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ABSTRACT: A saddle-distorted porphyrin bearing a carboxyl group as a hydrogen-
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diffraction analysis. The effects of the peripheral carboxyl group on the 

physicochemical properties of the porphyrin as well as on self-assembly were 

investigated by spectroscopic measurements in solutions. The redox properties of the 

porphyrin and its Zn(II) complex were also studied by electrochemical measurements 

and their application to dye-sensitized solar cells was examined. 
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INTRODUCTION 

Supramolecular structures based on porphyrins and their derivatives have been intensively 

investigated for these decades due to the interest for the relevance to the natural photosynthetic 

center [1] as well as the applicability to functional materials such as photovoltaic cells [2].  In order 

to construct porphyrin supramolecules, various non-covalent interactions such as hydrogen bonding 

[3], π-π interaction [4], halogen bonding [5] and van der Waals interaction [6] have been utilized so 

far.  Among so many porphyrin derivatives, we have focused on non-planar porphyrins with saddle-

type conformational distortion and have reported various kinds of supramolecular structures by use 

of 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphyrin (H2DPP) [7]. For example, we have 

reported on the formation of porphyrin nanotube structures by use of MoV-DPP complexes, where 

polyoxomatalates (POMs) were included in the inner space of nano-sized tubular assemblies made 

of [Mo(DPP)(O)(H2O)]+ with hydrogen bonds between an axial aqua ligand at the central MoV ion 

in the porphyrin core and the terminal oxo ligands of the POMs  [8]. In the nanotube, the DPPs were 

integrated with intermolecular π-π interactions among the peripheral phenyl groups. The 

diprotonated form of H2DPP (H4DPP2+) was also assembled by intermolecular π-π interactions 

among the peripheral phenyl groups to afford nanochannel structures [9], which involve a relatively 

small inner space compared to those of the nanotubes based on Mo-DPP complexes. The inner 

space can be used for selective inclusion of electron-donating guest molecules such as TTF or 

hydroquinones in the single crystals. In the host-guest system, H4DPP2+ has been revealed to act as 

an electron acceptor [9a, 9b, 10] in the photoinduced electron transfer from included electron-

donating guest molecules to exhibit photo-conducting properties [9a]. Furthermore, H4DPP2+ 

behaves as a hydrogen donor for hydrogen bond formation and takes two functional counter anions 

having carboxyl groups such as a Zn(II)-phthalocyanine (ZnPc) complex with 4-pyridine 

carboxylate as an axial ligand [11] and ferrocene-carboxylate (Fc) [12], which strongly interact with  

the H4DPP2+ core by hydrogen bonding. In the supramolecular triads, H4DPP2+ also functions as an 

electron acceptor and ZnPc or Fc as an electron donor to allow us to observe photoinduced electron 

transfer reactions to form charge-separated states. 

In this study, we have introduced a carboxyl group as a hydrogen-bonding site at the periphery of 

H2DPP to develop supramolecular structures by virtue of the intermolecular hydrogen bonding. This 

hydrogen bonding is expected to be useful for emergence of novel structural motifs and to control 

the spacial arrangement of porphyrin supramolecular structures such as nanochannels in the crystal. 
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General 

All commercially available chemicals were purchased from appropriate sources and used as received unless 

otherwise mentioned.  Methanolic solution of (Me)4NOH (25 wt% solution, Aldrich) was received and appropriate 

concentrations were prepared in spectrocopic-grade methanol and used for UV-vis and 1H NMR titrations. All NMR 

measurements were performed on a JEOL EX270 spectrometer. UV-vis absorption spectra were measured in 

spectroscopic-grade solvents on a Shimadzu UV-3600 spectrophotometer at r. t.. Fluorescence spectra were recorded on 

a Hamamatsu Photonics C9920-02 spectrometer at r. t.. Cyclic voltammograms were obtained at r. t. under Ar on an 

ALS 710D electrochemical analyser using a Pt wire as a counter electrode, a Pt working electrode, and Ag/AgNO3 in 

CH3CN as a reference electrode.  MALDI-TOF-MS spectra were measured on a Bruker UltrafleXtreme-TN MALDI-

TOF/TOF spectrometer using dithranol as a matrix. 

Synthesis 

Preparation of Mono-Methyl Ester of TPP (5,10,15,20-Tetraphenylporphyrin) (H2TPP(CO2Me)) [13]: Propionic acid 

(400 mL) was heated to 140 °C in a 1 L round-bottomed flask, and to this solvent, were added 4-

(methoxycarbonyl)benzaldehyde (3.97 g, 0.0242 mol), benzaldehyde (7.6 mL, 0.074 mol) and pyrrole (6.7 mL, 0.097 

mol) and the mixture was allowed to reflux for 90 min. The solution was cooled to r. t. and the solvent was removed by 

evaporation under reduced pressure to give pink-gel residue. Hot water was added to the residue to remove excess 

propionic acid and pink powder was obtained. The obtained powder was dissolved in CH2Cl2 and filtered by a silica gel 

column eluted with CH2Cl2 and a crude product was obtained, which was slightly contaminated with corresponding 

chlorin derivatives. To the obtained fraction containing the precursor compound was added 2,3-dichloro-5,6-dicyano-p-

benzoquinone (DDQ) (1.85 g, 8.15 mmol) and the mixture was allowed to reflux for 8 h until no green spot was 

observed on a TLC plate. The reaction mixture was concentrated to the minimum volume and purified with column 

chromatography on a silica gel column eluted with CH2Cl2, and the target compound was obtained as the second 

fraction. The solvent of the fraction was evaporated and the residual solid was recrystallized from CHCl3/CH3OH. 

