define the transition probability matrix

P (m, t) =
[

P(i,n)(i′,n′)(m, t)
]

(i,n),(i′,n′)∈Sm

,(3.8)

where the state space Sm is arranged in the order of S0
m, SAm and SBm as for V(m) given in (3.6).

The corresponding Laplace transform is defined by

π(m, s) =
∫ t

0
e−stP (m, t)dt.(3.9)

For notational convenience, given a matrix ζ = [ζij ]i,j∈N , we define the i-th row sum by ζi and
the associated diagonal matrix by ζ

D
, i.e.

ζ
D

= diag{ζi} ; ζi =
∑

j∈N
ζij .(3.10)

With this definition, for V(m), one has

V
D

(m) =




ν
D

+ ΛA:D
(m) + ΛB:D

(m) 0 0
0 0 0
0 0 0


 .(3.11)
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The infinitesimal generator Q(m) of [J(t),Mm(t)] can then be given by

Q(m) = −V
D

(m) + V(m) ,(3.12)

where V(m) is as in (3.6). Accordingly, the Kolmogorov forward equation is obtained as

d

dt
P (m, t) = P (m, t)Q(m).(3.13)

By taking the Laplace transform of both sides of (3.13) with respect to t and using P (m, 0) = I,
one sees that

sπ(m, s)− I = π(m, s)Q(m),(3.14)

which in turn leads to

π(m, s) =
[
sI −Q(m)

]−1
.(3.15)

In the real domain, Equation (3.15) implies that

P (m, t) = exp
(
Q(m)t

)
=

∞∑

k=0

Q(m)k

k!
tk .(3.16)

In order to facilitate our analysis further, we introduce the uniformization procedure of Keilson
[7]. Given m ∈M, let ν be a constant satisfying

ν ≥ max
[i,m]∈J×M

{νi + λA(i,m) + λB(i,m)}.(3.17)

The stochastic matrix a
ν
(m) associated with ν is then defined as

a
ν
(m) def= I − 1

ν
V

D
(m) +

1
ν
V(m) .(3.18)

One sees from (3.10) and (3.18) that a
ν
(m) = I + 1

νQ(m). Substitution of this equation into (3.15)
then yields

π(m, s) =
1

s + ν

[
I − ν

s + ν
a

ν
(m)

]−1
.(3.19)

The uniformization procedure characterized by (3.17) through (3.19) has the following probabilistic
interpretation. In general, the dwell time of the trivariate process [J(t),Mm(t)] at state [i,m] is
exponentially distributed with parameter νi + λA(i,m) + λB(i,m), which depends on [i,m]. The
next transition is then governed by the matrix [ν

D
+ΛA:D

(m)+ΛB:D
(m)]−1[ν +ΛA(m)+ΛB(m)].

Replacing the dwell time at state [i,m] by the exponential random variate with parameter ν in
(3.17) for all [i,m] ∈ Sm, the uniformization procedure states that the resulting Markov chain can
be made probabilistically identical to the original Markov chain where a

ν
(m) in (3.15) is employed

for the probability matrix dictating the next transition.
We now prove the key theorem of this section. For notational simplicity, the relevant subspaces

of the state space of [J(t),Mm(t)] are defined as follows.

G
def= S0

m ; A
def= SAm ; B

def= SBm .(3.20)

Let a be a matrix corresponding to Sm ×Sm. A submatrix of a restricted to G×G is denoted by

a
GG

=
[
a[i,m][j,m]

]
[i,m]∈G,[j,m]∈G

.

Since the cardinality of G is equal to the cardinality of J from (3.2), for notational simplicity, we
write a[i,m][j,m] = aij . Submatrices a

GA
and a

GB
are defined similarly.
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Theorem 3.1 Let π(m, s) be as in (3.9). With G,A and B as defined in (3.20), the following
statements hold.

a) π
GG

(m, s) =
1

s + ν

[ ∞∑

k=0

( ν

s + ν

)k
a

ν:GG
(m)k

]

b) π
GA

(m, s) =
1

s + ν

[ ∞∑

k=0

( ν

s + ν

)k
(

k−1∑

j=0

a
ν:GG

(m)ja
ν:GA

(m)

) ]

c) π
GB

(m, s) =
1

s + ν

[ ∞∑

k=0

( ν

s + ν

)k
(

k−1∑

j=0

a
ν:GG

(m)ja
ν:GB

(m)

) ]

Proof
From (3.6), (3.11) and (3.18), it can be seen that a

ν
(m) takes the form

a
ν
(m) =




a
ν:GG

(m) a
ν:GA

(m) a
ν:GB

(m)
0 0 0
0 0 0


 .

By induction, after a little algebra, it then follows that

a
ν
(m)k =




a
ν:GG

(m)k a
ν:GG

(m)k−1a
ν:GA

(m) a
ν:GG

(m)k−1a
ν:GB

(m)
0 0 0
0 0 0


 .

The theorem now follows from (3.19). 2

As we will see, Theorem 3.1 enables one to evaluate the distribution of the first passage time
of [J(t),Mm(t)] from [i, n] to [i′, n′], thereby providing a computational vehicle for evaluating the
CDO prices of our model. More specifically, let T[i,n]→A∪B be the first passage time of [J(t),Mm(t)]
from [i, n] to A ∪B, i.e.

