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Abstract

During the past decade, a structured financial product called “Collateralized Debt Obli-
gation (CDO)” has been drawing much attention of researchers and practitioners, and are
now traded with growing liquidity. However, the approach for CDO pricing has been rather
limited in the literature, largely because it is necessary to evaluate the time dependent dis-
tribution of the underlying cumulative loss so as to find the pricing scheme satisfying the
non-arbitrage condition of the derivatives market. The purpose of this paper is to fill this
gap by describing the CDO model in terms of a semi-Markov modulated Poisson process.
Based on the theoretical results of Huang and Sumita (2011), as well as the Laguerre trans-
form by Keilson and Nunn (1979), its matrix extension by Sumita (1984) and the bivariate
extension by Sumita and Kijima (1985), numerical algorithms are developed for evalu-
ating the time dependent distribution of the cumulative loss up to time t, which in turn
enables one to evaluate the price of a CDO tranche. Some numerical results are presented,
demonstrating the power of the algorithms.

1 Introduction

A structured financial product called “Collateralized Debt Obligation (CDO)” securitizes a
reference portfolio of default risky instruments. If the portfolio contains loans or bonds, then
the CDO is called a cash CDO. When the referenced portfolio consists of “Credit Default Swaps
(CDS’s)”, it is called a synthetic CDO. Recently, portfolio credit derivatives such as Tranched
Index have been drawing much attention of researchers and practitioners, and are now traded
with growing liquidity.

∗Corresponding author, E-mail: huangjp28@gmail.com
†E-mail: sumita@sk.tsukuba.ac.jp
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A typical approach for assessing (synthetic) CDO and Tranched Index is based on the Gaus-
sian copula model of Li [9]. Because this model is essentially static, the dynamic evolution of
CDO tranches cannot be captured. In order to overcome this difficulty, it is often necessary to
introduce a two layer process, where the first layer describing the macro economic condition
would affect portfolio loss distributions expressed in the second layer. In other words, the de-
fault intensity function would satisfy a stochastic differential equation (or assumed to be driven
by a certain Markov chain) characterized by the state of the external economic condition as well
as the history of defaults up to the current time. Some recent papers along this direction include
Arnsdorf and Halperin [1], Bielecki, Vidozzi and Vidozzi [2], Frey and Backhaus [4], de Kock,
Kraft and Steffensen [3], Schönbucher [10] and Sidenius, Piterbarg and Andersen [11].

Although some structural characteristics of CDO tranches could be captured by these pi-
oneering models, they are far from offering the computational vehicle for evaluating CDO
tranches in continuous time, and one often has to resort to Monte Carlo simulation for this pur-
pose. To the best knowledge of the authors, Lando [8] is the first to suggest the use of MMPP
for capturing the stochastic behavior of portfolio losses. Consequently, the computational pro-
cedure for general Markov chains can be applied for evaluating loss distributions. However, the
infinitesimal generator characterizing the underlying Markov chain could be huge, imposing the
tremendous computational burden. Takada, Sumita and Takahashi [20] recapture the MMPP
model of Lando [8] within the context of CDO. By exploiting the first passage time structure,
efficient computational procedures are developed for evaluating loss distributions and pricing
CDO tranches. This model has been extended further in Takada and Sumita [19], where two
industrial segments are introduced to enhance the reality of the model. In both Takada, Sumita
and Takahashi [20] and Takada and Sumita [19], the loss of a single default is considered to be
constant, which may be somewhat unrealistic.

In order to overcome this pitfall, this paper provides a cumulative random shock process
generated from a semi-Markov modulated Poisson process, enabling one to cope with random
costs associated with corporate defaults. It should be noted that this process is a special case of
the multivariate reward process discussed in Huang and Sumita [5]. Transform results obtained
in Huang and Sumita [5] are used to derive the time dependent distribution of the cumulative
reward explicitly. Using the Laguerre transform method developed by Keilson and Nunn [6],
Keilson, Nunn and Sumita [7], and further studied by Sumita [12], computational algorithms
are developed for evaluating the distribution of the loss process for the underlying CDO model,
which in turn enables one to evaluate the price of a CDO tranche.

Throughout the paper, vectors and matrices are underlined and double underlined respec-
tively, e.g. u and v. The vector of having all components equal to 1 is denoted by 1. The
indicator function δ{Statement} takes the value of 1 if Statement holds true and 0 otherwise.

The structure of this paper is as follows. In Section 2, the structure and pricing scheme
of CDO are introduced. Section 3 describes the model employed in this paper to capture the
default phenomenon, with transform results of the distribution of the cumulative aggregate loss
Z(t) of the underlying reference portfolio. Numerical algorithms for evaluating the distribution
of Z(t) via the Laguerre transform are provided in Section 4. Some numerical results are
presented in Section 5, demonstrating the power of the algorithms.

In order to facilitate the readability of the paper, the inversion procedures via the Laguerre
transform and the algorithms discussed in Section 4 are summarized in Appendeces A and
B. The reader is also referred to Sumita and Kijima [16, 17] for a succinct summary of the
computational algorithms associated with the Laguerre transform.
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2 Structure of CDO and Pricing CDO Tranches

The CDO scheme involves the protection buyer (the CDO issuer) and the protection seller (the
investor) as depicted in Figure 1. Given a reference portfolio, the CDO is typically structured
by dividing the associated credit risk into tranches of increasing seniority. Here, each tranche
consists of an attachment point Ka and a detachment point Kd of the cumulative aggregate
loss of the underlying reference portfolio, where 0 < Ka < Kd . The protection buyer is fully
responsible for the portfolio loss up to Ka. When the portfolio loss exceeds Ka, the protection
seller compensates the protection buyer by paying the exceeding amount beyond Ka but only
up to Kd −Ka. In exchange, predetermined premiums are paid to the protection seller by the
protection buyer according to a prespecified schedule up to the maturity year in such a way that
no-arbitrage condition of the credit derivatives market is satisfied. Following Takada, Sumita
and Takahashi [20], the procedural details are described below for determining the premium
scheme for each tranche.

