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Abstract

The unified multivariate counting process (UMCP), previously studied by the same authors,
enables one to describe most of the existing counting processes in terms of its components, thereby
providing a comprehensive view for such processes often defined separately and differently. The
purpose of this paper is to study a multivariate reward process defined on the UMCP. By examining
the probabilistic flow in its state space, various transform results are obtained. The asymptotic
behavior, as t →∞, of the expected univariate reward process in a form of a product of components of
the multivariate reward process is studied. As an application, a manufacturing system is considered,
where the cumulative profit given a preventive maintenance policy is described as a univariate reward
process defined on the UMCP. The optimal preventive maintenance policy is derived numerically by
maximizing the cumulative profit over the time interval [0,T ].

Keywords unified multivariate counting process; multivariate reward process; transform results;
asymptotic analysis; preventive maintenance policy

1 Introduction

The history of counting processes can be traced back to 1950’s stemmed from introduction of Poisson
processes, see e.g. Feller [3] . Since then, many different counting processes have been introduced
in response to many different application needs, including non-homogeneous Poisson processes, re-
newal processes (see, e.g. Ross [19]), Markov-modulated Poisson processes (Heffes and Lucantoni [4]),
Markov renewal processes (Pyke [16, 17], Keilson [6, 7], Keilson and Wishart [8, 9]), Markovian ar-
rival processes (Lucantoni, Meier-Hellstern and Neuts [11], Lucantoni [10]) and other age-dependent
counting processes (Masuda and Sumita [13], Sumita and Shanthikumar [24]), to name a few. Such
counting processes have been introduced separately with different motivations. Accordingly, they seem
to be quite different on the surface.

In order to provide a comprehensive view over such different counting processes, a unified multi-
variate counting process (UMCP) is introduced in Sumita and Huang [22], where the UMCP enables
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one to describe most of the existing counting processes in terms of its components. More specifically, a
stochastic system is considered, where a semi-Markov process J(t) defined on J = {0,1, · · · ,J} consti-
tutes the core process with the counting process Ni j(t) denoting the number of entries of J(t) from state
i ∈ J to state j ∈ J . Also incorporated is the counting process Mi(t) recording the number of arrivals
in state i ∈J , where such arrivals are generated by the non-homogeneous Poisson process governed by
the intensity function λi(x) depending on the current dwell time x of the semi-Markov process in state
J(t) = i ∈ J at time t.

As an application of the UMCP, a manufacturing system with certain optimal preventive maintenance
policy is considered in [22], where the system degrades through multiple stages described by the state
of the semi-Markov process J(t) on J = {0, · · · ,J}. Here, state 0 is the perfect state, and the system
degrades gradually from 0 to J−1 with default rate increasing along this direction. State J corresponds
to the overhaul for the preventive maintenance, where the system is completely stopped but would be
brought back to the perfect state upon completion. The overhaul time would become stochastically
longer as J increases, that is, as the preventive maintenance is deferred. The total cost associated with
the preventive maintenance policy J is then given by the counting process NJ−1,J(t) with ψm ×NJ−1,J(t)
representing the overhaul cost and Mi(t) with ψd ×Mi(t) generating the scrap cost. However, the model
cannot cope with a more sophisticated revenue and cost structure, where revenues and costs may be
generated in continuous time depending on the state of J(t), as well as at the times of jumps of Ni j(t)
and Mi(t) with random increments.

In order to overcome this difficulty and expand the applicability of the UMCP, this paper introduces
a multivariate reward process Z(t) defined on the UMCP. By examining the probabilistic flow in the
state space of Z(t), various transform results are obtained. The asymptotic behavior, as t → ∞, of the ex-
pected univariate reward process in a form of a product of components of the multivariate reward process
is studied. As an application, the manufacturing system considered above is revisited, where the cumu-
lative profit given a preventive maintenance policy is described as a univariate reward process defined
on the UMCP with random jumps. The optimal preventive maintenance policy is derived numerically
by maximizing the cumulative profit over the time interval [0,T ].

The study of reward processes can be traced back to the 1950’s represented by the original paper
by Smith [20]. Subsequently, many papers have been published, including Jewell [5], McLean and
Neuts [15], and Pyke and Schaufele [18], to name only a few. The reader is referred to two excellent
survey papers by Çınlar [1, 2]. Of particular interest to this paper are the reward processes defined on a
semi-Markov process and the associated counting processes studied by Sumita and Masuda [23], Masuda
and Sumita [14] and Masuda [12]. More recently, Stefanov [21] provides some interesting transform
results, linking reward functions accumulated in a deterministic time interval with those accumulated
within first passage times of the underlying Markov chain or the semi-Markov process.

In what follows, we succinctly summarize Sumita and Masuda [23], Masuda and Sumita [14] and
Masuda [12]. Let Z(t) be a reward process associated with a semi-Markov process J(t) on J =
{0, · · · ,J}, where Z(t) is characterized by a state dependent reward rate function ρ : J →R. Formally,
Z(t) can be written as

Z(t) =
� t

0
ρ
�
J(τ)

�
dτ . (1.1)

Let X(t) be the age process of J(t) describing the elapsed time until time t since the last transition into
the current state. By analyzing the trivariate process [J(t),X(t),Z(t)], various transform results have
been obtained in [23], yielding the asymptotic expansions of the first two moments of Z(t) as t → ∞.
Also analyzed are the reward accumulated during a first passage time of J(t) and the first passage time of
Z(t) itself. Masuda and Sumita [14] extend the model in [23] to a multivariate setting. More specifically,
a multivariate reward process Z(t) = [Z1(t),Z2(t), · · · ,ZK(T )]� is considered, where

Z(t) =
� t

0
ρ
�
J(τ)

�
dτ , (1.2)

2



possibly with Zk(t), k = 1,2, · · · ,K, depending on each other. In Masuda [12], this process is further
extended by incorporating random jumps at transition epochs of the underlying semi-Markov process
J(t).