Yield: 1.623 g (2.41 mmol, 10%). 1H NMR (270 MHz; CDCl3; Me4Si): δΗ, ppm  8.80 (d, 6H, J = 5 Hz, β-pyrrole-H), 

8.73 (d, 2H, J = 6 Hz, β-pyrrole-H), 8.52 and 8.28 (ABq, JAB = 8 Hz, 4H, o- and m-H of ester-Ph), 8.22 (dd, 6H, J = 7.0, 

2 Hz, o-H of meso-Ph), 7.82-7.71 (m, 9H, m and p-H of meso-Ph), 4.09 (s, 3H, -COOCH3), -2.80 (s, 2H, NH). UV-vis 

(CH2Cl2): λmax, nm (log ε) 418 (5.70), 515 (4.33), 550 (3.97), 590 (3.82), 647 (3.77). MS (MALDI-TOF): m/z 673.63 

(Calcd. for C46H33N4O2 [M + H]+: 673.79). 

Preparation of CuTPP(CO2Me) [14]: H2TPP(CO2Me) (1.25 g, 1.85 mmol) was dissolved in CHCl3 (200 mL) and to 

the solution was added the suspension of Cu(OAc)2·H2O (3.712 g, 18.6 mmol) in CH3OH (50 mL). The reaction 

mixture was refluxed for 2 h, evaporated to dryness, and the residue was dissolved in CHCl3 (150 mL). The CHCl3 

solution was washed with water, dried over Na2SO4, and concentrated to the minimum volume. The solution was loaded 

on a silica gel column, which was eluted with CH2Cl2. The obtained crude product was recrystallized from 

CH2Cl2/CH3OH. Yield: 1.275g (1.738 mmol, 94%). UV-vis (CH2Cl2): λmax, nm (log ε) 415 (5.73), 466 (5.11), 538 

(4.34), 570 (sh). MS (MALDI-TOF): m/z 735.59 (Calcd. for C46H31N4O2Cu [M + H]+: 735.32). 

Preparation of CuTPP(CO2Me)-Br8 [14,15]: CuTPP(CO2Me) (1.267 g, 1.72 mmol) was dissolved in CHCl3 (200 mL) 

and the solution of Br2 (2.8 mL, 55 mmol) in CHCl3 (100 mL) was added dropwise for 30 min and the mixture was 

allowed to stir for 4 h at r. t.. A solution of pyridine (6 mL) in CHCl3 (100 mL) was added very slowly and the reaction 
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mixture was stirred overnight at r. t.. Then, excess bromine was quenched with aqueous solution of Na2S2O5 (20%, 200 

mL), washed with water (200 mL × 2), and concentrated to the minimum volume. The solution was loaded on a silica 

gel column, which was eluted with CH2Cl2. The crude product obtained was recrystallized from CHCl3/MeOH. Yield: 

1.5 g of green powder (1.1 mmol, 64%).  UV-vis (CH2Cl2): λmax, nm (log ε) 365 (4.40), 453 (sh), 466 (5.11), 582 (4.21), 

623 (3.78).  MS (MALDI-TOF): m/z 1365.22 (Calcd. for C46H22N4O2Br8Cu [M]+: 1365.47). Anal. Calcd. for 

C46H22Br8N4O2Cu·H2O: C; 39.93, H; 1.75, N; 4.05, Found: C; 39.70, H; 1.61, N; 3.81. 

Preparation of H2TPP(CO2Me)-Br8 [14,15]: CuTPP(CO2Me)-Br8 (1.5 g, 1.1 mmol) was dissolved in CHCl3 (100 mL), 

and the solution was cooled to 0 °C. To the cooled solution, was slowly added conc. H2SO4 (10 mL) at 0 °C and the 

reaction mixture was stirred for 20 min until the CHCl3 layer became colorless. It was transferred to a separating funnel, 

washed with water (200 mL × 2) and then neutralized with NH3 aq (18%, 200 mL). The organic layer was washed with 

water (150 mL), dried over Na2SO4 and then the solvent was evaporated. The residual solid was purified with column 

chromatography on silica gel using CHCl3 as an eluent. The obtained fraction was evaporated to dryness and dried 

under vacuum. Yield: 1.42 g (1.09 mmol, 99%). 1H NMR (270 MHz; CDCl3): δΗ, ppm 8.50 and 8.25 (ABq, JAB = 8 Hz, 

4H, o- and m-H of ester-Ph), 8.17 (d, 6H, J = 6 Hz, o-H of meso-Ph), 7.84 (m, 9H, m- and p-H of meso-Ph), 4.1 (s, 3H, -

COOCH3). UV-vis (CH2Cl2): λmax, nm (log ε) 370 (4.40), 470 (5.27), 570 (3.93), 628 (4.12), 740 (3.85). MS (MALDI-

TOF): m/z 1305.28 (Calcd. for C46H25N4O2Br8 [M + H]+: 1304.96). Anal. Calcd. for C46H24N4Br8O2·CHCl3: C; 39.66, H; 

1.77, N; 3.94, Found: C; 40.08, H; 1.91, N; 3.92. 