Investor CDO Issuer

Protection Seller
−→ Protection −→
←− Premium ←− Protection Buyer

Figure 1: Contract of CDO Tranche

A typical CDO tranche contract consists of the attachment point Ka, the detachment point
Kd , the premium settlement points τ = {τ0, · · · ,τK} with τ0 = 0, and the unit premium c[Ka,Kd ].
These entities are related to each other through the following procedural details. Let �(t) be
the cumulative aggregate loss of the underlying reference portfolio up to time t. We note
that �(t) can be typically described as a stochastic process characterized by a counting process
associated with corporate defaults and random bad debts resulting from such corporate defaults.
Let L[Ka,Kd ](t) be defined by

L[Ka,Kd ](t) =






0 if �(t)≤ Ka

�(t)−Ka if Ka < �(t)≤ Kd

Kd −Ka if Kd < �(t)

. (2.1)

With notation (x)+ = max{0,x}, L[Ka,Kd ](t) in (2.1) can be rewritten as

L[Ka,Kd ](t) =
�
�(t)−Ka

�+
−
�
�(t)−Kd

�+
. (2.2)

One sees that L[Ka,Kd ](t) can be depicted as a function of �(t) as shown in Figure 2.
Let PAYsell→buy(τk) be the amount to be paid to the protection buyer by the protection seller

at time τk,k = 0,1, · · · ,K. This amount is equal to the increment of the cumulative aggregate
loss since time τk−1, that is,

PAYsell→buy(τk) = L[Ka,Kd ](τk)−L[Ka,Kd ](τk−1) , k = 1,2, · · · ,K. (2.3)

In return, the protection buyer pays to the protection seller by the amount of the unit premium
c[Ka,Kd ] applied to the remaining hedge interval, i.e. (Kd −Ka) minus the cumulative payment
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

  



Figure 2: Cumulative Loss L[Ka,Kd ] of a CDO Tranche

made by the protection seller to the protection buyer up to time τk. This amount, denoted by
PAYbuy→sell

�
c[Ka,Kd ],τk

�
, can be written as

PAYbuy→sell
�
c[Ka,Kd ],τk

�
= c[Ka,Kd ]

�
(Ka −Kd)−

k

∑
j=1

PAYsell→buy(τ j)
�

(2.4)

for k = 1,2, · · · ,K. Substitution of (2.3) into (2.4) then yields

PAYbuy→sell
�
c[Ka,Kd ],τk

�
= c[Ka,Kd ]

�
(Ka −Kd)−L[Ka,Kd ](τk)

�
. (2.5)

Figure 3 illustrates the procedural details discussed above.
In order to satisfy no-arbitrage condition of the credit derivatives market, the unit premium

c[Ka,Kd ] should be set in such a way that the expected payment throughout the contract period
from the protection buyer to the protection seller is equal to that from the protection seller to
the protection buyer. Let c

∗
[Ka,Kd ]

be this equilibrium premium. One then sees that,

K

∑
k=1

e
−r f τkE

�
PAYsell→buy(τk)

�
=

K

∑
k=1

e
−r f τkE

�
PAYbuy→sell

�
c
∗
[Ka,Kd ]

,τk

��
, (2.6)

where r f is the risk free interest rate. By substituting (2.3) and (2.5) into (2.6), it can be solved
for c

∗
[Ka,Kd ]

as

c
∗
[Ka,Kd ]

=
∑K

k=1 e
−r f τkE

�
L[Ka,Kd ](τk)−L[Ka,Kd ](τk−1)

�

∑K

k=1 e
−r f τkE

�
(Ka −Kd)−L[Ka,Kd ](τk)

� , (2.7)

so that

c
∗
[Ka,Kd ]

=
∑K

k=1 e
−r f τk

�
E
�
L[Ka,Kd ](τk)

�
−E

�
L[Ka,Kd ](τk−1)

��

∑K

k=1 e
−r f τk

�
(Ka −Kd)−E

�
L[Ka,Kd ](τk)

�� . (2.8)

As we will see, by specifying how corporate defaults are generated stochastically and what
would be the random nature of the bad debt resulting from such corporate defaults, �(t) can
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
















Figure 3: Typical Cash Flow of a CDO Tranche Contract

be modeled as a stochastic process. If the survival function F̄�(z, t) = P[�(t) > z] of �(t) is
obtained, then the expectation of L[Ka,Kd ](t) can be evaluated from (2.2) as

E
�
L[Ka,Kd ](t)

�
=

� ∞

Ka

F̄�(z, t)dz−
� ∞

Kd

F̄�(z, t)dz+KaF̄�(Kd, t) . (2.9)

Consequently, the equilibrium premium c
∗
[Ka,Kd ]

can be computed based on (2.8). In the next
section, we employ a semi-Markov modulated Poisson process , which is a special case of the
unified multivariate counting process of Sumita and Huang [14], for characterizing occurrences
of corporate defaults. The corresponding univariate version of the reward process discussed by
Huang and Sumita [5] then characterizes �(t), yielding the Laplace transform of �(t) for each
t > 0 based on the results from [5]. The inversion of the Laplace transform can be obtained via
the Laguerre transform method, thereby enabling one to assess c

∗
[Ka,Kd ]

numerically.

3 Corporate Default Structure based on Semi-Markov Mod-

ulated Poisson Process and Associated Cumulative Aggre-

gate Loss Process

For the CDO pricing problem discussed in the previous section, we assume that corporate
defaults are generated by a semi-Markov modulated Poisson process. More specifically, let
J(t) be a semi-Markov process on J = {0,1,2}, describing the macro-economic condition.
Here, state 1 corresponds to the normal economic condition while state 0 and state 2 represent
the bad economic condition and the good economic condition respectively. Corporate defaults
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occur according to a Poisson process Mi(t) with intensity λi whenever the semi-Markov process
is in state i. The d-th corporate default in state i results in the random bad debt of YM:i:d , where
YM:i:d’s constitute a sequence of i.i.d. random variables with respect to d for each i, and such
i.i.d. sequences are mutually independent with respect to i.

In order to facilitate our analysis, it is assumed that the semi-Markov process J(t) is gov-
erned by a matrix cumulative distribution function (c.d.f.) A(x) =

�
Ai j(x)

�
, which is absolutely

continuous with the matrix probability density function (p.d.f.) a(x) =
�
ai j(x)

�
= d

dx
A(x) . It

should be noted that, if we define Ai(x) and Āi(x) by

Ai(x) = ∑
j∈J

Ai j(x) ; Āi(x) = 1−Ai(x) ,

then Ai(x) is the c.d.f. and Āi(x) is the corresponding survival function of the dwell time of J(t)
in state i. The hazard rate functions associated with the semi-Markov process are then defined as
ηi j(x) =

ai j(x)
Āi(x)

, i, j ∈J . The Laplace transform of a(x) is denoted by α(w) =
� ∞

0 e
−wx

a(x)dx .

For notational convenience, the transition epochs of the semi-Markov process are denoted
by τn,n≥ 0, with τ0 = 0. The age process X(t) associated with the semi-Markov process is then
defined as X(t) = t −max{τn : 0 ≤ τn ≤ t}. For the cumulative arrival intensity function Li(x)
in state i, if we consider an age-dependent intensity function λi(x), one has Li(x) =

�
x

0 λi(y)dy .
The probability of observing k arrivals in state i within the current age of x can then be obtained
as

gi(x,k) = e
−Li(x)Li(x)k

k!
, k = 0,1,2, · · · , i ∈ J .