T[i,n]→A∪B = inf
{

t : [J(t),Mm(t)] ∈ A ∪B
∣∣∣ [J(0),Mm(0)] = [i, n]

}
.(3.21)

We introduce the following indicator

I(T[i,n]→A∪B) =
{

A if Mm(T[i,n]→A∪B) ∈ A

B if Mm(T[i,n]→A∪B) ∈ B
(3.22)

and define the joint distribution matrices of T[i,n]→A∪B and I(T[i,n]→A∪B) as

S
A
(m, t) = [SA:ij(m, t)] ;(3.23)

SA:ij(m, t) = P
{
T[i,n]→A∪B ≤ t, I(T[i,n]→A∪B) = A, J(t) = j

∣∣ Mm(0) = n, J(0) = i
}

and

S
B

(m, t) = [SB:ij(m, t)] ;(3.24)

SB:ij(m, t) = P
{
T[i,n]→A∪B ≤ t, I(T[i,n]→A∪B) = B, J(t) = j

∣∣ Mm(0) = n, J(0) = i
}

.

The corresponding Laplace transform matrices are denoted by

σ
A
(m, s)

def
= [σA:ij(m, s)] ; σA:ij(m, s) =

∫ ∞

0
e−stdSA:ij(m, t)(3.25)
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and

σ
B

(m, s)
def
= [σB:ij(m, s)] ; σB:ij(m, s) =

∫ ∞

0
e−stdSB:ij(m, t).(3.26)

The next theorem then holds true.

Theorem 3.2

a) σ
A
(m, s) =

∞∑

k=0

( ν

s + ν

)k+1
a

ν:GG
(m)ka

ν:GA
(m) ;

σ
B

(m, s) =
∞∑

k=0

( ν

s + ν

)k+1
a

ν:GG
(m)ka

ν:GB
(m) ,

b) s
A
(m, τ) =

∞∑

k=0

e−ντ (ντ)k

k!
νa

ν:GG
(m)ka

ν:GA
(m) ;

s
B

(m, τ) =
∞∑

k=0

e−ντ (ντ)k

k!
νa

ν:GG
(m)ka

ν:GB
(m) .

Proof
From the probabilistic interpretation of the uniformization procedure, one sees that

σA:ij(m, s) =
ν

s + ν

[
δ{i=j}aν:[i,mA,mB][j,mA−1,mB](m)

+
∑

r∈J
aν:[i,mA,mB][r,mA,mB](m)σA:rj(m, s)

]
,(3.27)

where δ{Statement} = 1 if Statement holds true and δ{Statement} = 0 otherwise. Equation (3.27) can
be explained in the following manner. Starting from [i,m] = [J(0),Mm(0)], the left hand side is
the Laplace transform of the joint probability of the time until absorption and the event that this
absorption occurs in A with entry into A at [j, mA−1,mB]. In order to see the probabilistic inter-
pretation of the right hand side, we first note from the uniformization procedure that the dwell time
in state [i,m] can be considered to have the exponential distribution with the Laplace transform
ν/(s + ν). The absorbing set A can be reached directly from [i,m] only through [i,mA − 1,mB].
Accordingly, the first transition results in absorption with probability aν:[i,mA,mB][i,mA−1,mB](m).
Otherwise, the next state to be visited would be [r,m] with probability aν:[i,m][r,m](m). In this
case, the state [j, mA − 1,mB] should be reached anew from [r,m], and the Laplace transform
σA:rj(m, s) should be multiplied. In matrix form, Equation (3.27) can be rewritten as

σ
A
(m, s) =

ν

s + ν

[
a

ν:GA
(m) + a

ν:GG
(m)σ

A
(m, s)

]
,(3.28)

which can be solved for σ
A
(m, s) as

σ
A
(m, s) =

ν

s + ν

[
I − ν

s + ν
a

ν:GG
(m)

]−1
a

ν:GA
(m) .(3.29)

Similarly, σ
B

(m, s) can be obtained as

σ
B

(m, s) =
ν

s + ν

[
I − ν

s + ν
a

ν:GG
(m)

]−1
a

ν:GB
(m) .(3.30)

Part a) then follows by expanding (3.29) and (3.30) into a geometric series. The explicit inversion
of part a) into the real domain yields part b), completing the proof. 2
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4. Time Dependent Joint Probability of [J(t),M(t)]
In this section, we evaluate the time dependent joint probability of [J(t),M(t)] in terms of the
first passage times of the fundamental absorption processes analyzed in Section 2. This expression
facilitates the necessary computations for pricing the underlying CDO subsequently as we will see.
More formally, for i, j ∈ J and m ∈M, let bij(m, t|M) be defined by

bij(m, t|M) = P{J(t) = j, M(t) = m|J(0) = i,M(0) = M}.(4.1)

The Laplace transform with respect to t is denoted by

βij(m, s|M) =
∫ ∞

0
e−stbij(m, t|M)dt.(4.2)

The corresponding matrix function and the matrix Laplace transform are written as

b(m, t|M) =
[
bij(m, t|M)

]
; β(m, s|M) =

[
β

ij
(m, s|M)

]
.(4.3)

In what follows, we express β(m, s|M) in a recursive form with respect to m in terms of π(m, s),
σ

A
(m, s) and σ

B
(m, s) given in (3.19), (3.25) and (3.26) respectively.