Preparation of H2DPP(CO2Me): H2TPP(CO2Me)-Br8 (0.35 g, 0.27 mmol), PhB(OH)2 (0.785 g, 6.44 mmol), Pd(PPh3)4 

(59 mg, 54 µmol) and K2CO3 (1.669 g, 12.1 mmol) were loaded in a 200 mL three-necked flask.  This mixture was 

dried under vacuum for 30 min and then the inside of the flask was filled with Ar. Toluene (100 mL) was added and the 

mixture was heated to 90-100 °C under Ar atmosphere and stirred for 36 h. After cooling to r. t., the volatile was 

removed by evaporation. The residue was dissolved in CHCl3 (100 mL) and then washed with water (100 mL), 12.5 % 

NH3 aq (100 mL) and again with water (150 mL) and finally brine (150 mL). The organic phase was dried over Na2SO4 

and purified on a silica gel column eluted with 3–8% EtOAc in CHCl3. Yield: 0.254 g of green powder (0.198 mmol, 

74%). 1H NMR (270 MHz; CDCl3): δΗ, ppm 7.57 (d, J = 5 Hz, 6H, o-H of meso-Ph), 7.59 and 7.36 (ABq, JAB = 8 Hz, 

4H, o- and m-H of ester-Ph), 6.50-6.90 (m, 49H, β-pyrrole-Ph and m, p-H of meso-Ph), 3.95 (s, 3H, -COOCH3). UV-vis 

(CH2Cl2 with one drop Et3N): λmax, nm (log ε): 376 (4.48), 469 (5.21), 566 (4.01), 618 (4.02), 725 (3.74). MS (MALDI-

TOF): m/z 1282.23 (Calcd. for C94H65N4O2 [M + H]+: 1282.58). 

Preparation of [H4DPP(CO2H)](ClO4)2: H2DPP(CO2Me) (0.15 g, 0.12 mmol) was dissolved in a THF/EtOH mixed 

solvent (3:1 v/v, 40 mL). To the solution was added the solution of KOH (1.6 g, 0.029 mol) in water (4 mL) and 

refluxed under Ar overnight. After cooling to r. t., the solvent of the reaction mixture was removed under reduced 

pressure and acidified with 2 M HCl (40 mL) yielded green precipitate. The precipitate was washed with water several 

times, filtered and dried under vacuum. The diprotonated porphyrin was neutralized by addition of Et3N and the volatile 

was evaporated to obtain the crude product. The crude porphyrin was purified on a silica gel column eluted with 

CHCl3/CH3OH mixture (9:1 v/v). After adding a few drops of NEt3, the solvent of the collected fraction was evaporated 

to give a crude product of (HNEt3)[H2DPP(COO)] (0.125 g). The resulting residual solid (22 mg) of the crude porphyrin, 

(HNEt3)[H2DPP(COO)], was dissolved in THF (5 mL), and to the solution, HClO4 aq (60%, 0.1 mL) was added and 

stirred for a few minutes. The solvent was evaporated to dryness to yield green gel, and the resulting gel was dissolved 

in CHCl3 (15 mL) and washed with water and dried under vacuum. The green residue was recrystallized from 
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CHCl3/ether (1:6, v/v). Yield: 23 mg of green powder (15.6 μmol, 91%). 1H NMR (270 MHz; CDCl3): δΗ, ppm 8.05-

7.84 (m, 8H, o-H of carboxy-Ph and o-H of meso-Ph), 7.78 (d, 2H, J = 8 Hz, m-H of carboxy-Ph), 7.40-7.00 (m, 9H, m-, 

p-H of meso-Ph), 7.00-6.40 (m, 40H, β-pyrrole-Ph). UV-vis (CH2Cl2): λmax, nm (log ε) 430 (sh), 487 (5.38), 586 (3.62), 

651 (4.06), 704 (4.69). FL (CH2Cl2): λmax, nm 759. MS (MALDI-TOF): m/z 1269.49 (Calcd. for C93H64N4O2
+ [M]+: 

1269.53). Anal. Calcd. for C93H64N4Cl2O10·H2O: C; 75.15, H; 4.48, N; 3.77, Found: C; 75.23, H; 4.57, N; 3.50. 

Preparation of ZnDPP(CO2H): The crude sample of (HNEt3)[H2DPP(COO)] (100 mg) right after column 

chromatography was dissolved in CHCl3 (50 mL) containing a few drops of NEt3. To the solution, was added 

Zn(OAc)2·2H2O (130 mg, 0.592 mmol) in CH3OH (5 mL) and the mixture was heated to reflux for 2 h. After cooling to 

r. t., the solution was evaporated to dryness. The green residual solid was dissolved in CHCl3 (40 mL) to wash with 

water and the organic layer was dried over Na2SO4. The solvent was removed under reduced pressure and the residual 

solid was recrystallized from CHCl3/Et2O (1:5 v/v). Yield: 100 mg of green powder (0.075 mmol, 95%). 1H NMR (270 

MHz; CDCl3): δΗ, ppm 8.05–7.25 (m, 8H, o-H of meso-Ph), 6.75–6.50 (m, 51H, m-, p-H of meso-Ph and β-pyrrole- H). 