Huang and Sumita [5] provide a multivariate reward process Z(t)= [Z1(t),Z2(t), · · · ,ZK(t)]�

defined on RK given by

Z(t) =
�

t

0
ρ
�
J(τ)

�
dτ + ∑

i∈J

Mi(t)

∑
d=1

Y M:i:d + ∑
i∈J

∑
j∈J

Ni j(t)

∑
d=1

Y N:i j:d , (3.1)

where ρ(i) denotes the multivariate reward rate function while the underlying semi-Markov
process J(t) is in state i ∈ J . Y M:i:d and Y N:i j:d represent the vector valued random jumps as-
sociated with the d-th arrival of Mi(t) in state i and the d-th jump of Ni j(t) describing transitions
of J(t) from state i to state j, respectively.

In this paper, we let Z(t) be the cumulative aggregate loss of the underlying reference
portfolio. One then sees that

Z(t) = ∑
i∈J

Mi(t)

∑
d=1

YM:i:d . (3.2)

We note that Z(t) is a univariate version of Z(t) analyzed in Huang and Sumita [5] , with the
following simplifications.






λi(x) = λi , for i ∈ J

YN:i j:d = 0 with probability 1
ρ(i) = 0 for all i ∈ J

(3.3)
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Let ζ (r,s) be the double Laplace transform of Z(t), i.e.

ζ (r,s) =
� ∞

0
e
−stE[e−rZ(t)]dt . (3.4)

By setting u = 1, v = 1, w = 0+ in Theorem 3.1 of Huang and Sumita [5], and incorporating
the simplifications in (3.3), one sees that

ζ (r,s) = p
�(0)×

∞

∑
�=0

�β
�

s1,θ M(r)
��

× �β
∗

D

�
s1,θ M(r)

�
×1 , (3.5)

where Z(0) = 0, p(0) denotes the initial probability vector of J(0), and
θ M(r) = [θM:0(r), · · · ,θM:J(r)]� with θM:i(r) denoting the Laplace transform of distribution of
YM:i:d , i.e., given the common probability density function YM:i(z) of YM:i:d ,

θM:i(r) =
� ∞

0
e
−rzYM:i(z)dz . (3.6)

The Laplace transform generating function �β (w,u) and �β
∗

D

(w,u) are defined as

�β (w,u) =
�
�βi j(wi,ui)

�
; �βi j(wi,ui) =

∞

∑
mi=0

� ∞

0
e
−wixai j(x)gi(x,mi)dxu

mi

i
, (3.7)

�β
∗

D

(w,u) =
�
δ{i= j}

�β ∗
i (wi,ui)

�
; �β ∗

i (wi,ui) =
∞

∑
mi=0

� ∞

0
e
−wixĀi(x)gi(x,mi)dxu

mi

i
. (3.8)

Given t > 0, the random variable Z(t) has a mass at the origin denoted by z0(t) = P[Z(t) =
0], and an absolutely continuous density fZ+(z, t) for z ≥ 0. More formally, FZ(z, t) = P[Z(t)≤
z] can be written as

FZ(z, t) = z0(t)+
�

z

0
fZ+(x, t)dx . (3.9)

Accordingly, ζ (r,s) in (3.4) is given by

ζ (r,s) = ζ0(s)+ζ+(r,s) , (3.10)

where

ζ0(s) =
� ∞

0
e
−st

z0(t)dt ; ζ+(r,s) =
� ∞

0

� ∞

0
e
−st

e
−rz

fZ+(z, t)dzdt . (3.11)

It can be readily seen that ζ0(s)= limr→∞ ζ (r,s). We note from (3.6) that limr→∞ θ M(r)= 0.
It then follows from Equation (3.5) that

ζ0(s) = p
�(0)×

�
I +

∞

∑
�=1

�
αi j(s+λi)

��
i, j∈J

�
×
�

1−αi(s+λi)

s+λi

�

i∈J

. (3.12)

From (3.5) together with (3.12), ζ+(r,s) = ζ (r,s)− ζ0(s) can then be obtained, after a little
algebra, as

ζ+(r,s) = p
�(0)×

�
I +

∞

∑
�=1

�β
+

�
s1,θ M(r)

��
�
× �β

∗

+:D

�
s1,θ M(r)

�
×1 , (3.13)
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where

�β+:i j

�
s,θM:i(r)

�
= �βi j

�
s,θM:i(r)

�
−αi j(s+λi)

=
∞

∑
k=1

θ k

M:i(r)
� ∞

0
e
−st

ai j(t)e
−λit

(λit)k

k!
dt , (3.14)

and

�β ∗
+:i

�
s,θM:i(r)

�
= �β ∗

i

�
s,θM:i(r)

�
− 1−αi(s+λi)

s+λi

=
∞

∑
k=1

θ k

M:i(r)
� ∞

0
e
−st

Āi(t)e
−λit

(λit)k

k!
dt . (3.15)

4 Development of Numerical Algorithms for Evaluating the

Distribution of Z(t) via the Laguerre Transform

In this section, we develop numerical algorithms for evaluating z0(t) and fZ+(z, t) via the La-
guerre transform based on (3.12) through (3.15). A succinct summary of the Laguerre trans-
form is provided in Appendix A. The reader is referred to Sumita and Kijima [16, 17] for
further details concerning the algorithmic aspects of the Laguerre transform.

Let

ak:i j(t) = ai j(t)e
−λit

(λit)k

k!
, k = 0,1,2, · · · (4.1)

Āk:i(t) = Āi(t)e
−λit

(λit)k

k!
, k = 0,1,2, · · · . (4.2)

For notational simplicity, we define

{an}n:N = {a0,a1, · · · ,aN} ;
{a(m,n)}mn:MN = {a(0,0),a(0,1), · · · ,a(0,N), · · · ,a(M,0),a(M,1), · · · ,a(M,N)} , (4.3)

where an or a(m,n) may be a number, a vector or a matrix, and M or N denotes a positive integer
or ∞. With this notation, we define the corresponding Laguerre sharp and dagger coefficients�

a
#
k:n

�
n:∞,

�
a

†
k:n

�
n:∞,

�
Ā

#
k:n
�

n:∞ and
�

Ā
†
k:n
�

n:∞, i.e.

