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We reconsider chiral perturbation theory in a finite volume and develop a new computational scheme

which smoothly interpolates the conventional � and p regimes. The counting rule is kept essentially the

same as in the p expansion. The zero-momentum modes of Nambu-Goldstone bosons are, however,

treated separately and partly integrated out to all orders as in the � expansion. In this new scheme, the

theory remains infrared finite even in the chiral limit, while the chiral-logarithmic effects are kept present.

We calculate the two-point function in the pseudoscalar channel and show that the correlator has a

constant contribution in addition to the conventional cosh function of time t. This constant term rapidly

disappears in the p regime but it is indispensable for a smooth convergence of the formula to the � regime

result. Our calculation is useful to precisely estimate the finite volume effects in lattice QCD simulations

on the pion mass M� and kaon mass MK, as well as their decay constants F� and FK.

DOI: 10.1103/PhysRevD.84.014501 PACS numbers: 12.39.Fe, 11.15.Ha, 12.38.Gc

I. INTRODUCTION

Recent progress in lattice QCD has made it possible to
simulate QCD in a realistic setup, i.e. with the (2þ 1)-
flavor sea quark masses near the physical point. As the
precision of the data analysis goes high, however, more
precise study of systematic effects is required. Finite vol-
ume effects are particularly important when quark masses
are reduced to near the chiral limit, since the correlation
length of the system rapidly grows, which is induced by the
dynamical chiral symmetry breaking [1].

The chiral symmetry breaking makes a mass gap be-
tween the Nambu-Goldstone bosons, which eventually
become massless in the chiral limit, and the other hadrons,
which retain a mass around the QCD scale �QCD. It is,

therefore, the pions that are the most responsible for the
effects of the finite volume V when the size of the system L

or V1=4 is well above 1=�QCD.

With this motivation, a number of studies have been
devoted to understand the finite volume effects within the
theory of pions, which is known as chiral perturbation
theory (ChPT) [2,3]. Using the lattice data for the low-
energy constants as inputs, one can quantify the finite
volume effects from the pion fields. These studies are
also useful for improving the determination of the input
low-energy constants themselves.

To investigate ChPT in a finite volume, two perturbative
approaches have been proposed so far. One is the p expan-
sion [4–7], which has just the same form as the perturbative
series in an infinite volume, but momentum integration is
performed in a discrete space in the units of 1=L. Denoting
the mass of a generic (pseudo) Nambu-Goldstone boson by
M, this p expansion is valid when ML � 1, which is
called the p regime.

A nonperturbative technique is required when ML � 1
(the � regime) since the zero mode’s contribution to the
propagator of the pseudo Nambu-Goldstone bosons blows
up and fluctuation �1=M2 cannot be perturbatively
treated, which is well-known as the critical fluctuation
due to the symmetry breaking. A solution to this problem
was given in terms of the so-called � expansion in
Refs. [8–12] and later the study is extended in various
directions [13–25]. In this scheme the zero-momentum
mode is separately treated and integrated out exactly, while
all the remaining non-zero-momentum modes are treated
perturbatively. Since the � expansion treats the mass term
as a next-to-leading order (NLO) contribution, the number
of terms in the chiral Lagrangian is reduced compared to
the p expansion and the typical chiral-logs are invisible in
the calculation at NLO. Note here that the exact integration
here refers to the term that is leading order (LO) in the
quark masses m.
One may ask what happens in between: when ML� 1.