UV-vis (CH2Cl2): λmax, nm (log ε) 375 (4.37), 466 (5.17), 593 (4.01), 646 (3.82). FL (CH2Cl2): λmax, nm (φ) 735 (0.002). 

MS (MALDI-TOF): m/z 1331.01 (Calcd. for C93H60N4O2Zn [M]+: 1330.91). Anal. Calcd. for C93H60N4O2Zn·H2O: C; 

82.81, H; 4.63, N; 4.15, Found: C; 82.65, H; 4.48, N; 4.32. 

X-ray Crystallography 

A dark-green single crystal of [H4DPP(CO2H)](OH)2 (for a vacuum-dried sample: Anal. Calcd. for 

C93H64N4O4·5H2O: C; 80.27, H; 5.36, N; 4.03, Found: C; 80.30, H; 5.43, N; 3.84) was obtained by recrystallization of 

the crude sample of (HNEt3)[H2DPP(COO)] from CHCl3/MeOH with vapor diffusion of i-PrOH. The diffraction data 

were measured on a Rigaku Mercury CCD system at Rigaku Corporation (Akishima, Tokyo, Japan). The data were 

integrated, scaled and corrected for absorption with the CrystalClear software [16]. Crystallographic data: 

C93H62N4O2·2OH·6C3H8O, FW = 1662.10, monoclinic, space group P21/c, a = 30.628(2) Å, b = 30.1805(5) Å, c = 

40.738(3) Å, β = 113.212(8)°, V = 34609(4) Å 3, T = 123 K, Z = 16, Dc = 1.10 g cm–3, λ (Cu Kα) = 1.54187 Å, 381208 

reflections measured, 62920 unique (Rint = 0.0471) which were used in all calculations. All calculations were performed 

using the Yadokari XG crystallographic software package [17]. The structure was solved by direct method (SHELXL-

97) [18] and refined by full-matrix least-squares methods on F2 with 3146 parameters: R1 = 0.1296 (I > 2σ(I)) and wR2 

= 0.3552, GOF = 1.143, max/min residual density 1.870/–0.397 eÅ–3. In the course of the structure refinements, we 

could not determine the positions of the solvent molecules of crystallization including water and 2-propanol molecules, 

which were clearly identified in difference Fourier maps, because of their severe disorder. Their contribution was thus 

subtracted from the diffraction pattern by the “Squeeze” program [19]. Crystallographic details are described in the cif 

file as Supporting Information. 

Device Fabrication 

Preparation of the working electrodes: The screen-printable TiO2 and SnO2 colloidal pastes and working 

electrodes were prepared according to the procedure developed by Ma and coworkers [20]. The working 

electrodes made of TiO2 and SnO2 were immersed into a CH2Cl2/EtOH (9:1 v/v) solution of 

(HNEt3)[H2DPP(COO)] or ZnDPP(CO2H) (with and without 0.2 mM chenodeoxycholic acid (CDCA)) for 18 h. 

The dye-sensitized TiO2 and SnO2 electrodes (thickness: 12-14 µm, area: 0.16 cm2) and a platinized counter 

electrode were assembled to fabricate solar cells by sandwiching a redox (I–/I3
–) electrolyte solution. The 
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electrolyte was composed of 0.03 M I2, 0.06 M LiI, 0.6 M 1-butyl-3-methylimidazolium iodide (BMII), 0.1 M 

guanidinium thiocyanate, and 0.5 M 4-tert-butylpyridine (4TBP) in acetonitrile and 3-methoxypropionitrile. 

Photovoltaic characterization: The current-voltage curves of the DSSCs were obtained by applying an external 

bias to the cell and by measuring the generated photocurrent under white light irradiation with a Keithley digital 

source meter (Keithley 2601, USA). The intensity of the incident light was 100 mW/cm2, and the instrument was 

equipped with a 300 W solar simulator (Solar Light Co., INC., USA) that served as the light source. The photon 

flux was determined by a power meter (Nova, Ophir optronics Ltd.) and a calibration cell (BS-520, s/n 019, 

Bunkoh-Keiki Co., Ltd.). 

 

RESULTS AND DISCUSSION 

Synthesis: The target porphyrin was synthesized by the procedure described in Scheme 1, including 

abbreviations of synthetic intermediates and precursors together with schematic descriptions of their 

structures. The monoester-substituted TPP (5,10,15,20-tetraphenylporphyrin), H2TPP(CO2Me) [13, 

14], was synthesized by Adler method with condensation of 4-(methoxycarbonyl)benzaldehyde and 

benzaldehyde with pyrrole in the ratio of 1:3:4 in propionic acid and purification by column 

chromatography gave the precursor in 10% yield. It was further metallated with Cu(OAc)2·H2O, 

followed by bromination using Br2/pyridine in 60% yield for two steps [14,15]. Then, the central Cu 

ion in the porphyrin was removed by acid demetallation followed by neutralization with NH3(aq) 

solution yielded freebase H2TPP(CO2Me)-Br8 in quantitative yield. Suzuki-Miyaura coupling 

reaction of H2TPP(CO2Me)-Br8 with phenylboronic acid afforded H2DPP(CO2Me) in 74% yield. 