We recall from Section 2 that, given [J(t),M(t)] = [i,m], this trivariate process is probabilis-
tically identical to [J(t),Mm] until the latter falls into absorption. Hence, the next transition of
[J(t),M(t)] from state [i,m] is governed by the transition probability matrix a

ν
(m) in (3.18). This

transition structure is depicted in Figure 4.1.

(
i, [mA,mB]

)

6

?

(
i + 1, [mA,mB]

)

(
i− 1, [mA,mB]

)

aν:[i,mA,mB][i+1,mA,mB]

aν:[i,mA,mB][i−1,mA,mB]

³³³³³³³³³³³³1

PPPPPPPPPPPPq

aν:[i,mA,mB][i,mA−1,mB]

aν:[i,mA,mB][i,mA,mB−1]
(
i, [mA,mB − 1]

)

(
i, [mA − 1,mB]

)

½¼

¾»

66aν:[i,mA,mB][i,mA,mB]

Figure 4.1: General Transition Structure of [J(t),M(t)] via Uniformization

In our model, the trivariate process [J(t),M(t)] starts with J(0) = i ∈ J and M(0) = M =
[MA,MB]. No default would have occurred by time t if and only if [J(t),M(t)] remains within G
until time t. Accordingly, one has

β(MA,MB, s|M) = π
GG

(MA,MB, s).

If there has been exactly one default in A by time t, such a default should have occurred at time
τ < t and there have been no default since then until time t. It then follows that

β(MA − 1,MB, s|M) = σ
A
(MA,MB, s)π

GG
(MA − 1,MB, s).

The case of having exactly one default in B by time t can be treated similarly and one has

β(MA,MB − 1, s|M) = σ
B

(MA,MB, s)π
GG

(MA,MB − 1, s).
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In order to see the underlying recursive structure clearly, we continue to consider the case of
having exactly two defaults by time t. If the two defaults occurred in A by time t, the first default
in A should have occurred at time τ1 < t, followed by the second default in A at time τ2 with
τ1 < τ2 < t, and there should have been no default since then until time t. One then has

β(MA − 2,MB, s|M) = σ
A
(MA,MB, s)σ

A
(MA − 1,MB, s)π

GG
(MA − 2,MB, s).

Similar arguments can be employed for the case that exactly one default in A and exactly one
default in B have occurred by time t. In this case, the two defaults should have occurred in a
sequence of either A and B or B and A. Consequently, we observe that

β(MA − 1,MB − 1, s|M) = σ
A
(MA,MB, s)σ

B
(MA − 1,MB, s)π

GG
(MA − 1,MB − 1, s)

+ σ
B

(MA,MB, s)σ
A
(MA,MB − 1, s)π

GG
(MA − 1,MB − 1, s).

The case of having exactly two defaults in B can be dealt with in parallel with the case for A, and
one has

β(MA,MB − 2, s|M) = σ
B

(MA,MB, s)σ
B

(MA,MB − 1, s)π
GG

(MA,MB − 2, s).

In general, if [J(t),M(t)] = [j, m], starting with [J(0),M(0)] = [i,M ], there exist multiple
paths connecting M to m where each path represents a sequence of occurrences of defaults in
A and B. This recursive structure is depicted in Figure 4.2 for the case of MA > MB. The

(MA, MB) -
A
AAU

(MA − 1, MB) -
A
AAU

(MA, MB − 1) -
A
AAU

·

·

·

-
A
AAU-

A
AAU-

A
AAU

...
-
A
AAU

(MA −MB, MB)

(MA −MB + 1, MB − 1)

(MA −MB + 2, MB − 2)

(MA −MB + 3, MB − 3)

(MA − 1, 1)

(MA, 0)

-
A
AAU-

A
AAU-

A
AAU-

-
A
AAU-

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

-
A
AAU-

A
AAU-

A
AAU-

-
A
AAU-

(0, MB)

(1, MB − 1)

(2, MB − 2)

(3, MB − 3)

(MB − 1, 1)

(MB, 0)

A
AAU-

A
AAU-

A
AAU-

-
A
AAU-

(0, MB − 1)

(1, MB − 2)

(2, MB − 3)

(MB − 2, 1)

(MB − 1, 0)

...

A
AAU-

A
AAU

-

-
A
AAU-

...

· · ·

· · ·

· · ·

· · · -

A
AAU

(0, 0)

· · ·

· · ·

Figure 4.2: Tree Structure

transition probability associated with each path can then be obtained by multiplying the matrices
σ

A
(n, s) and σ

B
(n′, s) in such a way that the sequence of the path would be reflected in the

order of the matrix multiplications along with choices of n and n′, followed by the final matrix
multiplication by π

GG
(m, s). More specifically, let the matrices Ξ(mA,mB, s) be defined recursively

for mA = MA − 1,MA − 2, · · · , 0 and mB = MB − 1,MB − 2, · · · , 0 as

Ξ(mA,MB, s) = Ξ(mA + 1,MB, s)σ
A
(mA + 1,MB, s) ,

Ξ(mA,mB, s) = Ξ(mA + 1,mB, s)σ
A
(mA + 1,mB, s)(4.4)

+ Ξ(mA,mB + 1, s)σ
B

(mA,mB + 1, s) ,

Ξ(MA,mB, s) = Ξ(MA,mB + 1, s)σ
B

(MA,mB + 1, s) ,

starting with

Ξ(MA,MB, s) = I .(4.5)

Then the following theorem holds true.
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Theorem 4.1 For mA = MA−1,MA−2, · · · , 0 and mB = MB−1,MB−2, · · · , 0, let Ξ(mA,mB, s)
be as defined in (4.4) and (4.5). One then has

β(mA,mB, s|M) = Ξ(mA,mB, s)π
GG

(mA,mB, s).