The purpose of this paper is to introduce a multivariate reward process Z(t)= [Z1(t),Z2(t), · · · ,ZK(T )]�

defined on the UMCP, possibly with random jumps at the times of the transitions of the UMCP. Since
the UMCP unifies various counting processes, this multivariate reward process enables one to treat all
of the above reward processes as special cases. Furthermore, some new reward processes can also be
introduced. As an application, the optimal preventive maintenance policy problem discussed in Sumita
and Huang [22] will be revisited, where the multivariate reward process allows one to introduce revenues
and costs generated in continuous time as well as random increments of the cost at jump epochs of the
UMCP. By applying the asymptotic expansion of E

�
∏K

k=1 Zk(t)
�
, numerical examples are provided for

demonstrating how the optimal maintenance policy could be obtained in this new context.
Throughout the paper, vectors and matrices are underlined and double underlined respectively, e.g.

u and v. The vector of having all components equal to 1 is denoted by 1. Furthermore, 1i is the vector
having all components equal to 0 except that the i-th component is 1. Similarly, 1i j is the matrix having
all components equal to 0 except that the (i, j) component is 1. The indicator function δ{Statement} takes
the value of 1 if Statement holds true and 0 otherwise.

The structure of this paper is as follows. In Section 2, the UMCP is formally introduced and the
multivariate reward process Z(t) defined on the UMCP is described in detail. Dynamic analysis of
the multivariate stochastic system involving the UMCP and Z(t) is provided in Section 3, and various
transform results are obtained. Based on these transform results, Section 4 analyzes the asymptotic
behavior of E

�
∏K

k=1 Zk(t)
�

as t → ∞. The optimal preventive maintenance policy problem is discussed
in Section 5, and numerical examples are presented in Section 6.

2 Model Description

Let {J(t) : t ≥ 0} be a semi-Markov process on J = {0, · · · ,J}, and define the age process X(t)
as the elapsed time until time t since the last transition of J(t) into the current state. Two types of
multivariate counting processes are considered, where a matrix counting process N(t) = [Ni j(t)] de-
scribes the number of transitions of J(t) from i ∈ J to j ∈ J in [0, t], and a vector counting process
M(t) = [M0(t), · · · ,MJ(t)]� represents the number of arrivals of certain items in state i ∈ J in [0, t].
Given that J(t) = i and X(t) = x at time t, it is assumed that the counting process Mi(t) is a non-
homogeneous Poisson process governed by the intensity function λi(x). The multivariate stochastic
process [M(t),N(t)] enables one to describe a variety of counting processes in a unified manner, e.g.

Ni(t)
def
= ∑�∈J N�i(t) denotes the number of entries of J(t) into state i by time t, and ∑i∈A Mi(t) with

A ⊂J may describe the number of defects generated in states A . Indeed, it has been shown in Sumita
and Huang [22] that many known counting processes can be expressed in terms of [M(t),N(t)]. Because
of this, [M(t),N(t)] is called the unified multivariate counting process (UMCP) and is analyzed exten-
sively in [22]. In this section, we formally introduce a multivariate reward process associated with J(t)
and [M(t),N(t)], which would further strengthen the applicability of the UMCP as we will see.

In order to facilitate our analysis, we assume that the semi-Markov process J(t) is governed by a
matrix cumulative distribution function (c.d.f.) A(x) = [Ai j(x)] , which is assumed to be absolutely
continuous with the matrix probability density function (p.d.f.) a(x) = [ai j(x)] = d

dx A(x) . It should be
noted that, if we define Ai(x) and Āi(x) by

Ai(x) = ∑
j∈J

Ai j(x) ; Āi(x) = 1−Ai(x) ,

then Ai(x) is the c.d.f. and Āi(x) is the corresponding survival function of the dwell time of J(t) in
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state i. The hazard rate functions associated with the semi-Markov process are then defined as ηi j(x) =
ai j(x)
Āi(x)

, i, j ∈ J . The Laplace transform of a(x) is denoted by α(w) =
� ∞

0 e−wxa(x)dx .

For notational convenience, the transition epochs of the semi-Markov process are denoted by τn,n ≥
0, with τ0 = 0. The age process X(t) associated with the semi-Markov process is then defined as X(t) =
t −max{τn : 0 ≤ τn ≤ t}. For the cumulative arrival intensity function Li(x) in state i, one has Li(x) =� x

0 λi(y)dy . The probability of observing k arrivals in state i within the current age of x can then be
obtained as

gi(x,k) = e−Li(x) Li(x)k

k!
, k = 0,1,2, · · · , i ∈ J .