The answer should be given in either ways of the expan-
sions since the p and � expansions should eventually
converge to give the same result as the order of loop
expansion increases. But it is difficult already at the
two-loop level, to confirm such a convergence between
the p regime [7] and � regime [25] calculations unless
one directly checks the numerical values, since their
analytic forms look quite different. It is, therefore, im-
portant and useful for the practical calculation, to find a
new way of expansion which smoothly interpolates the p
and � expansions while keeping the calculation at the
one-loop level. Intuitively, this one-loop level interpola-
tion should be possible in the simplest way, by keeping all
the terms that appear in the NLO Lagrangian in both
expansions.
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In fact, such a calculation is demanding. Although
recent developments in computational facilities have al-
lowed us to simulate unquenched lattice QCD near the
chiral limit, it is still difficult to fully satisfy the condition
ML � 1. On the other hand, no study has until now
reached deep inside the � regime keeping ML � 1
[26–33]. Although results have often been compared fa-
vorably to the � expansion of ChPT, there may still be
large systematic errors due to the condition ML � 1 not
being well fulfilled.

Recently a new approach which smoothly connects the p
expansion and � expansion (and which remains valid even
in the regionML� 1) was proposed in Ref. [34]. The new
prescription is to keep the counting rule of the p expansion
but treat the zero mode nonperturbatively as in the �
expansion. This new expansion was applied to the calcu-
lation of the chiral condensate (and the spectral density of
the Dirac operator) to NLO and successful in maintaining
the features of the both regimes: nonperturbative behavior
of the zero modes and chiral logarithms. The results are
kept infrared (IR) finite even in the chiral limit [35–37] and
show a good convergence to the conventional result [38,39]
in the p expansion for the large (valence) quark mass
region. A good agreement with a lattice QCD calculation
was reported in Refs. [40,41].

In this paper, we extend the calculation of Ref. [34] to
the two-point functions in the pseudoscalar channel. We
find that the correlator is expressed by a simple hyperbolic
cosine function of time t plus an additional constant term,
which smoothly connects the conventional p regime results
and those in the � regime. The constant contribution is a
peculiar feature of the � expansion. We find that this
constant is indispensable to keep the correlator IR finite,
and show how and where it becomes negligible as entering
the p expansion regime. Our results are useful to precisely
estimate the finite volume effects in lattice QCD on the
pion mass M� and kaon mass MK, as well as their decay
constants F� and FK.

The rest of our paper is organized as follows. In Sec. II,
we describe in detail our new perturbative counting rule in
ChPT and the computation scheme which consists of three
steps. For the first step, the chiral Lagrangian in terms of
non-self-contracting vertices (whose definition is given in
the following sections) of non-zero-momentum modes is
calculated in Sec. III. The second step is to collect the one-
loop diagrams of the correlator and perform the non-zero
mode’s perturbative integrals (Sec. IV). The final step is
nonperturbative zero mode’s integration in Sec. V. The
results for the two-point functions in the theory with a
general number of flavors are presented in Sec. VI (see
Eq. (90)). For more practical uses, explicit formulas for
the Nf ¼ 2 and 2þ 1 cases are given in Sec. VII (see

Eq. (112)) as well as how to compare the results with the
lattice QCD data. Our calculation suggests that there exists
a simplified short-cut prescription which reproduces the

same results. We discuss this simplified scheme in
Sec. VIII. Conclusions are given in Sec. IX.

II. NEW CHIRAL EXPANSION AT FINITE
VOLUME

In this section we review the new counting rule of chiral
perturbation which was first proposed by Ref. [34]. We also
present our strategy for the calculation of two-point
functions.
We consider an Nf-flavor chiral Lagrangian in a finite

volume (V ¼ L3T),

L¼F2

4
Tr½@�UðxÞy@�UðxÞ�

��

2
Tr½Myei�=NfUðxÞþUðxÞye�i�=NfM�þ��� ; (1)

where UðxÞ 2 SUðNfÞ and � denotes the vacuum angle,

while � is the chiral condensate and F denotes the pion
decay constant both in the chiral limit. We note that the
higher order terms are not explicitly shown here but exist,
which is indicated by ellipses.
In the partially quenched case, we use the replica

method where the calculations are done within an
ðNf þ Nv þ ðN � NvÞÞ-flavor theory and the limit

N ! 0 is taken [42–44].1 Physical unquenched Nf-flavor

theory results can be obtained by simply taking mv ¼ mf

where mf is one of the physical quark masses.