Proof
We first note from (4.5) that Ξ(mA,mB, s) is constructed by involving only σ

A
(·, s) and σ

B
(·, s),

where these matrices are multiplied in the order corresponding to a path connecting [MA,MB] and
[mA,mB], and then the resulting matrices are summed up over all such paths. As can be seen
from (3.24) and (3.25), σ

A
(·, s) corresponds to the joint probability of the first passage time of

[J(t),Mn(t)] from [i, nA, nB] to A ∪ B, and this first passage occures at state [j, nA − 1, nB].
Accordingly, the matrix Ξ(mA,mB, s) is the Laplace transform of a semi-Markov matrix, where
its (i, j) element represents the first passage time density of M(t) from [MA,MB] to [mA,mB]
associated with the state transition of J(t) from i to j.

For the process [J(t),M(t)] to be at [j, mA,mB] at time t starting with [i,mA,mB], where the
Laplace transform of the probability of this event is given by βij(mA,mB, s), it has to first reach
a state [r,mA,mB] at time τ1 < t for some r ∈ J and the state of J(t) should change from r to j
between τ1 and t without having any default at all. The Laplace transform of the probability of
the latter event can be described in a matrix form by the right hand side of the expression in the
theorem, completing the proof. 2

Theorem 4.1 together with Theorems 3.1 and 3.2 enables one to compute the time dependent
joint probability of [J(t),M(t)], which in turn provides a computational vehicle for assessing the
pricies of CDO tranches discussed in Section 1, as we show in the subsequent two sections.

5. Computational Algorithms for Evaluating Time Dependent Joint Probability
In order to evaluate the risk-neutral premiums of CDO tranches proposed in this paper, the time
dependent joint probabilities of [J(t),M(t)] have to be computed repeatedly. While Theorem 4.1
in the previous section provides a theoretical foundation for this purpose, applying the result in a
straightforward manner may encounter a tremendous computational burden. The purpose of this
section is to develop efficient computational algorithms for evaluating the time dependent joint
probabilities of [J(t),M(t)] by taking advantage of the uniformization procedure of Keilson [7].

We first note from Theorem 4.1 that the matrix Laplace transforms β(m, s|M) of b(m, t|M)
can be expressed in terms of π

GG
(m, s), π

GA
(m, s) and π

GB
(m, s) given in Theorem 3.1, as well as

σ
A
(m, s) and σ

B
(m, s) in (3.29) and (3.30) respectively. Because of the uniformization procedure

employed, all of these matrices belong to a class of matrix Laplace transforms CLAPL defined by

CLAPL
def=

{
ζ(

X(k,m)
)∞

k=0

(s) : ζ(
X(k,m)

)∞
k=0

(s) =
∞∑

k=0

γk(s)X(k, m) , m ∈M
}

,(5.1)

where

γk(s) =
νk

(s + ν)k+1
.(5.2)

In the real domain, (5.1) and (5.2) can be rewritten as

CREAL
def=

{
X (

X(k,m)
)∞

k=0

(t) : X (
X(k,m)

)∞
k=0

(t) =
∞∑

k=0

gk(t)X(k, m) , m ∈M
}

(5.3)
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and

gk(t) = e−νt (νt)k

k!
(5.4)

respectively. It can be seen from Theorems 3.1 and 3.2 that the five types of matrices π
GG

(m, s),
π

GA
(m, s), π

GB
(m, s), σ

A
(m, s) and σ

B
(m, s) belong to CLAPL.

The fact that the coefficient matrices of a matrix Laplace transform function in CLAPL are
independent of s and the functional parts are concentrated in the coefficients γk(s) facilitates the
matrix convolutions among the matrix functions in CREAL greatly, because of a nice property of
γk(s) given by

γk(s)γ`(s) =
1
ν

γk+`+1(s) .(5.5)

From (5.1) and (5.5), it can be readily seen that CLAPL is closed under matrix multiplications.
Accordingly, CREAL is closed under matrix convolutions. In order to efficiently compute matrix
convolutions in CREAL by taking advantage of this closeness property, we now introduce the
following three mappings involving CLAPL and CREAL.

INV : CLAPL −→ CREAL(5.6)

with

X (
X(k,m)

)∞
k=0

(t) = INV

[
ζ(

X(k,m)
)∞

k=0

(s)

]
,(5.7)

MULT : CLAPL × CLAPL −→ CLAPL(5.8)

with

ζ(
Z(r,m)

)∞
r=0

(s) = MULT

[
ζ(

X(k,m)
)∞

k=0

(s) , ζ(
Y (`,m)

)∞
`=0

(s)

]
(5.9)

= ζ(
X(k,m)

)∞
k=0

(s)× ζ(
Y (`,m)

)∞
n=0

(s)

and

SUM : CLAPL × CLAPL −→ CLAPL(5.10)

with

ζ(
X(k,m)+Y (k,m)

)∞
k=0

(s) = SUM

[
ζ(

X(k,m)
)∞

k=0

(s) , ζ(
Y (k,m)

)∞
k=0

(s)

]
(5.11)

= ζ(
X(k,m)

)∞
k=0

(s) + ζ(
Y (`,m)

)∞
n=0

(s) .