Let Z(t) = [Z1(t),Z2(t), · · · ,ZK(t)]� be a multivariate stochastic process defined on RK given by

Z(t) =
� t

0
ρ
�
J(τ)

�
dτ + ∑

i∈J

Mi(t)

∑
d=1

Y M:i:d + ∑
i∈J

∑
j∈J

Ni j(t)

∑
d=1

Y N:i j:d , (2.1)

where ρ(i) denotes the multivariate reward rate function while the underlying semi-Markov process J(t)
is in state i ∈ J . Y M:i:d and Y N:i j:d represent the vector valued random jumps associated with the d-th
arrival of Mi(t) in state i and the d-th jump of Ni j(t) describing transitions of J(t) from state i to state j,
respectively. Throughout this paper, we assume that Y M:i:d are i.i.d. with respect to d, and so are Y N:i j:d .
We note that Zk(t), k = 1,2, · · · ,K are not independent. A typical sample path of the marginal reward
process Zk(t), k = 1,2, · · · ,K, is depicted in Figure 1.

states

i

j

k

J(t)

Zk(t)

ρ(i) ρ(j) ρ(i) ρ(k) ρ(j)
ρ(J(t))

t
0

: item arrivals

Figure 1: Typical Sample Path of the Univariate Reward Process Zk(t)

3 Dynamic Analysis

The purpose of this section is to derive the transform results of the multivariate reward process Z(t)
through dynamic analysis. The method of supplementary variables would be employed together with
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the Laplace transform – generating function approach. More specifically, since Z(t) is not Markov,
we consider the multivariate stochastic process

�
J(t),X(t),M(t),N(t),Z(t)

�
defined on the state space

S = J ×R+×ZJ+1
+ ×Z(J+1)×(J+1)

+ ×RK , which is now Markov. Let Fi j(x,m,n,z, t) be the conditional
joint distribution function defined by

Fi j(x,m,n,z, t) = P
�
J(t) = j,X(t)≤ x,M(t) = m,N(t) = n,Z(t)≤ z

���

J(0) = i,M(0) = 0,N(0) = 0
�
. (3.1)

The following notation would be employed concerning the distributions of Y M:i:d and Y N:i j:d for all
d = 1,2, · · · .

ϒM:i(z) = P
�
Y M:i:d ≤ z

�
; ϒN:i j(z) = P

�
Y N:i j:d ≤ z

�
(3.2)

YM:i(z) =
∂ K

∂ z
ϒM:i(z) ; YN:i j(z) =

∂ K

∂ z
ϒN:i j(z) (3.3)

θM:i(r) =
�

RK
e−r�z

YM:i(z)dz ; θN:i j(r) =
�

RK
e−r�z

YN:i j(z)dz (3.4)

Here,
∂ K

∂ z
means that

∂ K

∂ z
=

∂
∂ zK

∂
∂ zK−1

· · · ∂
∂ z1

and
�

RK
f (z)dz =

�

R
· · ·

�

R
f (z)dz1 · · ·dzK .

In order to assure the differentiability of Fi j(x,m,n,z, t) with respect to x and z, we suppose that X(0)
and Z(0) has absolutely continuous c.d.f.s HX(x) and HZ(z) with p.d.f.s hX(x) and hZ(z) respectively,
i.e.,

HX(x) = P[X(0)≤ x] ; hX(x) =
d
dx

HX(x) ,

HZ(z) = P[Z(0)≤ z] ; hZ(z) =
∂ K

∂ z
HZ(z) .

One can then define the joint probability density function fi j(x,m,n,z, t) given by

fi j(x,m,n,z, t) =
∂ (K+1)

∂x∂ z
Fi j(x,m,n,z, t) . (3.5)

By examining the probabilistic flow of the multivariate process
�
J(t),X(t),M(t),N(t), Z(t)

�
in its

state space, one can establish the following equations:

fi j(x,m,n,z,0) = δ{i= j}δ{m=0}δ{n=0}hX(x)hZ(z) , (3.6)

fi j(x,m,n,z, t) = δ{i= j}δ{m=mi1i}δ{n=0}hX(x− t) ·A(t) · Āi(x)
Āi(x− t)

gi(t,mi)

+
�

1−δ{n=0}

� m j

∑
k=0

�
Bk(x, t) · Ā j(x)g j(x,k)

�
, (3.7)

fi j(0+,m,n,z, t) =
�

1−δ{n=0}

�
∑
�∈J

C�(x, t) , (3.8)
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where

A(t) =
�

RK
· · ·

�

RK� �� �
mi

hZ

�
z−ρ(i)t −

mi

∑
d=1

zM:i:d

� mi

∏
d=1

YM:i(zM:i:d)dzM:i:1 · · ·dzM:i:mi� �� �
mi

, (3.9)

Bk(x, t) =
�

RK
· · ·

�

RK� �� �
k

fi j

�
0+,m− k1 j,n,z−ρ( j)x−

m j

∑
d=m j−k+1

zM: j:d , t − x
�

×
m j

∏
d=m j−k+1

YM: j(zM: j:d)dzM: j:m j−k+1 · · ·dzM: j:m j� �� �
k

, (3.10)

C�(x, t) =
�

RK

� ∞

0
fi�

�
x,m,n−1

� j,z− zN:� j:n� j
, t
�
YN:� j(zN:� j:n� j

)η� j(x)dxdzN:� j:n� j
. (3.11)

Equation (3.6) describes the initial condition at time t = 0 with M(0) = 0, N(0) = 0 and i = j. The
first term on the right hand side of Equation (3.7) represents the following scenario. During the time
interval (0, t], the underlying semi-Markov process J(t) has not left its initial state i, and there has been
mi arrivals of Mi(·). Furthermore, the current age in state i at time t is x with the cumulative reward in
the interval (0, t] described by A(t). For the second term on the right hand side of Equation (3.7), we
focus on the probabilistic flow of the multivariate process

�
J(t),X(t),M(t),N(t), Z(t)

�
. For this process

to be in state [m,n,z,x, t] at time t having at least one transition of the semi-Markov process occurred in
(0, t] with J(t) = j, the semi-Markov process must have entered state j ∈ J at time t −x with [0+,m−
k1 j,n,z− ρ( j)x −∑m j

d=m j−k+1 zM: j:d , t − x], no transition of the semi-Markov process has occurred in
(t−x, t] with this probability being Ā j(x), there have been k arrivals of Mj(·) in (t−x, t] with probability
g j(x,k) for k = 0,1, · · · ,m j, and the reward of ρ( j)x +∑m j

d=m j−k+1 zM: j:d has been accumulated with
probability Bk(x, t), for k = 0,1, · · · ,m j.