H2DPP(CO2Me) was subjected to alkaline hydrolysis with KOH to afford K[H2DPP(COO)]. The 

potassium salt was neutralized with HCl aq and the obtained crude chloride salt of the diprotonated 

porphyrin, [H4DPP(CO2H)]Cl2, was neutralized again with excess triethylamine (Et3N) and the  
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Scheme 1. Synthesis of [H4DPP(CO2H)](ClO4)2 and ZnDPP(COOH). 
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crude product was purified with column chromatography. The perchloric acid salt of 

H2DPP(COOH) ([H4DPP(CO2H)](ClO4)2) as the diprotonated species at the porphyrin core was 

readily obtained by the treatment of crude (HNEt3)[H2DPP(COO)], which was obtained from the 

column chromatography, in CH2Cl2 with aqueous HClO4. In addition, after the neutralization of the 

porphyrin core, it was metallated with Zn(OAc)2·2H2O to give ZnDPP(CO2H) in quantitative yield. 

Crystal Structure of [H4DPP(COOH)]2+: (HNEt3)[H2DPP(COO)] was recrystallized from a 

CHCl3/MeOH/2-propanol (i-PrOH) mixed solvent with vapor diffusion method to afford dark-green 

single crystals and the crystal structure was determined by X-ray diffraction analysis (Fig. 1).  The 

asymmetric unit contained four independent porphyrin molecules and each porphyrin core of the 

four molecules was found to be diprotonated probably by the solvent or water as a proton source 

during the recrystallization [21,22]. The [H4DPP(CO2H)]2+ ion holds two OH– ions as the counter 

anions, which formed hydrogen bonds with the pyrrole NH of the diprotonated porphyrin core. The 

mean O···N distance of the 16 hydrogen bonds was 3.19 Å in the asymmetric unit containing four 

[H4DPP(CO2H)](OH)2. The OH– ion also forms hydrogen bonding with i-PrOH, as shown in Fig.  

 

 

Fig. 1. Crystal Structure of [H4DPP(CO2H)](OH)2: (a) a top view; (b) a side view including 

hydrogen bonds between OH– ions and co-crystallized i-PrOH molecules; (c) a view of the crystal 

packing along the crystallographic a axis including solvent molecules (i-PrOH and H2O) of 

crystallization. 
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1(b), and this hydrogen bonding may weaken the basicity of the OH– ion to stabilize it without 

accepting proton from [H4DPP(CO2H)]2+. In the crystal packing, the [H4DPP(CO2H)]2+ ions formed 

a nanochannel structure similarly to the case of H4DPP2+ [9] and the inner space of the nanochannel 

was occupied with co-crystallized solvent molecules such as i-PrOH and water. The pore size of the 

nanochannel was 0.97 × 0.75 nm, which was almost the same as that of H4DPP2+ nanochannnel (1.0 

× 0.7 nm) [9]. The noteworthy difference between the nanochannel of [H4DPP(CO2H)]2+ and that of 

H4DPP2+ is relative spatial arrangement of the channels: In the case of H4DPP2+, nanochannels were 

closely packed by π-π stacking among the adjacent channels. On the other hand, nanochannels 

formed by [H4DPP(CO2H)]2+ were relatively separated due to the formation of intermolecular 

hydrogen bonding between the carboxyl groups at the peripheries of the porphyrins, which 

belonged to neighboring channels.  

There were four independent carboxyl groups found in the crystal and they formed 

hydrogen-bonding pairs as shown in Fig. 2.  Two of them formed a complementary hydrogen-

bonding pair as shown in Fig. 2(a). One of [H4DPP(CO2H)]2+ ions, which is depicted on the left-

hand side in Fig. 2(b), exhibited positional disorder of the carboxyl group into pseudo-orthogonal 

directions with 0.5 population for each. The half of them formed the complementary hydrogen 

bonding. The other half exhibited a partial hydrogen bonding, where one of the two oxygen atoms  

 

Fig. 2. Hydrogen bonding for the carboxyl group: (a) A complementary hydrogen bonding pair; (b) 

another hydrogen bonding pattern for the carboxyl groups.  
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of the carboxyl group formed hydrogen bonding with two of the other carboxyl group and the 

remaining oxygen atom, which did not participate in the hydrogen bonding, interacted with severely 

disordered i-PrOH molecules of crystallization (see Fig. 2(b)) [23].  As a result of this interchannel 

hydrogen bonding, the distances between nanochannels increased (interchannel distances of 

H4MCDPP2+, 15.3 × 15.3 × 20.5 Å; those of H4DPP2+, 15.1 × 15.1 × 19.5 Å [9]) and the space 

between the channels was occupied with solvent molecules of crystallization. 

Spectral and Electrochemical Properties: The absorption spectrum of (HNEt3)[H2DPP(COO)], 

which was obtained by treatment of [H4DPP(CO2H)](ClO4)2 (7.6 × 10–6 M) with excess amount of 

NEt3, exhibited the absorption maxima at 470 (Soret), 567, 620, and 727 nm (Q band) in CH2Cl2. 