For the mass matrix, we thus consider a general non-
degenerate form:

M ¼ diagðmv1
; � � �|fflfflfflffl{zfflfflfflffl}
N1

mv2
� � �|fflfflffl{zfflfflffl}

N2

; mu;md;ms; � � �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Nf

Þ: (2)

where we have N ¼ N1 þ N2 replica flavors and Nf physi-

cal flavors. Since our target is a single meson system which
consists of two quarks, we have written the valence part as
if there were two different sets of degenerate flavors, where
each of Ni quarks have a degenerate mass mvi

. For each

valence flavor, the Ni ! 0 limit has to be taken in the end
of calculation to complete the partial quenching.
We parametrize the chiral field in the same way as the �

expansion [8], by factorizing it into the zero-momentum
mode U0 and non-zero modes �ðxÞ,

UðxÞ ¼ U0 expði
ffiffiffi
2

p
�ðxÞ=FÞ: (3)

In our calculation, we perform exact group integration over
U0, while �ðxÞ is perturbatively treated always imposingZ

d4x�ðxÞ ¼ 0; (4)

to avoid double counting of the zero mode.

1We do not consider the fully quenched theory in this work.
We thus have Nf > 0 in all that follows.
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It is known that group integration over UðNfÞ manifold

is easier and can be analytically expressed in a simpler
form than the SUðNfÞ group case. For this practical reason,
we consider sectors of fixed topology Q, which is obtained
by the Fourier transform of the partition function,

1

2�

Z 2�

0
d�ei�Q

Z
DUe�L: (5)

We then absorb the � integral to the zero-mode sector:

ei�=NfU0 ! U0 and extend our integration to UðNfÞ (or

UðNf þ NÞ in the partially quenched case) group. The

phase factor in the Fourier transform becomes ei�Q ¼
ðdetU0ÞQ. The conventional � ¼ 0 vacuum result is ob-
tained by summing each topological sector with a weight
given by the partition function, which will be discussed
later in Sec. VI.

We give the same counting rule as in the p expansion for
the � fields and other parameters,

@� �OðpÞ; �ðxÞ �OðpÞ;
M�Oðp2Þ; T; L�Oð1=pÞ;

(6)

in units of the cut off 4�F. We assume as usual that the
linear sizes of the four-dimensional volume, L and T, are
much larger than the inverse QCD scale ��1

QCD so that the

effective theory is valid.
According to the counting rule Eq. (6), let us expand the

Lagrangian

L ¼ 1

2
Trð@��Þ2 ��

2
Tr½MyU0 þUy

0M�

þ 1

2

X
i

M2
ii½�2�ii þ �

2F2
Tr½MyðU0 � 1Þ�2

þ �2ðUy
0 � 1ÞM� þ � � � ; (7)

where M2
ij ¼ ðmi þmjÞ�=F2. Here we have separated the

mass term into three pieces. The first one (the second term)
gives a nonperturbative weight in the zero-mode path in-
tegration as in the � expansion and the second one (the
third term) has the same form as the conventional mass
term (of �) in the p expansion.

The last term in Eq. (7) is a mixing term between the
zero and non-zero modes, which is unfamiliar either in the
� and p expansions. In fact, this term plays a crucial role in

connecting the � and p regimes. We can treat this mixing
term as a perturbation: it is not difficult to check

M ðU0 � 1Þ �Oðp3Þ; (8)

and, in particular, a Hermitian combination

M ðU0 þUy
0 � 2Þ �Oðp4Þ; (9)

holds in both of the � and p regimes. For some specific
cases, by a direct group integration, one can confirm that
these countings are kept even in the intermediate region
whereMijL� 1 [34]. We therefore treat Eqs. (8) and (9) as

the additional counting rules and treat the last term in
Eq. (7) as anOðp5Þ contribution. These additional counting
rules Eqs. (8) and (9) are also supported by the equiparti-
tion theorem of energy, where the potential energies of
weekly interacting systems are uniformly and therefore,
mass-independently distributed.
In Table I, we summarize the difference of the three �, p,