Equation (3.8) describes the boundary condition for X(t) at x= 0+. Namely, the multivariate process�
J(t),X(t),M(t),N(t), Z(t)

�
can enter the state [0+,m,n,z, t] at time t with J(t) = j from [x,m,n−

1
� j,z− zN:� j:n� j

, t] with the state of the semi-Markov process being � ∈ J , only when the current age
expires with the hazard rate η� j(x) and the reward associated with this jump of the semi-Markov process
from � to j is zN:� j:n� j

which happens with the p.d.f. YN:� j(zN:� j:n� j
).

In order to solve the functional equations in (3.6) through (3.11), we introduce the following Laplace
transform generating functions.

β (w,m) =
�
βi j(w,m)

�
; βi j(w,m) =

� ∞

0
e−wxai j(x)gi(x,m)dx ,

�β (w,u) =
�
�βi j(wi,ui)

�
; �βi j(wi,ui) =

∞

∑
mi=0

βi j(wi,mi)umi
i , (3.12)

β ∗
D
(w,m) =

�
δ{i= j}β ∗

i (w,m)
�

; β ∗
i (w,m) =

� ∞

0
e−wxĀi(x)gi(x,m)dx ,

�β
∗

D
(w,u) =

�
δ{i= j}

�β ∗
i (wi,ui)

�
; �β ∗

i (wi,ui) =
∞

∑
mi=0

β ∗
i (wi,mi)umi

i , (3.13)

ξ (m,n,r,s) =
�
ξi j(m,n,r,s)

�
; ξi j(m,n,r,s) =

� ∞

0
e−st

�

RK
e−r�z fi j(0+,m,n,z, t)dzdt ,

�ξ (u,v,r,s) =
�
�ξi j(u,v,r,s)

�
; �ξi j(u,v,r,s) = ∑

n∈Z(J+1)2
+ \{0}

∑
m∈ZJ+1

+

ξi j(m,n,r,s)umvn ,
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ϕ(w,m,n,r,s) =
�
ϕi j(w,m,n,r,s)

�
;

ϕi j(w,m,n,r,s) =
� ∞

0
e−wx

� ∞

0
e−st

�

RK
e−r�z fi j(x,m,n,z, t)dzdt dx ,

�ϕ(w,u,v,r,s) =
�
�ϕi j(w,u,v,r,s)

�
; �ϕi j(w,u,v,r,s) = ∑

n∈Z(J+1)2
+

∑
m∈ZJ+1

+

ϕi j(w,m,n,r,s)umvn ,

where um = ∏
i∈J

umi
i and vn = ∏

{i, j}∈J 2\{(0,0)}
vni j

i j .

We are now in a position to establish the main theorem of this section. For notationally convenience,
the operator ⊗ is defined as the component-wise multiplication between two vectors or two matrices of
the same size, i.e. for a= [a1, · · · ,ai, · · ·an] and b= [b1, · · · ,bi, · · ·bn], we define a⊗b= [a1×b1, · · · ,ai×
bi, · · · ,an ×bn]. Similarly, for two matrices A = [ai j] and B = [bi j], we write A⊗B = [ai j ×bi j].

Theorem 3.1. Let X(0) = 0 and Z(0) = 0 with probability one. Then,

�ξ (u,v,r,s) =
�

v⊗θ N(r)⊗
�β
�

γ + s1,u⊗θ M(r)
��

×
�

I − v⊗θ N(r)⊗
�β
�

γ + s1,u⊗θ M(r)
��−1

;

�ϕ(w,u,v,r,s) =
�

I − v⊗θ N(r)⊗
�β
�

γ + s1,u⊗θ M(r)
��−1

× �β
∗

D

�
γ +(w+ s)1,u⊗θ M(r)

�
,

where γ = [γ0, · · · ,γJ]� with γi = r�ρ(i).

Proof. We first assume that X(0) and Z(0) have p.d.f.s hX(x) and hZ(z) respectively. Substituting Equa-
tions (3.6) and (3.7) into (3.8), one sees that

fi j(0+,m,n,z, t)

=
�

1−δ{n=0}

��
δ{m=mi1i}δ{n=1i j}

�

RK

�

RK
· · ·

�

RK� �� �
mi

hZ

�
z−ρ(i)t −

mi

∑
d=1

zM:i:d − zN:i j:ni j

�

×
mi

∏
d=1

YM:i(zM:i:d)YN:i j(zN:i j:ni j
) dzM:i:1 · · ·dzM:i:mi� �� �

mi

dzN:i j:ni j

× gi(t,mi)
� ∞

0
hX(x− t)

ai j(x)
Āi(x− t)

dx

�

+
�

1−δ{n=0}

�
∑
�∈J

�
1−δ{n=1i j}

� m�

∑
k=0

�� ∞

0

�

RK

�

RK
· · ·

�

RK� �� �
k

fi�

�
0+,m− r1�,n−1

� j,z−ρ(�)x−
m j

∑
d=m j−k+1

zM: j:d − zN:� j:n� j
, t − x

�

×
m j

∏
d=m j−k+1

YM: j(zM: j:d)YN:� j(zN:� j:n� j
) dzM: j:m j−k+1 · · ·dzM:i:m j� �� �

k

dzN:� j:n� j

× a� j(x)g�(x,k)dx

�
.
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By taking the Laplace transform of both sides of the above equation with respect to z and t, it follows
that