T
#
ak

(u) =
� ∞

0
e
−st

a
k
(t)dt

���
s= 1

2
1+u

1−u

=
∞

∑
n=0

a
#
k:nu

n , (4.4)

T
#
Āk

(u) =
� ∞

0
e
−st

Āk(t)dt

���
s= 1

2
1+u

1−u

=
∞

∑
n=0

Ā
#
k:nu

n , (4.5)

and a
†
k:n = ∑n

m=0 a
#
k:m, Ā

†
k:n = ∑n

m=0 Ā
#
k:m.

Similarly, for θM:i(r) =
� ∞

0 e
−rzYM:i(z)dz, the Laguerre coefficients

�
y

#
m

�
m:∞ and

�
y

†
m

�
m:∞

are defined as

T
#
Y (v) = θ M(r)

���
r= 1

2
1+v

1−v

=
∞

∑
m=0

y
#
m

v
m , (4.6)
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and y
†
m
= ∑m

n=0 y
#
n
. We note that the Laguerre transform generating functions associated with

time t are expressed using u with index n, while those corresponding to the reward z are de-
scribed in terms of v with index m.

By using the array operation CONV,VCONV,VBCONV,VMCONV and VMBCONV de-
fined in Appendix B, one has

�
π#

0:n(1)
�

n:∞
def⇔ π#�

0:n(1) = p
�(0) ·a#

0:n , n = 0,1, · · · , (4.7)
�

π#
0:n(�)

�
n:∞ = VMCONV

��
π#

0:n(�−1)
�

n:∞,
�

a
#
0:n

�
n:∞

�
, �= 2,3, · · · , (4.8)

�
π#

0:n
�

n:∞
def⇔ π#

0:n =
∞

∑
�=1

π#
0:n(�) , n = 0,1, · · · , (4.9)

�
Π#

0:n
�

n:∞
def⇔ Π#

0:n = p
�(0) · Ā#

0:n , n = 0,1, · · · . (4.10)

From Equation (3.12), the Laguerre sharp coefficients
�

z
#
0:n

�
n:∞ of z0(t) is then obtained as

�
z

#
0:n

�
n:∞ =

�
Π#

0:n
�

n:∞ +VCONV
��

π#
0:n

�
n:∞,

�
Ā

#
0:n

�
n:∞

�
. (4.11)

For fZ+(z, t), let
�

y
#
i:m(k)

�
m:∞ be defined by

�
y

#
i:m(k)

�
m:∞ = CONV

��
y

#
i:m(k−1)

�
m:∞,

�
y

#
i:m

�
m:∞

�
, k = 2,3, · · · , (4.12)

with
�

y
#
i:m(1)

�
m:∞ =

�
y

#
i:m

�
m:∞ for i ∈ J . We also define

�
b

†
+:i j:(m,n)

�
mn:∞∞

def⇔ b
†
+:i j:(m,n) =

∞

∑
k=1

y
†
i:m(k)×a

†
k:i j:n , (4.13)

�
b
∗†
+:i:(m,n)

�
mn:∞∞

def⇔ b
∗†
+:i:(m,n) =

∞

∑
k=1

y
†
i:m(k)× Ā

†
k:i:n . (4.14)

Correspondingly,
�

b
#
+:i j:(m,n)

�
mn:∞∞ and

�
b
∗#
+:i:(m,n)

�
mn:∞∞ can be given by

b
#
+:i j:(m,n) = b

†
+:i j:(m,n)−b

†
+:i j:(m−1,n)−b

†
+:i j:(m,n−1) +b

†
+:i j:(m−1,n−1) , (4.15)

b
∗#
+:i:(m,n) = b

∗†
+:i:(m,n)−b

∗†
+:i:(m−1,n)−b

∗†
+:i:(m,n−1) +b

∗†
+:i:(m−1,n−1) . (4.16)

This then yields the matrix sequence
�

b
#
+:(m,n)

�
mn:∞∞ with b

#
+:(m,n)

=
�
b

#
+:i j:(m,n)

�
and the vector

sequence
�

b
∗#
+:(m,n)

�
mn:∞∞ with b

∗#
+:(m,n) =

�
b
∗#
+:i:(m,n)

�

i∈J
.

Using these matrix and vector sequences, we define
�

π#
+:(m,n)(1)

�
mn:∞∞

def⇔ π#�
+:(m,n)(1) = p

�(0) ·b#
+:(m,n)

, m,n = 0,1, · · · ,
(4.17)

�
π#
+:(m,n)(�)

�
mn:∞∞ = VMBCONV

��
π#
+:(m,n)(�−1)

�
mn:∞∞,

�
b

#
+:(m,n)

�
mn:∞∞

�
,

�= 2,3, · · · (4.18)
�

π#
+:(m,n)

�
mn:∞∞

def⇔ π#
+:(m,n) =

∞

∑
�=1

π#
+:(m,n)(�) , m,n = 0,1, · · · , (4.19)

�
Π#

+:(m,n)

�
mn:∞∞

def⇔ Π#
+:(m,n) = p

�(0) ·b∗#
+:(m,n) , m,n = 0,1, · · · . (4.20)
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From Equation (3.13), the Laguerre sharp coefficients
�

z
#
+:(m,n)

�
mn:∞∞ of fZ+(z, t) can then be

obtained as
�

z
#
+:(m,n)

�
mn:∞∞ =

�
Π#

+:(m,n)

�
mn:∞∞

+ VBCONV
��

π#
+:(m,n)

�
mn:∞∞,

�
b
∗#
+:(m,n)

�
mn:∞∞

�
. (4.21)

Consequently, z0(t) and fZ+(z, t) can be evaluated as

z0(t) =
∞

∑
n=0

z
†
0:n�n(t) , (4.22)

fZ+(z, t) =
∞

∑
n=0

∞

∑
m=0

z
†
+:(m,n)�mn(z, t) , (4.23)

where z
†
0:n = ∑n

i=0 z
#
0:i, z

†
+:(m,n) = ∑n

j=0 ∑m

i=0 z
#
+:(i, j) and �mn(z, t) = �m(z)�n(t) with

�n(x) =
e

x/2

n!

�
d

dx

�n

(xn
e
−x) for n = 0,1,2, · · · .