That of ZnDPP(CO2H) in CH2Cl2 exhibited the same features as that of ZnDPP (red line in Fig. 3a)  

 

Fig. 3. UV-Vis (a) and fluorescence spectra (b) of (HNEt3)[H2DPP(COO)] (black), 

[H4DPP(CO2H)](ClO4)2 (green) and ZnDPP(CO2H) (red) in CH2Cl2. 
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and [H4DPP(CO2H)]2+ shows a typical spectrum for a diprotonated porphyrin with a red-shifted 

Soret band (green line in Fig. 2a) compared to that of the corresponding neutral porphyrin core, 

which is reminiscent of that of H4DPP2+ [9b, 10]. The electronic effect on the UV-Vis absorption of 

the DPP core by the introduction of the carboxyl group was very small: The shifts of the Soret 

bands for (HNEt3)[H2DPP(COO)] (470 nm), [H4DPP(CO2H)](ClO4)2 (487 nm) and ZnDPP(CO2H) 

(466 nm) were 1 ~ 2 nm toward lower energy in each case in comparison with those of the 

corresponding DPP counterparts [24]. The fluorescence spectra of (HNEt3)[H2DPP(COO)], 

[H4DPP(CO2H)](ClO4)2, and ZnDPP(CO2H) were measured in CH2Cl2
 at r. t. to observe the 

emission maxima at 793, 759, and 735 nm, respectively, as depicted in Fig. 3(b). These emission 

maxima are also marginally shifted relative to those of MDPP (M = H2, H4, Zn) [25]. 

Redox potentials of (HNEt3)[H2DPP(COO)], [H4DPP(CO2H)](ClO4)2 and ZnDPP(CO2H) in 

CH2Cl2 are summarized in Table 1 together with the data of the corresponding DPP and TPP 

species. The redox waves due to the oxidation and reduction processes are reversible for the 

diprotonated species and Zn complexes, whereas those for (HNEt3)[H2DPP(COO)] and H2DPP are 

irreversible. The first oxidation and reduction potentials of (HNEt3)[H2DPP(COO)], 

[H4DPP(CO2H)](ClO4)2 and ZnDPP(CO2H) were almost similar to those of the corresponding DPP 

counterpart despite of the introduction of a carboxyl group. Comparison of the redox potentials of 

DPP(CO2H)s to those of TPPs revealed a clear tendency of the narrower HOMO-LUMO gaps of 

highly distorted porphyrins relative to those of planar ones. In addition, the DPP(CO2H)s showed 

more negative LUMO levels than the conduction-band edge of TiO2, but the HOMO levels are only  

 

Table 1. Redox Potentials (E1/2) of DPP(CO2H) in CH2Cl2.a 
 

aSupporting electrolyte: TBAPF6 (0.1 M), Potentials vs Ag/AgNO3 in CH3CN as a reference electrode, a Pt working electrode, a Pt 
wire as a counter electrode. 
bIn order to avoid the protonation at the porphyrin core, a few drops of triethylamine was added to the sample solution. 
cFor irreversible redox processes, potentials of the DPV peaks were given. 

 

 Oxidation (V) Reduction (V) 

I II I 

(HNEt3)[H2DPP(COO)] b +0.26 c — –1.55 c 

[H4DPP(CO2H)](ClO4)2 +1.18 — –0.55 

ZnDPP(CO2H) +0.31 +0.42 –1.61 c 

H2DPP +0.32 c — –1.57 c 

[H4DPP](ClO4)2 +1.11 +1.40 –0.59 

ZnDPP +0.29 +0.40 –1.65 

H2TPP +0.75 +1.08 –1.50 c 

ZnTPP +0.60 +0.91 –1.61 
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a little positive compared to the oxidation potential for the I–/I3
– mediator. The latter situation may 

be disadvantage for the dye regeneration in a DSSC system (vide infra). 

Spectral Changes with Acid-Base Titration: The saddle-distorted DPP tends to be easily 

diprotonated because the lone pairs of the pyrrolic nitrogens of DPP as the protonated sites direct 

out of the porphyrin plane by the distortion of the porphyrin skeleton and are easily accessible for 

protons. In addition, the diprotonated species of DPPs are stabilized by hydrogen bonding between 

counter anions, where the two counter anions are placed at the space above and below the porphyrin 

plane and form hydrogen bonds with trans-located two pyrrolic N-Hs of the saddle-distorted 

porphyrin, which are diagonally positioned each other, as can be seen in Fig. 1.  