ξi j(m,n,r,s)

=
�

1−δ{n=0}

��
δ{m=mi1i}δ{n=1i j}

KZ(r)θM:i(r)mi θN:i j(r) ρ∗
i j

�
r�ρ(i)+ s,mi

�

+ ∑
�∈J

�
1−δ{n−1

� j}

� m�

∑
k=0

�
ξi�(m− r1

�
,n−1

� j,r,s)θM:�(r)k θN:� j(v)

× β� j

�
r�ρ(�)+ s,k

���
.

Multiplying um and vn to both sides and summing over m ≥ 0 and n ≥ 0, this equation then leads to

�ξ (u,v,r,s) = KZ(r) · v⊗θ N(r)⊗ �ρ∗
�

γ + s1,u⊗θ M(r)
�

+ �ξ (u,v,r,s)
�

v⊗θ N(r)⊗
�β
�

γ + s1,u⊗θ M(r)
��

,

which can be solved for �ξ (u,v,r,s), yielding

�ξ (u,v,r,s) = KZ(r)

�
v⊗θ N(r)⊗ �ρ∗

�
γ + s1,u⊗θ M(r)

��

×
�

I − v⊗θ N(r)⊗
�β
�

γ + s1,u⊗θ M(r)
��−1

. (3.14)

Let

εi(w,s,m) =
� ∞

0
e−wx

� ∞

0
e−sthX(x− t)

Āi(x)
Āi(x− t)

gi(t,m)dt dx , (3.15)

and define the diagonal matrix

�εD(w,s,u) =
�
δ{i= j}�εi(w,si,ui)

�
; �εi(w,si,ui) =

∞

∑
mi=0

εi(w,si,mi)umi
i . (3.16)

Through similar Laplace transform operations applied to (3.7), one finds that

ϕi j(w,m,n,r,s)

= δ{i= j}δ{m=mi1i}δ{n=0}KZ(r)θM:i(r)mi εi

�
w,r�ρ(i)+ s,mi

�

+
�

1−δ{n=0}

� m j

∑
k=0

θM: j(r)k ξi j(m− r1 j,n,r,s)β ∗
j

�
r�ρ( j)+w+ s,k

�
.

Taking the generating functions with respect to m and n as before, the following matrix equation can be
obtained.

�ϕ(w,u,v,r,s) = KZ(r)�εD

�
w,γ + s1,u⊗θ M((v))

�

+ �ξ (u,v,r,s) �β
∗

D

�
γ +(w+ s)1,u⊗θ M(r)

�
(3.17)
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We now consider a sequence of random variables X(0) converging to 0 in distribution, as well
as a sequence of random vectors Z(0) with convergence to 0 in distribution. In other words, we let
HX(x) → U(x) and HZ(z) → U(z), where U(x) and U(z) denotes the univariate and the multivariate
Heaviside step functions respectively, i.e. U(x) = 1 for x ≥ 0 and U(x) = 0 otherwise. Similarly,
U(z) = 1 for z ≥ 0 and U(z) = 0 otherwise. It then follows that KZ(r)→ 1, ρ∗

i j(s,m)→ βi j(s,m) and
εi(w,s,m)→ β ∗

i (w+ s,m). Substituting these into Equations (3.14) and (3.17), one sees that

�ξ (u,v,r,s) =

�
v⊗θ N(r)⊗

�β
�

γ + s1,u⊗θ M(r)
��

×
�

I − v⊗θ N(r)⊗
�β
�

γ + s1,u⊗θ M(r)
��−1

; (3.18)

�ϕ(w,u,v,r,s) =

�
I − v⊗θ N(r)⊗

�β
�

γ + s1,u⊗θ M(r)
��−1

× �β
∗

D

�
γ +(w+ s)1,u⊗θ M(r)

�
, (3.19)

completing the proof.

Theorem 3.1 is very informative because it contains all the knowledge about the joint distribution of
the multivariate process

�
J(t),X(t),M(t),N(t),Z(t)

�
. One can use this theorem, for example, to derive

the asymptotic behaviors as t → ∞ of the expectations of various processes expressed by Z(t), e.g.
E
�

∏K
k=1 Zk(t)

�
, as we will see.

Remark 3.2. We note that, when YM:i:d = 0 and YN:i j:d = 0, one has

Z(t) =
� t

0
ρ
�
J(τ)

�
dτ ,

so that �ϕ(w,1,1,r,s) of Theorem 3.1 is reduced to Theorem 2.1 of Masuda and Sumita [14]. With
random increments of the reward at the times of jumps of Ni j(t), by setting YM:i:d = 0, it can be seen that

Z(t) =
� t

0
ρ
�
J(τ)

�
dτ + ∑

i∈J

∑
j∈J

Ni j(t)

∑
d=1

Y N:i j:d ,

and �ϕ(0+,1,v,r,s) is also reduced to Equation (3.2) of Masuda [12], demonstrating that Theorem 3.1
generalizes the results of Masuda and Sumita [14] and Masuda [12].