The Laguerre coefficients of an exponential density function can be expressed in a closed
form as shown in Appendix A. For probability density functions that are generated from expo-
nential density functions through mixings and/or convolutions, their Laguerre coefficients can
be obtained by employing operational properties of the Laguerre transform. For example, let
CMm be a class of completely monotone density functions defined by

CMm =
�

f : ϕ f (s) =
m

∑
i=1

pi

λi

s+λi

, pi ≥ 0 ,
m

∑
i=1

pi = 1
�
, (4.24)

where ϕ f (s) =
� ∞

0 e
−st

f (t)dt. We also introduce a class of Polya Frequency functions of order
n denoted by PFn, where

PFn =
�

f : ϕ f (s) =
n

∏
i=1

λi

s+λi

�
. (4.25)

The Laguerre transform of any probability density function in CMm ∪PFn can be readily ob-
tained through mixings and/or convolutions of Laguerre transforms of exponential density func-
tions. Accordingly, if ai j(x) ∈CMm ∪PFn, the corresponding z0(t) and fZ+(z, t) can be evalu-
ated based on the algorithmic procedures given in this section. It is worth noting that a family
of PFn’s for n ∈ N is dense in the class of absolutely continuous probability density functions
associated with non-negative random variables.

5 Numerical Results

The purpose of this subsection is to demonstrate the power of the numerical algorithms devel-
oped in the previous section. In practice, it is natural to assume that the economic condition
changes in a lattice continuous manner so that J(t) becomes a skip-free semi-Markov process.
We also assume that the dwell time of J(t) in each state belongs to PF2. More specifically, the
matrix Laplace transform α(s) of the semi-Markov matrix of J(t) is given by

α(s) =
�

pi j αi(s)
�
, (5.1)
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where pi j = 0 if i = j or |i− j|> 1 and pi j > 0 otherwise, ∑ j∈J pi j = 1, and

αi(s) =
� ∞

0
e
−st

dAi(t) =
αi,1

αi,1 + s
·

αi,2

αi,2 + s
, i ∈ J . (5.2)

The amount of the bad debt generated by each default is assumed to be exponentially distributed
with mean µ−1. Specific parameter values to be employed in this setting are summarized in
Table 1.

Table 1: Underlying Parameter Values for Evaluating z0(t) and fZ+(z, t)

Parameter Value Parameter Value Parameter Value

J {0,1,2} L 30 K 20

λ [1.2,1,0.8]� α•,1 [1,1.2,1.4]� α•,2 [2,1.8,1.6]�

µ 1 p(0) [0,1,0]� p





0 1 0

0.6 0 0.4

0 1 0





The values of z0(t) and fZ+(z, t) are depicted in Figures 4 and 5 respectively. The corre-
sponding survival function F̄Z(z, t) is shown in Figure 6. We note that the survival function
F̄Z(0, t) has jumps of size z0(t) at Z(t) = 0, which diminishes as t → ∞.
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Figure 4: Probability of z0(t)
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Figure 5: Probability Density of fZ+(z, t)
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Figure 6: Survival Function F̄Z(z, t)

12



In Figure 7, the asymptotic expansion of
E[Z(t)]

t
as t → ∞ is compared with the exact value

of
E[Z(t)]

t
obtained through the Laguerre transform procedure. In this numerical example, the

asymptotic expansion is rather slow, demonstrating the importance of the Laguerre transform
procedure when t is not sufficiently large.
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Exp[Z(t)] / t using Laguerre transform
Exp[Z(t)] / t using asymptotic expansion
The limit of Exp[Z(t)] / t as t −> infinity

Figure 7: Convergence of
E[Z(t)]

t

For the CDO pricing problem discussed in Section 2, we let �(t) = Z(t). The equilibrium
unit premium c

∗
[Ka,Kd ]

in Equation (2.8) can be obtained by using Equation (2.9). The algorith-
mic procedure for evaluating c

∗
[Ka,Kd ]

is also shown in Appendix B. Let the risk free interest rate
be r f = 0.03, and let the maturity be 5 years. There are 4 periods in each year. In this setting,
the equilibrium unit premiums for various tranches are given in Table 2. In the first block of
Table 2, it can be seen that the underlying risk for the protection seller decreases as the tranche
interval shifts upwards, where the equilibrium unit premium decreases from 12.27% for [10,20]
to 1.30 bp for [40,50]. In the second block, Ka is fixed at Ka = 10 while Kd is changed from
20 to 50. The underlying risk for the protection seller also decreases as Kd increases, where
the equilibrium unit premium decreases from 12.27% for [10,20] to 1.55% for [10,50]. In the
third block, Ka is increased from 10 to 40 while Kd is fixed at Kd = 50. The underlying risk for
the protection seller again decreases along the direction of this change, where the equilibrium
unit premium decreases from 1.55% for [10,50] to 1.30 bp for [40,50]. These results suggest
the following.

1. The risk of the protection seller for the CDO model decreases as a tranche of the same
width shifts upward.

2. The above risk also decreases as the detachment point Kd increases while the attachment
point Ka is fixed.

13



3. A similar phenomenon to 2 is observed when the attachment point Ka increases while the
detachment point Kd is fixed.

Table 2: Numerical Results of Equilibrium Unit Premium of CDO’s

[Ka,Kd] [10,20] [20,30] [30,40] [40,50]
Unit premium 12.27% 2.60% 27.03 bp 1.30 bp

[Ka,Kd] [10,20] [10,30] [10,40] [10,50]
Unit premium 12.27% 3.66% 2.14% 1.55%

[Ka,Kd] [10,50] [20,50] [30,50] [40,50]
Unit premium 1.55% 54.16 bp 9.36 bp 1.30 bp
“bp” = basis point, i.e. 1 bp = 0.01%
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A Introduction of the Laguerre Transform Method as a Tool

of Numerical Inversion Laplace Transforms

In this section, the Laguerre transform method for numerical inversion of Laplace transforms
is succinctly summarized. We consider the Laguerre polynomials Ln(x) defined by

Ln(x) =
e

x

n!

�
d

dx

�n

(xn
e
−x) , n = 0,1,2, · · · (A.1)

and the associated Laguerre functions

�n(x) = e
−x/2Ln(x) . (A.2)

It is known that {�n(x)} constitute an orthonormal basis of L2(0,∞) = { f :
� ∞

0 f
2(x)dx < ∞},

i.e., the space of square integrable functions defined on [0,∞), see e.g. Szegö [18]. The inner
product defined on L2(0,∞) is � f ,g�=

� ∞
0 f (x)g(x)dx. Thus, one has that

��m, �n�=
� ∞

0
�m(x)�n(x)dx =

�
1 for m = n

0 else
. (A.3)

For any function f ∈ L2(0,∞), the Fourier-Laguerre expansion of f is given by

f (x) =
∞

∑
0

f
†
n �n(x) ; where f

†
n = � f , �n�=

� ∞

0
f (x)�n(x)dx . (A.4)

The second part of (A.4) follows from the orthonormality of {�n(x)}. Using this relation, a
function f ∈ L2(0,∞) is mapped onto a series { f

†
n }, which is called a sequence of the Laguerre

dagger coefficients. One can easily see that, if the Laguerre dagger coefficients are known, the
values of f (x) can be calculated easily via (A.4) based on the following recursion formula

�n+1(x) =
1

n+1

�
(2n+1− x)�n(x)−n�n−1(x)

�
, n = 2,3, · · · (A.5)

starting with �0(x) = e
−x/2 and �1(x) = (1− x)e−x/2.