Here INV is the matrix inversion operator specifying the matrix function in real domain given
a matrix Laplace transform. As the definitions in (5.9) and (5.11) themselves suggest, MULT is
the matrix multiplication operator and SUM is the matrix addition operator. From (5.5) and
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(5.9), one observes that

ζ(
Z(r,m)

)∞
r=0

(s) = MULT

[
ζ(

X(k,m)
)∞

k=0

(s) , ζ(
Y (`,m)

)∞
`=0

(s)

]

=
∞∑

k=0

γk(s)X(k, m)
∞∑

`=0

γ`(s)Y (`,m)

=
1
ν

∞∑

k=0

∞∑

`=0

γk+`+1(s)X(k, m)Y (`,m)

=
1
ν

∞∑

r=1

γr(s)
∑

k+`+1=r:k,`≥0

X(k, m)Y (`,m) .

Consequently, it follows that

Z(r,m) =
1
ν

∑

k+`+1=r:k,`≥0

X(k, m)Y (`,m) , r = 1, 2, · · · .(5.12)

We are now in a position to summarize computational procedures for evaluating b(m, t|M).
We begin this task by introducing a subroutine named UPDATE as described below. Keeping
Figure 4.2 in mind, given the number of corporations MA and MB in the industrial sectors A
and B respectively at time 0, this subroutine returns (mA,mB) elements which belong to the n-th
column in the figure, where the resulting matrix is denoted by M(n) with n̄ denoting its column
dimension. We note that 0 ≤ n ≤ MA + MB and M(n) is an n̄× 2 matrix.

Subroutine 5.1 (M(n), n̄) ←− UPDATE (n,MA,MB)

· If n ≤ min(MA,MB), then set M(n) =




MA − n MB
MA − n + 1 MB − 1

...
...

MA − 1 MB − n + 1
MA MB − n




and n̄ = n + 1.

· If min(MA,MB) < n ≤ max(MA,MB), then set

M(n) =




n−min(MA,MB) min(MA,MB)
n−min(MA,MB) + 1 min(MA,MB)− 1

...
...

n− 1 1
n 0




and n̄ = min(MA,MB) + 1.

· If max(MA,MB) < n, then set

M(n) =




0 MA + MB − n
1 MA + MB − n− 1
...

...
MA + MB − n− 1 1
MA + MB − n 0




and n̄ = MA + MB − n + 1.

The main algorithm can then be summarized as follows.

Algorithm 5.2

Input:
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. M = {0, 1, · · · ,MA} × {0, 1, · · · ,MB}

. J = {0, 1, · · · , J}

. t > 0

. ν satisfying (3.17)

. ν+
i , i ∈ J \{J}; ν−i , i ∈ J \{0}

. θAij , θ
B
ij , i, j ∈ J

. ρA→A, ρB→A, ρA→B, ρB→B

. ξA =
[
ξA(0), ξA(1), · · · , ξA(J)

]>

. ξB =
[
ξB(0), ξB(1), · · · , ξB(J)

]>

Output:
/ b(m, t|M) for all m ∈M where M = (MA,MB)

Procedure:

1] Compute a
ν
(M) from (3.18).

2] Based on Theorem 3.2 and (5.1), set σ
A
(M, s) = ζ(

νa
ν:GG

(M)ka
ν:GA

(M)
)∞

k=0

(s) ,

σ
B

(M, s) = ζ(
νa

ν:GG
(M)ka

ν:GB
(M)

)∞
k=0

(s) , and π
ν:GG

(M, s) = ζ(
a

ν:GG
(M)k

)∞
k=0

(s).

3] Set β(M, s|M) = π
GG

(M, s).

4] Compute b(M, t|M) = INV
[
β(M, s|M)

]
.

5] Set n = ` = 1.

6] LOOP1 : Set (M(n), n̄) ←− UPDATE (n,MA,MB)
7] LOOP2 : Set m = [mA,mB] ←− `−th row of M(n)
8] Compute a

ν
(m) from (3.18).

9] Set σ
A
(m, s) = ζ(

νa
ν:GG

(m)ka
ν:GA

(m)
)∞

k=0

(s) , σ
B

(m, s) = ζ(
νa

ν:GG
(m)ka

ν:GB
(m)

)∞
k=0

(s)

and π
GG

(m, s) = ζ(
a

ν:GG
(m)k

)∞
k=0

(s) .

10] Based on (4.4) and (4.5), find

Ξ(m) = SUM
[
MULT

[
Ξ(mA + 1,mB), σ

A
(mA + 1,mB, s)

]
,

MULT
[
Ξ(mA,mB + 1), σ

B
(mA,mB + 1, s)

]]
.

11] Set β(m, s|M) = MULT
[
Ξ(m), π

GG
(m, s)

]
.

12] Compute b(m, t|M) = INV
[
β(m, s|M)

]
.

13] −→ (n̄ ≥ ` ← ` + 1) / LOOP2

14] Set ` = 1.

15] −→ (MA + MB ≥ n ← n + 1) / LOOP1

16] Compute β(0, s|M) = MULT
[
Ξ(0), π

GG
(0, s)

]
.