4 Asymptotic Behavior of E
�

∏K
k=1 Zk(t)

�
as t → ∞

In this section, we discuss the asymptotic behavior of E
�

∏K
k=1 Zk(t)

�
as t → ∞. For notational conve-

nience, let Ad =
� ∞

0 xda(x)dx, d = 0,1,2, · · · , with �Ad�<∞ for 0≤ d ≤K+2, where K is the dimension
of vector Z(t). We assume that the Markov chain in discrete time governed by the stochastic matrix A0
is irreducible, where e� is the eigenvector of A0 with eigenvalue 1 so that e�A0 = e� and e�1 = 1. We
also define A∗

D:d =
� ∞

0 xdĀD(x)dx, d = 0,1,2, · · · with �A∗
D:d�< ∞ for 0 ≤ d ≤ K +2.

It has been seen in Theorem 3.1 that

�ϕ(w,u,v,r,s) =

�
I − v⊗θ N(r)⊗

�β
�

γ + s1,u⊗θ M(r)
��−1

× �β
∗

D

�
γ +(w+ s)1,u⊗θ M(r)

�
,
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where γ = [γ0, · · · ,γJ]� with γi = r�ρ(i). Let p(0) be an initial probability vector of J(0). It then follows
that

L

�
E
�
e−r�Z(t)

��
= p�(0)× �ϕ(0+,1,1,r,s)×1

= p�(0)×
�

I −θ N(r)⊗
�β
�

γ + s1,θ M(r)
��−1

× �β
∗

D

�
γ + s1,θ M(r)

�
×1 .

(4.1)

From Equations (3.4), (3.12) and (3.13), one has

θM:i(r) =
�

RK
e−r�z

YM:i(z)dz ; θN:i j(r) =
�

RK
e−r�z

YN:i j(z)dz ,

�βi j

�
r�ρ(i)+ s,θM:i(r)

�
=

� ∞

0
e−

�
r�ρ(i)+s

�
t e−Li(t)

�
1−θM:i(r)

�
ai j(t)dt ,

and

�β ∗
i

�
r�ρ(i)+ s,θM:i(r)

�
=

� ∞

0
e−

�
r�ρ(i)+s

�
t e−Li(t)

�
1−θM:i(r)

�
Āi(t)dt .

The first order partial derivatives of θM:i(r) and θN:i j(r) at r = 0 are then given by

ΘM:i
def
=

∂ K

∂ r
θM:i(r)

�����
r=0

= (−1)K
�

RK

K

∏
k=1

zk YM:i(z)dz ,

ΘN:i j
def
=

∂ K

∂ r
θN:i j(r)

�����
r=0

= (−1)K
�

RK

K

∏
k=1

zk YN:i j(z)dz .

Furthermore, the first order partial derivatives of �βi j

�
r�ρ(i)+ s,θM:i(r)

�
and �β ∗

i

�
r�ρ(i)+ s,θM:i(r)

�

at r = 0 are given as follows.

ξi j(s) =
∂ K

∂ r
�βi j

�
r�ρ(i)+ s,θM:i(r)

������
r=0

= (−1)K
K

∏
k=1

ρk(i)
� ∞

0
e−sttKai j(t)dt + ΘM:i

� ∞

0
e−stLi(t)ai j(t)dt (4.2)

ξ ∗
i (s) =

∂ K

∂ r
�β ∗

i

�
r�ρ(i)+ s,θM:i(r)

������
r=0

= (−1)K
K

∏
k=1

ρk(i)
� ∞

0
e−sttKĀi(t)dt + ΘM:i

� ∞

0
e−stLi(t)Āi(t)dt (4.3)

Let κ(i) = (−1)K ∏K
k=1 ρk(i) and define κD = diag{κ(i)}. Then Equations (4.2) and (4.3) can be

rewritten in matrix form as

ξ (s) = κD

� ∞

0
e−sttKa(t)dt + ΘM:D

� ∞

0
e−stLD(t)a(t)dt ,

ξ ∗
D
(s) = κD

� ∞

0
e−sttKĀD(t)dt + ΘM:D

� ∞

0
e−stLD(t)ĀD(t)dt .

10



From Equation (4.1), after a little algebra, one could see that

L

�
E
� K

∏
k=1

Zk(t)
��

= (−1)K ∂ K

∂ r
L

�
E
�
e−r�Z(t)

�������
r=0

= (−1)K p�(0)
�

I −α(s)
�−1�1

s

�
ΘN ⊗α(s)+ξ (s)

�
+ξ ∗

D
(s)

�
1 . (4.4)

By taking the Taylor expansion of the Laplace transform α(s) as s → 0+, one has

α(s) = A0 − sA1 +
s2

2
A2 +o(s2) . (4.5)

Let Φd =
� ∞

0 tdLD(t)a(t)dt and Φ∗
D:d =

� ∞
0 tdLD(t)ĀD(t)dt, d = 0,1,2, · · · . By taking the Taylor expan-

sion of ξ (s) and ξ ∗
D
(s) , it can be seen that, as s → 0+,

ξ (s) =
�

κD AK +ΘM:D Φ0

�
− s

�
κD AK+1 +ΘM:D Φ1

�
+

s2

2

�
κD AK+2 +ΘM:D Φ2

�
+o(s2) ,

(4.6)

ξ ∗
D
(s) =

�
κD A∗

D:K +ΘM:D Φ∗
D:0

�
− s

�
κD A∗

D:K+1 +ΘM:D Φ∗
D:1

�

+
s2

2

�
κD A∗

D:K+2 +ΘM:D Φ∗
D:2

�
+o(s2) . (4.7)

Of interest is the theorem of Keilson [7] stated as follows.