 We examined the spectroscopic titration of [H4DPP(CO2H)](ClO4)2 in CHCl3 with 

[Me4N]OH at r. t. to elucidate the order of acidity of protons included. Upon the addition of the first  

 

 
Fig. 4. Spectroscopic titration of [H4DPP(CO2H)](ClO4)2 (1.2 × 10–5 M) with [Me4N]OH in CHCl3 

at r. t.: (a) Spectral change in the course of the addition of 1 eq of the base; (b) Spectral change for 

the addition of 2 – 3 eq of the base; (c) Change of absorbance at 467 nm relative to the equivalency 

of the base; (d) Effect of concentration on the absorption spectra at different porphyrin 

concentrations (3 μM, 6 μM, 12 μM) with corresponding 1 eq addition of [Me4N]OH in CHCl3. 
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equivalent of OH–, the absorption spectrum of [H4DPP(CO2H)](ClO4)2
 showed only small change 

without showing isosbestic points, as depicted in Fig. 4(a). In sharp contrast, the addition of the 

second and the third equivalents of the base allowed us to observe significant spectral change 

without isosbestic points, as shown in Fig. 4(b). Further addition of the base did not afford any 

spectral change. The absorbance change at 467 nm was monitored relative to the equivalency of 

OH– to the diprotonated porphyrin. The resultant titration curve is displayed in Fig. 4(c), indicating 

that the first step is mono-deprotonation followed by two successive deprotonation processes. Thus 

we concluded that the first deprotonation occurs at the carboxyl group and then the deprotonation of 

the protons attached to the pyrroles in a successive manner without formation of the corresponding 

mono-protonated form of the porphyrin core [26], as summarized in Scheme 2. 
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Scheme 2. A Plausible Deprotonation Sequence of [H4DPP(CO2H)]2+. 

 

In the previous reports, we utilized the hydrogen bonding between diprotonated DPP and 

counter anions having a carboxylate group for formation of supramolecular structures [11,12]. The 

carboxylate-appended [H4DPP(COO)]+, which should be derived from the first deprotonation at the 

carboxyl group of H4MCDPP2+ (see Scheme 2), is expected to form self-assembled structures 

through intermolecular hydrogen bonding between the diprotonated porphyrin core and the 

peripheral carboxylate moiety. Thus, we examined the concentration dependence on the absorption 

spectra of the carboxylate-appended porphyrin dication, [H4DPP(COO)]+, in CHCl3 (Fig. 3(d)) to 

observe that the Soret band gradually lowered its molar absorption coefficient with increasing the 

concentration of the porphyrin. This kind of behaviors can be ascribed to the self-aggregation of 

chromophores as observed in that of water-soluble porphyrins [27]. In addition, the observation that 

the spectral change in the course of the deprotonation processes does not give isosbestic points (vide 

supra) also suggests the emergence of supramolecular structures in accordance with the formation 

of the [H4DPP(COO)]+ species. 

In order to shed some lights on the self-assembly of the carboxylate-appended porphyrin 

dication derived from the carboxylate-appended [H4DPP(COO)]+, we conducted titration 

experiments using 1H NMR spectroscopy on the 2.0 mM solution of [H4DPP(CO2H)](ClO4)2 in  
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Fig. 5. 1H NMR spectral change of [H4DPP(CO2H)](ClO4)2 upon addition of (Me)4NOH in CDCl3. 

(a) [H4DPP(CO2H)](ClO4)2 (b) [H4DPP(CO2H)](ClO4)2 + 1 eq of (Me)4NOH (c) [H4DPP(CO2H)] 

(ClO4)2 + 3 eq of (Me)4NOH. 

 

CDCl3 (Fig. 5). In the initial spectrum, a doublet due to the m-H of the meso-carboxyphenyl group 

was observed at 7.76 ppm (J =8 Hz) and multiplets appeared at 7.85–8.0 and 6.55–7.00 ppm were 

assigned to the o-H of meso-carboxyphenyl and meso-phenyl groups and the β-phenyl groups, 

respectively (Fig. 5(a)). Addition of 1 eq of Me4NOH made the spectrum broadened (Fig. 5(b)) and 

further addition of 2 more eq of Me4NOH gave the upfield-shifted and sharp signals at 7.50–7.74, 

7.15–7.40 and 6.43–6.98 ppm for the meso-carboxyphenyl, meso-phenyl and the β-phenyl groups, 

respectively (Fig. 5(c)). Based on the UV-Vis titration experiment, the spectra obtained by the 

addition of 1 eq of Me4NOH was assigned to that of [H4DPP(COO)]+ and significant up-field shifts 

of 1H NMR signals were observed for the carboxylate-phenyl protons. The chemical shifts were 

6.94 and 5.56 ppm for o- and m-phenyl protons, which were originally observed at 7.97 and 7.76 

ppm, respectively (see the dotted arrows in Fig. 5). This up-field shifts were probably due that they 
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were positioned above the porphyrin ring of other molecules and were affected by the shielding 

effect of the ring current [28]. 

As described above, 1 eq addition of Me4NOH to the solution of [H4DPP(CO2H)]2+ afforded 

the carboxylate-appended porphyrin dication and the formation of supramolecular structures was 

assumed on the basis of the results of the UV-Vis and 1H NMR spectroscopic measurements. At this 

point, although we have not obtained any definitive evidence to support yet, we assume the 

supramolecular structure formed by the self-assembly of [H4DPP(COO)]+ as depicted in Scheme 3, 

based on our previous observations on formation of hydrogen-bonded supramolecular assemblies 

made of H4DPP2+ and carboxylate-appended molecular components [11,12,14,26]. 
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Scheme 3. A Possible Self-Assembled Structure of [H4DPP(COO)]+. 