17] Compute b(0, t|M) = INV
[
β(0, s|M)

]
.

18] END.

A few remarks are worth noting.
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Remark 5.3 a) Given t > 0, the sequence (gk(t))∞k=0 is unimodal with the peak shifting to the
right as t becomes larger. In order to secure a truncation accuracy, say ε > 0, it is necessary to
pick up terms which are grater than ε centered at the peak.
b) Keeping the point in a) above in mind, the vector values [gk+1(t1), gk+1(t2), · · · , gk+1(tN )] can
be generated recursively from [gk(t1), gk(t2), · · · , gk(tN )].

6. Evaluation of CDO Premiums and Prices of CDO Option of European Type
In order to facilitate the necessary computations for evaluating the premium c∗[Ka,Kd] of the CDO
Tranche [Ka,Kd] discussed in Section 1, we first assess the joint probability distribution of the
number of corporations having defaulted by time t in the industrial sector A and that in the
industrial sector B. Assuming that the macro economic condition is in state i at time 0, i.e.
J(0) = i, it can be readily seen that

P{DA(t) = dA, DB(t) = dB|J(0) = i}(6.1)
= P{MA(t) = MA − dA,MB(t) = MB − dB|J(0) = i}
=

∑

j∈J
bij(MA − dA,MB − dB, t|M),

which can be computed by Algorithm 5.2.
We next turn our attention to evaluate E

[
L[Ka,Kd](t)|J(0) = i

]
. The set {(dA, dA) : 0 ≤ dA ≤

MA, 0 ≤ dB ≤ MB} can be decomposed into three regions DI, DII and DIII as follows.

DI =

{
(dA, dB) : 0 ≤ dA ≤ Ka −NB(1−RB)

NA(1−RA)
dB

}

DII =

{
(dA, dB) :

Ka −NB(1−RB)
NA(1−RA)

dB ≤ dA ≤ Kd −NB(1−RB)
NA(1−RA)

dB

}

DIII =

{
(dA, dB) : dA ≥ Kd −NB(1−RB)

NA(1−RA)
dB

}

From (1.3), one then sees that

L[Ka,Kd](t) =





0 if (DA(t), DB(t)) ∈ DI

l(t)−Ka if (DA(t), DB(t)) ∈ DII .
Kd −Ka if (DA(t), DB(t)) ∈ DIII

(6.2)

It then follows from (1.11) that, with M = (MA,MB) and d = (dA, dB), one has

E
[
L[Ka,Kd](t)

∣∣∣ J(0) = i
]

=
∑

d∈DII

∑

j∈J

(
l(t)−Ka

)
bij(M − d, t|M)(6.3)

+ (Kd −Ka)
∑

d∈DIII

∑

j∈J
bij(M − d, t|M).

Consequently, the CDO premium c∗[Ka,Kd] of main interest can be obtained from (1.7) and (6.3)
based on Algorithm 5.2.

The CDO option of European type introduced in Section 1 is concerned with the decision
at time 0 of whether or not to buy an option for entering into a CDO contract commencing at
time τ0 > 0. Clearly, the value of the option depends on the width of the distribution of the
CDO value at time τ0. In order to assess the option value specified in (1.9), let DPRT (τ0|j) and
DPRM (τ0, c̃[Ka,Kd]|j) be the protectionleg and premiumleg at time τ0 given that J(τ0) = j, where
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c̃[Ka,Kd] is the agreed premium which is not necessarily at equilibrium. More formally, we define

DPRT (τ0|j) =
K∑

k=0

e−rτkE
[
PAY sell→buy(τk)

∣∣ J(τ0) = j
]

(6.4)

=
K∑

k=0

e−rτkE
[
L[Ka,Kd](τk)− L[Ka,Kd](τk−1)

∣∣ J(τ0) = j
]
,

DPRM (τ0, c̃[Ka,Kd]|j) =
K∑

k=0

e−rτkE
[
PAY buy→sell(c̃[Ka,Kd], τk)

∣∣ J(τ0) = j
]

(6.5)

= c̃[Ka,Kd] ·
K∑

k=0

e−rτkE
[(

(Kd −Ka)− L[Ka,Kd](τk)
) ∣∣ J(τ0) = j

]
.

Then the option value at time 0 in (1.9) is obtained by unconditioning the difference of DPRT (τ0|j)
and DPRM (τ0, c̃[Ka,Kd]|j) in (6.4) and (6.5) respectively. Namely, one has

e−rτ0

J∑

j=0

P{J(τ0) = j} ·max
{

DPRT (τ0|j)−DPRM (τ0, c̃[Ka,Kd]|j) , 0
}

,(6.6)

where J(τ0) can be computed by applying Keilson’s uniformization procedure described in Section
3 to the marginal process J(t).

7. Numerical Results
In this section, we demonstrate that the numerical algorithms developed in Sections 3 through 5
can be implemented with speed and accuracy. For this purpose, we suppose that the industrial
sector A consists of a group of manufacturers producing consumer products and let the industrial
sector B be the associated Tier 1 suppliers. It is assumed that the industrial sector A has 40
corporations while the industrial sector B contains 60 corporations.