Theorem 4.1 (Keilson [7]). As s → 0+, one has
�

I −α(s)
�−1

=
1
s

H1 +H0 +o(1) , (4.8)

where

H1 =
1
m

1 e�, m = e�A11 ,

H0 = H1

�
−A1 +

1
2

A2H1

�
+
�

Z0 −H1A1Z0

��
A0 −A1H1

�
+ I , Z0 =

�
I −A0 +1 · e�

�−1
.

By applying this theorem to Equation (4.4), and then substituting (4.5), (4.6) and (4.7) into the result,
the following theorem holds true.

Theorem 4.2. Let p(0) be an initial probability vector of the underlying semi-Markov process J(t). As
t → ∞, one has

E
� K

∏
k=1

Zk(t)
�
= (−1)K

�
B1 × t + p�(0)×B0 ×1

�
+o(1) ,

where

B1 =
1

e�A11
e�

�
ΘN ⊗A0 +κDAK +ΘM:DΦ0

�
1 ,

B0 = H0

�
ΘN ⊗A0 +κDAK +ΘM:DΦ0

�
− H1

�
ΘN ⊗A1 +κD

�
AK+1 −A∗

D:K

�
+ΘM:D

�
Φ1 −Φ∗

D:0

��
.
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Theorem 4.2 is easy to be extended to the product form of any marginal process of Zk(t) for
k ∈ H where H is the arbitrary subset of {1, · · · ,K}. For notational convenience , the following
functions are defined. Let κD:H = diag{κH (i)} with κH (i) = (−1)|H | ∏k∈H ρk(i). By considering
rH =

�
δ{k∈H }rk

�
k∈{1,··· ,K}, it is shown that

ΘM:i:H
def
=

∂ K

∂ rH

θM:i(rH )

�����
rH =0

= (−1)|H |
�

R|H | ∏
k∈H

zk YM:i(z)dz ,

ΘN:i j:H
def
=

∂ K

∂ rH

θN:i j(rH )

�����
rH =0

= (−1)|H |
�

R|H | ∏
k∈H

zk YN:i j(z)dz ,

and ΘN:H =
�
ΘN:i j:H

�
i, j∈J

, ΘM:D:H = diag
�

ΘM:i:H
�

.

Corollary 4.3. Let H be an arbitrary subset of {1, · · · ,K} and ZH (t) be defined as

ZH (t) = ∏
k∈H

Zk(t) .

Let p(0) be an initial probability vector of the underlying semi-Markov process J(t). As t → ∞, one has

E
�
ZH (t)

�
= (−1)|H |

�
B1:H × t + p�(0)×B0:H ×1

�
+o(1) ,

where

B1:H =
1

e�A11
e�

�
ΘN:H ⊗A0 +κD:H A|H |+ΘM:D:H Φ0

�
1 ,

B0:H =
�

ΘN:H ⊗A0 +κD:H A|H |+ΘM:D:H Φ0

�

− H1

�
ΘN:H ⊗A1 +κD:H

�
A|H |+1 −A∗

D:|H |
�
+ΘM:D:H

�
Φ1 −Φ∗

D:0

��
.

The proof of Corollary 4.3 is similar to that of Theorem 4.2 and is omitted here.
In the next section, Theorem 4.2 is applied to the optimal preventive maintenance policy problem

with state dependent continuous revenues and costs, as well as random cost increments at the times of
jumps of Mi(t) and Ni j(t).

5 Optimal Preventive Maintenance Policy Problem

We consider a manufacturing system with a certain maintenance policy, where the system starts with
the perfect state at time t = 0, and tends to degrade, generating product defects more often, as time goes
by. When the system reaches a certain state, the manufacturing system would be overhauled completely
and the system returns to the perfect state. More specifically, let J(t) be a semi-Markov process on
J = {0,1,2, · · · ,J} governed by A(x), describing the system state at time t where state 0 is the perfect
state and state J is the maintenance state. When the system is in state j, 1≤ j ≤ J−1, product defects are
generated according to an NHPP with intensity λ j(x). It is assumed that the system deteriorates mono-
tonically and accordingly λ j(x) increases as a function of both x and j. When the system reaches state J,
the manufacturing operation is stopped and the system is overhauled completely. The maintenance time
increases stochastically as a function of J. In other words, the further the maintenance is delayed, the
longer the maintenance time would tend to be. Upon finishing the overhaul, the system is brought back
to the perfect state 0. The state transitions of this system are depicted in Figure 2. Of interest, then, is to
determine the optimal preventive maintenance policy concerning how to set J.
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Figure 2: State Transitions of the Manufacturing System

In order to determine the optimal preventive maintenance policy, it is necessary to define the ob-
jective function precisely. In Sumita and Huang [22], a function capturing the total cost generated by
the system is employed. However, the cost structure is limited in that all the costs are assumed to be
constant and are incurred only at the times of jumps of Mi(t) and Ni j(t). Furthermore, the revenue side is
totally ignored. In what follows, these pitfalls are overcome by applying the multivariate reward process
discussed in Section 3 to the optimal preventive maintenance policy problem, where the revenue-cost
structure in continuous time is now incorporated. More formally, let ρ : J → R be the revenue-cost
function defined by

ρ(i) =

�
ρrev > 0 for i = 0, · · · , J−1
−ρcost < 0 for i = J

.

Here, the manufacturing system generates the revenue ρrev per unit time whenever the system is up, and
the cost of ρcost per unit time is incurred when the system is under the overhaul.