Let the Laplace transform of f (x) be ϕ(w)=
� ∞

0 e
−wx

f (x)dx, and define T
†
f
(u)=∑∞

n=0 f
†
n u

n.
It then follows that

T
†
f
(u) =

1
1−u

ϕ
�1

2
1+u

1−u

�
. (A.6)

Given the Laguerre dagger coefficients { f
†
n } of function f , we define the Laguerre sharp coef-

ficients { f
#
n } as follows

f
#
0 = f

†
0 , f

#
n = f

†
n − f

†
n−1 (n = 1,2, · · ·) ; f

†
n =

n

∑
m=0

f
#
m . (A.7)

From Equation (A.6), one has

T
#
f (u) =

∞

∑
n=0

f
#
n u

n = ϕ
�1

2
1+u

1−u

�
. (A.8)
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It is shown by Keilson and Nunn [6] that using Equation (A.8), the continuum convolution of
two functions can be calculated through discrete convolution of their Laguerre sharp coeffi-
cients. More specifically, for ( f ∗g)(x) =

�
x

0 f (x− y)g(y)dy, one has ϕ f∗g(w) = ϕ f (w)ϕg(w),
where ϕ f∗g(w),ϕ f (w) and ϕg(w) denote the Laplace transforms of ( f ∗ g)(x), f (x) and g(x)
respectively, so that

T
#
f∗g(u) = T

#
f (u)T

#
g (u)

or equivalently

( f ∗g)#
n =

n

∑
m=0

f
#
n−mg

#
m . (A.9)

Use Equation (A.9), one can easily calculate the Laguerre sharp coefficient {( f ∗g)#
n} if { f

#
n }

and {g
#
n} are known, and then inverting via Equation (A.7) and the series expansion in (A.4).

Similarly, many other continuum operations are also mapped into lattice operations, including
differentiation and integration. In what follows, some of these operational properties used in
this paper are summarized.

Theorem A.1 (Moment Formula). Let f (x) be a non-negative p.d.f. with Laguerre sharp coef-

ficients { f
#
n }. Let M(i) =

� ∞
0 x

i
f (x)dx, one has

M(i) = 4i

∞

∑
n=0

(−1)n
n

i
f

#
n , 0 ≤ i ≤ 2 . (A.10)

Theorem A.2 (Convolution and Integration). Consider r, f ,g ∈ L2(0,∞) with Laguerre sharp

coefficients {r
#
n},{ f

#
n } and {g

#
n} respectively. Then,

1. r(x) =
�

x

0 f (x− y)g(y)dy ⇔ r
#
n = ∑n

m=0 f
#
n−mg

#
m ;

2. r(x) =
� ∞

x
f (x)dx ⇔ r

#
0 −2−2 f

#
0 +4∑∞

m=0(−1)m
f

#
m

r
#
n −2 f

#
n +4∑∞

m=0(−1)m
f

#
m+n , n ≥ 1 .

Matrix Laguerre Transfrom The Laguerre transform is extended to matrix functions by
Sumita [12, 13]. For a K ×K matrix function a(x) = [ai j(x)], let L2(0,∞) = {a(x) : ai j(x) ∈
L2(0,∞)}. The space L2(0,∞) has inner product

�a(x),b(x)�= 1
K

� ∞

0
tr{a(x)b(x)�}dx . (A.11)

The set of matrix function �
n
(x) with �

n
(x) = �n(x)I becomes an orthonormal basis of L2(0,∞)

in the following sence. There exists a unique sequence of the Laguerre dagger coefficient
matrices {a

†
n
} such that

a(x) =
∞

∑
n=0

a
†
n
�

n
(x) ; a

†
n
= �a(x), �

n
(x)�=

� ∞

0
a(x)�

n
(x)dx . (A.12)

Similar to the one dimensional case, the matrix Laplace transform α(w) =
� ∞

0 e
−wx

a(x)dx has
the relations that

T
†
a
(u) =

∞

∑
n=0

a
†
n
u

n =
1

1−u
α
�1

2
1+u

1−u

�
, (A.13)
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and

T
#
a
(u) =

∞

∑
n=0

a
#
n
u

n = α
�1

2
1+u

1−u

�
, (A.14)

where a
#
n
= a

†
n
−a

†
n−1.

Bivariate Laguerre Transfrom The bivariate version of the Laguerre transform is intro-
duced in Sumita and Kijima [15]. Let L2(R2

+) = { f :
��

R2
+

f
2(x,y)dxdy < ∞} and define

�mn(x,y) = �m(x)�n(y) , 0 ≤ x,y < ∞ . (A.15)

It is then easy to see that {�mn(x,y)} is an orthonormal basis of L2(R2
+). For any f ∈ L2(R2

+),
the Laguerre dagger coefficients { f

†
mn} and the Laguerre sharp coefficients { f

#
mn} are given by

f
†
mn = � f , �mn�=

��

R2
+

f (x,y)�mn(x,y)dxdy , (A.16)

f
#
mn = f

†
mn − f

†
m,n−1 − f

†
m−1,n + f

†
m−1,n−1 . (A.17)

One then has

f (x,y) =
∞

∑
n=0

∞

∑
m=0

f
†
mn�mn(x,y) . (A.18)

Define the double Laplace transform ϕ(w,s) =
��

R2
+

e
−wx

e
−sy

f (x,y)dxdy, it follows that

T
†(u,v) =

∞

∑
n=0

∞

∑
m=0

f
†
mnu

m
v

n =
1

1−u

1
1− v

ϕ
�1

2
1+u

1−u
,
1
2

1+ v

1− v

�
, (A.19)

T
#(u,v) =

∞

∑
n=0

∞

∑
m=0

f
#
mnu

m
v

n = ϕ
�1

2
1+u

1−u
,
1
2

1+ v

1− v

�
. (A.20)

Theorem A.3 (Bivariate Matrix Convolution and Integration). Let a(x,y), b(x,y), c(x,y) ∈
L2(R

2
+) has matrix Laguerre coefficients {a

†
mn
}, {a

#
mn
}, {b

†
mn
}, {b

#
mn
}, {c

†
mn
} and {c

#
mn
} re-

spectively. Then,

1. a(x,y) =
�

x

0
� y

0 b(x− x
�,y− y

�)c(x�,y�)dx
�
dy

�

⇔ a
#
mn

= ∑m

i=0 ∑n

j=0 b
#
m−i,n− j

c
#
i, j

;

2. a(x,y) =
� ∞

x
b(x�,y)dx

� ⇔ a
†
mn

= 2∑∞
i=m+1 ∑n

j=0(−1)m+i
b

#
i j

;

3. a(x,y) =
� ∞

y
b(x,y�)dy

� ⇔ a
†
mn

= 2∑m

i=0 ∑∞
j=n+1(−1)n+ j

b
#
i j

.