 

Cell Fabrication and Photovoltaic Characteristics: The porphyrins were adsorbed as 

photosensitizers onto TiO2 and SnO2 nanocrystalline films to serve as working electrodes in dye-

sensitized Solar cells (DSSCs) [29]. The working electrodes were prepared as mentioned in the 

experimental section and then they were immersed into a solution of porphyrin 

((HNEt3)[H2DPP(COO)] or ZnDPP(CO2H)) in CH2Cl2/EtOH (9:1 v/v). Pt electrodes were used as 

counter electrodes. The DSSCs were fabricated  by sandwiching a redox (I-/I3
-) electrolyte solution. 

Through measurements of I-V curves, we assessed the performance of the DSSC devices and the 

open-circuit photovoltage (Voc), the short-circuit photocurrent density (JSC), fill factor (FF) and 

power conversion efficiency (PCE, η) were summarized in Table 2. The I-V curves of the solar cells 

made of the porphyrin/TiO2 sensitized films are shown in Fig. S1 in the supporting information. The 

PCE (η) value for (HNEt3)[H2DPP(COO)] is similar to that for ZnDPP(CO2H) (entry 1 & 3). When 

chenodeoxycholic acid (CDCA) was added as a co-adsorbate for dye-loading to avoid aggregation 
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of the dye on the TiO2 surface (entry 2 & 4) [29b], the improvement of JSC and VOC was not 

observed both for the cases of (HNEt3)[H2DPP(COO)] and ZnDPP(CO2H). This means that the 

aggregation of the porphyrins on the TiO2 and SnO2 surface seems not severe. We also fabricated 

DSSCs based on SnO2 film electrodes adsorbed the porphyrin sensitizers. Although the conduction 

band of SnO2 is lower than that of TiO2 to show further enhancement in the efficiency, the results 

were not much improved. Regarding the reasons for the low efficiency for both of the DSSCs based 

on the TiO2 and SnO2 working electrodes, one is desorption of porphyrins from the electrode 

surfaces during the measurements and another would be the proximity of the oxidation potentials  

 

 
 

Fig. 6. Images of dye-sensitized films (a) of (HNEt3)[H2DPP(COO)] on TiO2 and (b) on SnO2 films 

and (c) of ZnDPP(CO2H) on TiO2 and (d) on SnO2 films. 

 

Table 2. Photovoltaic Parameters of MCDPP-Sensitized Solar Cells.  

entry sensitizer Voc 

[mV] 

JSC 

[mA cm-2] 
η 

[%] 

FF 

 

1a (HNEt3)[H2DPP(COO)] 430 0.21 0.07 0.76 

2a (HNEt3)[H2DPP(COO)] 

+ CDCA 

390 0.19 0.15 0.67 

3a ZnDPP(CO2H) 530 0.25 0.10 0.67 

4a ZnDPP(CO2H) + 

CDCA 

560 0.11 0.14 0.70 

5b (HNEt3)[H2DPP(COO)] 300 0.13 0.03 0.72 

6b ZnDPP(CO2H) 390 0.52 0.13 0.62 
aUse of TiO2 electrode. bUse of SnO2 electrode. 
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between DPP(CO2H)s and I– to give less efficiency of the dye regeneration by the reduction of 

radical cations of DPP(CO2H)s. 

 

CONCLUSION 

Supramolecular structures of a saddle-distorted porphyrin with a carboxyl group as a 

hydrogen-bonding site were confirmed by the X-ray diffraction analysis. [H4DPP(CO2H)]2+, having 

a carboxyphenyl group at a meso position, formed a nanochannel structure by self-assembly and the 

nanochannel structure was similar to that consisted of H4DPP2+. In the nanochannel structure of 

[H4DPP(CO2H)]2+, however, intermolecular complementary hydrogen bonding of the carboxyl 

groups was formed to regulate the mutual distances between the nanochannels.  As well as the inner 

space of the nanochannel [9], the resulting interchannel spaces can be also used to include 

functional guest molecules. The deprotonation of the carboxyl group in [H4DPP(CO2H)]2+ afforded 

another supramolecular structures derived from its self-assembly in solution by virtue of 

intermolecular hydrogen bonding between the appended carboxylate group and the diprotonated 

porphyrin core as observed in the combination of H4DPP2+ with molecules having a carboxylate 

group [11,12,26]. We have also examined the DSSC performances of (HNEt3)[H2DPP(COO)]– and 

ZnDPP(CO2H) and the efficiencies were moderate but the further investigation for the improvement 

of the efficiency by avoiding desorption and the alteration of sacrificial reductants to sufficiently 

regenerate sensitizing dyes is currently underway. 
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Graphical Abstract 
 

Synthesis, Structure and Physicochemical Properties of a Saddle-Distorted Porphyrin with 

a Peripheral Carboxyl Group  

Muniappan Sankara, Tomoya Ishizukaa, Zeqing Wangb, Tingli Mab, Motoo Shiroc and Takahiko Kojima*a§ 

A saddle-distorted porphyrin bearing a carboxyl group as a hydrogen-bonding site at the peripheral position was synthesized and 
structurally characterized by X-ray crystallography. The porphyrin formed a nanochannel structure based on the curvature of the 
porphyrin core and the relative spatial arrangement between the channels was regulated by the formation of interchannel hydrogen 
bonds. We also report its self-assembly in solution and its application to a dye-sensitized solar cell. 
 
 

 
 