Let Z(t) be the cumulative profit up to time t, which is univariate. Mi(t) and NJ−1,J(t) denote the
total number of defects generated by time t while J(t) = i and the number of the maintenance operations
occurred by time t respectively. One then sees that

Z(t) =
� t

0
ρ
�
J(t)

�
dt +

J−1

∑
i=0

Mi(t)

∑
d=1

YM:i:d +
NJ−1,J

∑
d=1

YN:J−1,J:d ,

where YM:i:d represents the cost for each defect and is naturally assumed to be constant, i.e. YM:i:d =
−ψd < 0 for i = 0, · · · , J − 1 . YN:J−1,J:d describes the cost associated with each occurrence of the
overhaul and may not be constant. For example, the overhaul may or may not require the presence of
engineer(s) from the vender of the production machines. Hence, we assume that YN:J−1,J:d constitute a
sequence of i.i.d. random variables with respect to d having the common expected value −ψm < 0.

The problem now is to determine the optimal preventive maintenance policy J∗ so as to maximize
the expected profit, that is,

πJ∗(T ) = max
J∈N

πJ(T ) ; πJ(T ) = E[Z(T )] . (5.1)

When T is reasonably large, the asymptotic result of Theorem 4.2 can be employed so as to solve the
maximization problem of (5.1) approximately. Since the reward process in the above application is
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univariate, one has K = 1 in Theorem 4.2 and the matrices involved in the asymptotic expansion can be
rewritten accordingly, e.g. κD =−diag{ρ(i)}, etc. In the next section, we provide numerical examples,
demonstrating efficiency of the proposed approach.

6 Numerical Results

In order to provide numerical examples for the optimal preventive maintenance policy problem intro-
duced in the previous section, we consider the semi-Markov matrix A(x) of the form

A(x) =





0 A1(x) 0 · · · 0

0 0 A2(x) 0
...

...
...

. . . . . . 0
0 0 · · · 0 AJ−1(x)

AJ(x) 0 · · · · · · 0




.

We recall that the manufacturing system deteriorates gradually from state 0 to state J−1 and the overhaul
activity takes place in state J. This point is reflected by setting the expected dwell time in state i to be
µi = i+1, i = 0, · · · ,J. In order to specify Ai(x) further, we employ gamma distributions given by

ai(x) =
βi

Γ(αi)
(βix)αi−1e−βix .

Two different cases are considered: the IFR (increasing failure rate) case and the DFR (decreasing failure
rate) case. For the former, we set αi = αIFR = 2, i = 0, · · · ,J − 1, and αJ = 1, while for the latter one
has αi = αDFR = 0.2, i = 0, · · · ,J−1, and αJ = 1. βi’s are given so as to have µi as the expectation, i.e.
βi = αi/µi, i = 0, · · · ,J. The arrival intensity function in state i is given by λi(x) = 2ix. Other parameters
are set to be ρrev = 1500, ρcost = 1000, ψd = 10, ψm = 2000+200

√
J and T = 1000.

In addition to the expected profit πJ(T ), two availability measures of interest are also evaluated. For
this purpose, we define

U(t) =
� t

0
ρu
�
J(t)

�
dt where ρu(i) =

�
1 i ∈ {0, · · · ,J−1}
0 i = J

.

Two traditional measures can now be described as

MTBFJ(t) =
E[U(t)]

E[NJ−1,J(t)]
; AVAILJ(t) =

E[U(t)]
t

.

Here, MTBF stands for the mean time between failures where a failure means an overhaul in our model.
AVAIL describes the average availability per unit time.

Figures 3 through 5 illustrate the asymptotic behaviors of πJ(T ), MTBFJ(T ) and AVAILJ(T ) as
a function of J respectively, where four different curves correspond to T = 25,50,100 and 1000. We
first note that our model is reduced to an alternating renewal process with J = 1. In this case, with
ρrev = 1500 and ρcost = 1000, one may expect that the cost for overhauling the system would overwhelm
the revenue from the production. This phenomenon can be observed in Figure 3 where π1(T )< 0 for all
T = 25,50,100 and 1000 for all of the IFR, CFR and DFR cases. Furthermore, when J = 1, T = 25 is
long enough to reach the ergodicity and π1(T )’s are almost all equal for T = 25,50,100 and 1000. As J
increases, it takes more time to reach the ergodicity and the discrepancy among the values of πJ(T ) for
different values of T becomes larger. For each fixed J, πJ(T ) decreases as T increases. When T = 25,
πJ(T ) increases as J increases for all of the IFR, CFR and DFR cases, having the optimal preventive
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maintenance policy J∗ = 10. As T increases, however, the concavity sets in and the optimal preventive
maintenance policy changes as depicted in Table 1. For the IFR case, one sees that J∗ = 7 with T = 1000,
while the corresponding optimal preventive maintenance policy is J∗ = 6 for the CFR case and J∗ = 4 for
the DFR case. This demonstrates the potential danger of the exclusive reliance on ergodicity. In Figures
4 and 5, we observe that both MTBFJ(T ) and AVAILJ(T ) increase as J increases, and decrease as T
increases. One sees that it could be misleading to design the optimal preventive maintenance strategy
based on the availability measures alone, highlighting the importance to incorporate the reward process.

Table 1: Optimal Preventive Maintenance Policy J∗

T = 25 T = 50 T = 100 T = 1000
IFR 10 8 7 7
CFR 10 8 7 6
DFR 10 10 5 4
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Figure 3: πJ(T )/T as a function of J
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Figure 4: Log-scaled MTBF(T )/T as a function of J
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Figure 5: AVAIL(T ) as a function of J
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