The stochastic process J(t) describing the macro economic conditions is assumed to follow the
Ehrenfest process on J = {0, 1, · · · , 2V }. Here, a higher state implies a better economic condition
with state V corresponding to a normal economic condition. The Ehrenfest process has the upward
transition rate ν+

i and the downward transition rate ν−i at state i ∈ J given by

ν+
i = v · (V − i

2
) ; ν−i = v · i

2
,(7.1)

where v is a positive constant. It should be noted that ν−i dominates ν+
i for V < i ≤ 2V while this

dominance is reversed for 0 ≤ i < V . The Ehrenfest process is chosen because of this dynamics.
That is, as the process deviates from the normal economic condition, the driving force to bring
the process back to it becomes stronger, see e.g. Sumita et al.(2003).

Given the macro economic condition i ∈ J , the default intensities ξA(i) and ξB(i) are given by

ξA(i) = αAe−βA(i−V ) ; ξB(i) = αBe−βB(i−V ) .(7.2)

As for the linear coefficients of the default intensities, which are proportional to the number of
defaulted corporations, we consider the following four cases.

(Case1) ρA→A = ρB→B = ρA→B = ρB→A = 0
(Case2) ρA→A = ρB→B > 0, ρA→B = ρB→A = 0
(Case3) ρA→A = ρB→B > ρA→B > 0, ρB→A = 0
(Case4) 0 < ρA→A = ρB→B < ρA→B, ρB→A = 0
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Case 1 implies that active corporations are not affected by the past defaults at all. In Case 2,
such interactions occur only within the same industrial sectors, where the influencing power of a
defaulted corporation against the still active corporations would be the same for the two industrial
sectors A and B. Case 3 assumes that the interactions between active corporations and defaulted
corporations within the same industrial sectors would be as for Case 2, but in addition, a default
in the industrial sector A would weakly affect the active Tier 1 suppliers in the industrial sector
B. The situation in Case 4 is similar to Case 3 except that the influencing power of a defaulted
manufacturer in A against the active Tier 1 suppliers in B would be stronger than the influencing
power within each industrial sector.

The basic set of the underlying parameter values are summarized in Tables 7.1 and 7.2, which
would be employed throughout the section unless specified otherwise. Since the Tier 1 suppliers
in B are likely to be more responsive to the macro economic condition than the manufactures in
A, we set αA = 0.01 < 0.04 = αB based on (7.2), while the exponential factors βA and βB are
assumed to be equal with βA = βB = 0.3. By the same reason, the default probability upon
transition of the macro economic condition for the industrial sector B is higher than that for the
industrial sector A. As for the recovery rate, the basic model assumes RA = 0.4 while RB = 0.3.
The tranche of basic model is [Ka,Kd] = [0.05, 0.15], and the interest rate is set to be r = 0.01.

J = 6(V = 3) αA = 0.01 αB = 0.04 Ka = 0.05 RA = 0.4
v = 3.0 βA = 0.3 βB = 0.3 Kd = 0.15 RB = 0.3
r = 0.01 ΘA

ij = 0.048 (∀i, j ∈ J ) ΘB
ij = 0.078 (∀i, j ∈ J ) NA = NB = 0.01

Table 7.1: Basic Set of Parameter Values

Figure 7.1. ρA→A = ρA→B = ρB→A = ρB→B = 0
Figure 7.2. ρA→A = ρB→B = 0.005, ρA→B = ρB→A = 0
Figure 7.3. ρA→A = ρB→B = 0.005, ρA→B = 0.003, ρB→A = 0
Figure 7.4. ρA→A = ρB→B = 0.005, ρA→B = 0.007, ρB→A = 0

Table 7.2: Linear Coefficients of Default Intensities

Figures 7.1 through 7.4 depict the joint distribution of [DA(t), DB(t)] at the maturity of the
CDO at time t = 3 years for Cases 1 through 4. For Case 1, defaults are not contagious and
both the number of corporations defaulted by time t in A and that in B are contained within
a relatively small region with E(DA(3)) = 2.55 and E(DB(3)) = 9.16. The spread of the joint
distribution increases as interactions between defaults are introduced for Cases 2 through 4. It
can be seen that the industrial sector A suffers less from such interactions, where the mean hardly
changes and stays around 3.38 while the variance increases from 2.50 for Case 1 to about 6.2 for
Cases 2 through 4. The Tier 1 suppliers in the industrial sector B are more fragile, with the mean
increasing from 9.16 for Case 1, 13.54 for Case 2 and 14.37 for Case 3 to 15.44 for Case 4, as well
as the variance rapidly growing from 9.15 for Case 1, 43.41 for Case 2 and 52.32 for Case 3 to
66.84 for Case 4.