At the last of this section, we summarize the Laguerre coefficients of exponential density in
a simple closed form, which are often appeared in applied probability theory.
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Exponential Density The p.d.f. of an exponential density function having mean µ−1 is de-
noted by

e(µ;x) = µe
−µx , x ≥ 0, µ > 0 ,

and the corresponding Laguerre dagger coefficients {e
†
n(µ)} is given as

e
†
n(µ) =

2µ
2µ +1

�2µ −1
2µ +1

�n

, n ≥ 0 . (A.21)

B Algorithms in Section 4

In this section, provided are the numerical algorithms for evaluating the probability mass func-
tion z0(t) and the p.d.f. fZ+(z, t) discussed in Section 3, as well as the equilibrium unit premium
c
∗
[Ka,Kd ]

represented by Equation (2.8) in Section 2.
For numerical evaluation, the infinite series’ involved in (3.12) through (3.15) have to be

truncated. Let K and L be the truncation points determined as

�ζ0(s) = p
�(0)×

�
I +

L

∑
�=1

�
αi j(s+λi)

��
i, j∈J

�
×
�

1−αi(s+λi)

s+λi

�

i∈J

, (B.1)

�ζ+(r,s) = p
�(0)×

�
I +

L

∑
�=1

�β
+

�
s1,θ M(r)

��
�
× �β

∗

+:D

�
s1,θ M(r)

�
×1 , (B.2)

with

��β+:i j

�
s,θM:i(r)

�
=

K

∑
k=1

θ k

M:i(r)
� ∞

0
e
−st

ai j(t)e
−λit

(λit)k

k!
dt , (B.3)

and

��β
∗

+:i

�
s,θM:i(r)

�
=

K

∑
k=1

θ k

M:i(r)
� ∞

0
e
−st

Āi(t)e
−λit

(λit)k

k!
dt . (B.4)

K and L are determined so as to achieve the accuracy of ε for the first two moments of the size
of each default, which is exponentially distributed with parameter µ based on (A.10).

We are now in a position to describe the main algorithm. The following operators are
employed.

Definition B.1.

MMT1 : MMT1
��

fn

�
n:N

�
= 4

N

∑
n=0

(−1)n
n fn

MMT2 : MMT2
��

fn

�
n:N

�
= 42

N

∑
n=0

(−1)n
n

2
fn
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CONV :
�

cn

�
n:N = CONV

��
an

�
n:N ,

�
bn

�
n:N

�
⇔ cn =

n

∑
m=0

an−mbm

CONVK

i=1

��
fi:n

�
n:N

�
= CONV

�
CONVK−1

i=1

��
fi:n

�
n:N

�
,
�

fK:n
�

n:N

��

PSUM :
�

bn

�
n:N = PSUM

��
an

�
n:N

�
⇔ bn =

n

∑
m=0

am

OUTP :
�

c(m,n)

�
mn:MN

= OUTP
��

am

�
m:M,

�
bn

�
n:N

�
⇔ c(m,n) = ambn

BDIFF :
�

b(m,n)

�
mn:MN

= BDIFF
��

a(m,n)

�
mn:MN

�

⇔ b(m,n) = a(m,n)−a(m−1,n)−a(m,n−1) +a(m−1,n−1)

VCONV :
�

cn

�
n:N = VCONV

��
an

�
n:N ,

�
bn

�
n:N

�
⇔ cn =

n

∑
m=0

a
�
n−mbm

VBCONV :
�

c(m,n)

�
mn:MN

= VBCONV
��

a(m,n)

�
mn:MN

,
�

b(m,n)

�
mn:MN

�

⇔ c(m,n) =
m

∑
i=0

n

∑
j=0

a
�
(m−i,n− j)b(i, j)

VMCONV :
�

cn

�
n:N = VMCONV

��
an

�
n:N ,

�
b

n

�
n:N

�
⇔ c

�
n =

n

∑
m=0

a
�
n−mb

m

VMBCONV :
�

c(m,n)

�
mn:MN

= VMBCONV
��

a(m,n)

�
mn:MN

,
�

b
(m,n)

�
mn:MN

�

⇔ c
�
(m,n) =

m

∑
i=0

n

∑
j=0

a
�
(m−i,n− j)b(i, j)

BPSUM :
�

b(m,n)

�
mn:MN

= BPSUM
��

a(m,n)

�
mn:MN

�
⇔ b(m,n) =

m

∑
i=0

n

∑
j=0

a(i, j)

BINNP : BINNP
��

a(m,n)

�
mn:MN

,
�

b(m,n)

�
mn:MN

�
=

M

∑
m=0

N

∑
n=0

a(m,n)b(m,n)

MSUV :
�

b(m,n)

�
mn:MN

= MSUV
��

a(m,n)

�
mn:MN

�

⇔ b(m,n) = 2
M

∑
i=m+1

n

∑
j=0

(−1)m+i
a(i, j)
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In what follows, the algorithm of evaluating z0(t) and fZ+(z, t) is provided.

Algorithm B.2 Evaluating z0(t) and fZ+(z, t) for given K and L

Input: p(0),
�

y
†
i:m

�
m:M,

�
y

#
i:m

�
m:M,

�
a

†
k:i j:n

�
n:N ,

�
a

#
k:i j:n

�
n:N ,

�
Ā

†
k:i:n

�
n:N ,

�
Ā

#
k:i:n

�
n:N (i, j ∈J ,

1 ≤ k ≤ K), εM,εN , z, t
Output: z0(t) and fZ+(z, t)
Procedure:

STEP 1: Preparation
1: Fix K and L

2: Initialize M and N

STEP 2: Determine M

1: Evaluate the following two variable from mathematical moments of YM:i:•
E

1
i:M = K(L+1)E[YM:i:•]

E
2
i:M = K(L+1)Var[YM:i:•]+K

2(L+1)2E[YM:i:•]
2

2: Evaluate the corresponding approximations from the Laguerre coefficients�
y

#:KL

i:m
�

m:M = CONVK(L+1)
k=1

��
y

#
i:m

�
m:M

�

�E1
i:M = MMT1

��
y

#:KL

i:m
�

m:M

�
, �E2

i:M = MMT2
��

y
#:KL

i:m
�

m:M

�

3: while max
i∈J

�
�E1

i:M −E
1
i:M, �E2

i:M −E
2
i:M

�
> εM do

4: M = M+1
5: Reevaluate

�
y

#
i:m

�
m:M

6: Update
�

y
#:KL

i:m
�

m:M and reevaluate �E1
i:M, �E2

i:M
7: end while

STEP 3: Determine N

1: Evaluate the following two variable

E
1
i:N = (L+1)

� ∞

0
t ai(t)e

−λit
(λit)K

K!
dt

E
2
i:N = (L+1)

� ∞

0
t
2

ai(t)e
−λit

(λit)K

K!
dt

2: Evaluate the corresponding approximations from the Laguerre coefficients�
a

#:KL

K:i j:n
�

n:N = CONV(L+1)
�=1

��
a

#
K:i j:n

�
n:N

�

�E1
i:N = MMT1

��
a

#:KL

K:i j:n
�

n:N

�
, �E2

i:N = MMT2
��

a
#:KL

K:i j:n
�

n:N

�

3: while max
i∈J

�
�E1

i:N −E
1
i:N , �E2

i:N −E
2
i:N

�
> εN do

4: N = N +1
5: Reevaluate

�
a

#
K:i j:n

�
n:N

6: Update
�

a
#:KL

K:i j:n
�

n:N and reevaluate �E1
i:N , �E2

i:N
7: end while

STEP 4: Evaluate
�

b
#
+:(m,n)

�
mn:MN

and
�

b
∗#
+:(m,n)

�
mn:MN

1: Evaluate
�

b
#
+:i j:(m,n)

�
mn:MN

and
�

b
∗#
+:i:(m,n)

�
mn:MN

for i ∈ J
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�
b

†
+:i j:(m,n)

�
mn:MN

=
K

∑
k=0

OUTP
�

PSUM
�

CONVk

q=1

��
y

#
i:m

�
m:M

��
,PSUM

��
a

#
k:i j:n

�
n:N

��

�
b

#
+:i j:(m,n)

�
mn:MN

= BDIFF
��

b
†
i j:(m,n)

�
mn:MN

�

�
b
∗†
+:i:(m,n)

�
mn:MN

=
K

∑
k=0

OUTP
�

PSUM
�

CONVk

q=1

��
y

#
i:m

�
m:M

��
,PSUM

��
Ā
∗#
k:i:n

�
n:N

��

�
b
∗#
i:(m,n)

�
mn:MN

= BDIFF
��

b
∗†
i:(m,n)

�
mn:MN

�

2: Construct
�

b
#
+:(m,n)

�
mn:MN

and
�

b
∗#
+:(m,n)

�
mn:MN

STEP 5: Evaluate z0(t) and fZ+(z, t)

1: Evaluate
�

π#
0:n

�
n:N ,

�
Π#

0:n
�

n:N ,
�

π#
+:(m,n)

�
mn:MN

and
�

Π#
+:(m,n)

�
mn:MN

π#�
0:n(1) = p

�(0) ·a#
0:n , n = 0,1, · · · ,N

�
π#

0:n(�)
�

n:N = VMCONV
��

π#
0:n(�−1)

�
n:N ,

�
a

#
0:n

�
n:N

�

�
π#�

0:n
�

n:N =
L

∑
�=1

�
π#

0:n(�)
�

n:N

Π#
0:n = p

�(0) · Ā#
0:n , n = 0,1, · · · ,N

π#�
+:(m,n)(1) = p

�(0) ·b#
+:(m,n)

, m = 0,1, · · · ,M, n = 0,1, · · · ,N
�

π#
+:(m,n)(�)

�
mn:MN

= VMBCONV
��

π#
+:(m,n)(�−1)

�
mn:MN

,
�

b
#
+:(m,n)

�
mn:MN

�

�
π#
+:(m,n)

�
mn:MN

=
L

∑
�=1

�
π#
+:(m,n)(�)

�
mn:MN

Π#
+:(m,n) = p

�(0) ·b∗#
+:(m,n) , m = 0,1, · · · ,M, n = 0,1, · · · ,N

2: Evaluate
�

z
#
0:n

�
n:N�

z
#
0:n

�
n:N =

�
Π#

0:n
�

n:N +VCONV
��

π#
0:n

�
n:N ,

�
Ā

#
0:n

�
n:N

�

3: Evaluate
�

z
#
+:(m,n)

�
mn:MN�

z
#
+:(m,n)

�
mn:MN

=
�

Π#
+:(m,n)

�
mn:MN

+VBCONV
��

π#
+:(m,n)

�
mn:MN

,
�

b
∗#
+:(m,n)

�
mn:MN

�

4: Evaluate z0(t)

z0(t) = INNP
�

PSUM
��

z
#
0:n

�
n:N

�
,
�
�n(t)

�
n:N

�

5: Evaluate fZ+(z, t)

fZ+(z, t) = BINNP
�

BPSUM
��

z
#
+:(m,n)

�
mn:MN

�
,
�
�(m,n)(z, t)

�
mn:MN

�

where �(m,n)(z, t) = �m(z)�n(t)

This algorithm enables one to evaluate the survival function of Z(t). Let

F̄Z(z, t) =

�
P
�
Z(t)> z

�
for z > 0

P
�
Z(t)> 0

�
+ z0(t) for z = 0

. (B.5)

Let
�

z̄
†
(m,n)

�
mn:MN

be defined as

�
z̄

†
(m,n)

�
mn:MN

= MSUV
��

z
#
+:(m,n)

�
mn:MN

�
,
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one then has

F̄Z(z, t) =





BINNP

��
z̄

†
(m,n)

�
mn:MN

,
�
�(m,n)(z, t)

�
mn:MN

�
for z > 0

BINNP
��

z̄
†
(m,n)

�
mn:MN

,
�
�(m,n)(0, t)

�
mn:MN

�
+ z0(t) for z = 0

. (B.6)

Similarly, the expectation E
�
L[Ka,Kd ](t)

�
in Equation (2.9) can be obtained by

E
�
L[Ka,Kd ](t)

�
= BINNP

�
MSUV

�
BDIFF

��
z̄

†
(m,n)

�
mn:MN

��
,
�
�(m,n)(Ka, t)

�
mn:MN

�

+ BINNP
�

MSUV
�

BDIFF
��

z̄
†
(m,n)

�
mn:MN

��
,
�
�(m,n)(Kd, t)

�
mn:MN

�

+ KaF̄Z(Kd, t) . (B.7)

Then, one can evaluate the equilibrium unit premium c
∗
[Ka,Kd ]

in Equation (2.8) by using (B.7)
repeatedly.
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