Figures 7.5 through 7.12 plot the values of the premium of a CDO for Cases 1 through 4
respectively. Three different curves in each figure correspond to the combinations of the changes
of the ratio of the bad debt per default in A denoted by BDA v.s. that in B denoted by BDB,
as well as the changes of the recovery rate in B, as summarized in Table 7.3. More specifically,
Figures 7.5 and 7.6 correspond to Cases 1-a and 1-b, Figures 7.7 and 7.8 represent Cases 2-a and
2-b, Figures 7.9 and 7.10 illustrate Cases 3-a and 3-b, and finally Figures 7.11 and 7.12 depict
Cases 4-a and 4-b. The horizontal axis represents the shift of the tranche specified by

[Ka,Kd] = [0.05 + k × 0.01, 0.15 + k × 0.01], k = 0, 1, · · · , 20.(7.3)
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Figure 7.1: Case1

E(DA(3)) = 2.54576
E(DB(3)) = 9.15637
V(DA(3)) = 2.50279
V(DB(3)) = 9.15462
Cov(DA(3), DB(3)) = 21.37221
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Figure 7.2: Case2

E(DA(3)) = 3.38355
E(DB(3)) = 13.54370
V(DA(3)) = 6.21921
V(DB(3)) = 43.40890
Cov(DA(3), DB(3)) = 20.63292

One observes that the CDO premium decreases as k increases. We recall that the protection seller
would start paying to the protection buyer when the cumulative loss exceeds the attachment point
Ka. The maximum possible payment by the protection seller to the protection buyer is given
by the width of the tranche Kd − Ka. In our example, as can be seen from (7.3), Ka increases
as k increases while Kd − Ka remains constant. Accordingly, the risk for the protection seller
consistently decreases as k increases, resulting in the decrease of the CDO premium. For each of
(i-a) through (iii-b), the corresponding CDO premium increases from Case 1 to Case 4. This is
also plausible because the default intensities increase from Case 1 to Case 4 and hence the risk for
the protection seller increases accordingly.

i-a) BDA : BDB = 1 : 1, RB = 0.3 i-b) BDA : BDB = 2 : 1, RB = 0.3
ii-a) BDA : BDB = 1 : 1, RB = 0.4 ii-b) BDA : BDB = 2 : 1, RB = 0.4
iii-a) BDA : BDB = 1 : 1, RB = 0.5 iii-b) BDA : BDB = 2 : 1, RB = 0.5

Table 7.3: Bad Debt per Default and Recovery Rate for Figures 7.5 through 7.12.

In Figures 7.13 through 7.16, the prices of the CDO option of European type, from the point of
view of the protection buyer, are exhibited for Cases 1 through 4 respectively. It is assumed that
the option is defined on a CDO commencing at τ0 = 1 and maturing at τK = 3. The horizontal
axis scales the ratio between the agreed premium c̃[Ka,Kd] and the theoretical equilibrium premium
c∗[Ka,Kd]. For each figure, four curves (i) through (iv) are plotted by varying the attachment point
Ka and the detachment point Kd while holding the width of tranche intact, as specified in Table
7.4. As the agreed premium c̃[Ka,Kd] increases, the payment from the protection buyer to the
protection seller increases. Accordingly, the option value decreases as c̃[Ka,Kd]/c∗[Ka,Kd] increases
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Figure 7.3: Case3

E(DA(3)) = 3.38355
E(DB(3)) = 14.37336
V(DA(3)) = 6.21921
V(DB(3)) = 52.31569
Cov(DA(3), DB(3)) = 20.63568
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Figure 7.4: Case4

E(DA(3)) = 3.38351
E(DB(3)) = 15.43703
V(DA(3)) = 6.21905
V(DB(3)) = 66.83824
Cov(DA(3), DB(3)) = 20.63750

along the horizontal axis. For each of (i) through (iv), the corresponding CDO option prices
increases from Case 1 to Case 4, since the default intensities increase from Case 1 to Case 4 and
hence the risk for the protection buyer (independent of the CDO) increases accordingly. As the
tranche shifts to the right while holding the width of tranche intact, the CDO premium decreases
while the probability of a range, to which the premium is applied at each installment, being greater
than x increases. The former overwhelms the latter, and the option value decreases from (i) to
(iv).

[Ka,Kd] = [0.05 + k × 0.01, 0.15 + k × 0.01]
(i) [Ka,Kd] = [0.05, 0.15] with k = 0
(ii) [Ka,Kd] = [0.08, 0.18] with k = 3
(iii) [Ka,Kd] = [0.11, 0.21] with k = 6
(iv) [Ka,Kd] = [0.14, 0.24] with k = 9

Table 7.4: Underlying Tranches for Figures 7.13 through 7.16.

8. Concluding Remarks
In this paper, a credit risk model is considered, with two industrial sectors A and B having MA and
MB active corporations respectively at time t = 0. A two-layer Markov chain model is developed for
capturing the effects of the macro economic condition on individual defaults, as well as the impact
of defaults on performance of active corporations. The macro economic condition is described
as a birth-death process, while another Markov chain represents the stochastic characteristics of
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Figure 7.5: Case 1-a
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Figure 7.6: Case 1-b
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Figure 7.7: Case 2-a
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Figure 7.8: Case 2-b

defaults with default intensities dependent on the state of the birth-death process, the number of
defaults in A and that in B by time t. Although the state space of the two-layer Markov chain is
huge, the fundamental absorbing trivariate process with a reasonable state space size could capture
the first passage time structure of the two-layer Markov chain, thereby enabling one to evaluate
the joint probability of the number of defaults in A and that in B by time t via the uniformization
procedure of Keilson with speed and accuracy. This in turn enables one to value the equilibrium
premiums of CDOs defined on the underlying credit portfolio and the prices of the related CDO
options of European type. Some numerical examples are presented for illustrating the efficiency of
the computational procedures developed in the paper.
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Figure 7.10: Case 3-b
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Figure 7.13: Case 1
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Figure 7.14: Case 2
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Figure 7.15: Case 3
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Figure 7.16: Case 4
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