and our new i (=interpolating) expansions of ChPT.
In the following sections, we calculate two-point corre-

lation function of the peudoscalar operators in three steps.
For the first step (Sec. III), we rewrite the chiral Lagrangian
in terms of non-self-contracting vertices of � fields. This
corresponds to partly performing one-loop integrals in the
vertices in advance. By doing this, one can renormalize the
coupling constants and the wave function at NLO before
starting the complicated calculation. Then the second step
for the two-point functions (Sec. IV) becomes clearer: to
collect the remaining diagrams, namely, those without self-
contractions in vertices, which is expressed by the already
renormalized quantities, and perform � integrals. The third
and final step is to perform nonperturbative U0 integrals.
For the perturbative calculation of � fields, we use the

same Feynman propagator as in the p expansion except
that the zero-momentum mode contribution is removed:

h�ijðxÞ�klðyÞi� ¼ �il�jk
��ðx� y;M2

ijÞ
� �ij�kl

�Gðx� y;M2
ii;M

2
kkÞ; (10)

where h� � �i� means an integral over �, whose general

expression will be discussed later in Sec. IV. Note that
the second term comes from the constraint Tr� ¼ 0. The

propagators �� and �G are given by

TABLE I. Three expansions of ChPT at finite volume. The counting rules are compared in the units of the smallest non-zero
momentum 1=L. Our new expansion in this paper is denoted by ‘‘i expansion’’.

expansion parametrization counting rule

� expansion UðxÞ ¼ U0 expði
ffiffi
2

p
�

F Þ U0 �Oð1Þ, ��Oð1=LÞ, M�Oð1=L4Þ
p expansion UðxÞ ¼ expði

ffiffi
2

p
�

F Þ ��Oð1=LÞ, M�Oð1=L2Þ
i expansion UðxÞ ¼ U0 expði

ffiffi
2

p
�

F Þ U0 �Oð1Þ, ��Oð1=LÞ, M�Oð1=L2Þ, MðU0 � 1Þ �Oð1=L3Þ,
MðU0 þ Uy

0 � 2Þ �Oð1=L4Þ
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��ðx;M2Þ ¼ 1

V

X
p�0

eipx

p2 þM2
; (11)

�Gðx;M2
ii;M

2
jjÞ¼

1

V

X
p�0

eipx

ðp2þM2
iiÞðp2þM2

jjÞð
PNf

f
1

p2þM2
ff

Þ
;

(12)

where the summation is taken over the nonzero 4-momenta

p ¼ 2�ðnt=T; nx=L; ny=L; nz=LÞ; (13)

with integer n�’s except for p ¼ ð0; 0; 0; 0Þ. For the fol-

lowing calculations, where a nondegenerate set of valence
and sea quark masses is taken, it is convenient to define a
quantity

�Aðx;M2
ii;M

2
jjÞ � �Gðx;M2

ii;M
2
jjÞ �

1

2
½ �Gðx;M2

ii;M
2
iiÞ

þ �Gðx;M2
jj;M

2
jjÞ�: (14)

Note that both �Aðx;M2
ii;M

2
jjÞ and its second derivative

@2� �Aðx;M2
ii;M

2
jjÞ¼M2

ij
�Gðx;M2

ii;M
2
jjÞ�

1

2
½M2

ii
�Gðx;M2

ii;M
2
iiÞ

þM2
jj
�Gðx;M2

jj;M
2
jjÞ�; (15)

are UV finite even in the limit x ¼ 0. Also, note that both
vanish when M2

jj ¼ M2
ii.

As a final remark of this section, we note that the above
parametrization Eq. (3) gives rise to a nontrivial Jacobian
in the functional integral measure. It is uniquely deter-
mined by the left-right invariance of the group integrals.
A perturbative calculation [10,17] has shown that the
Jacobian is expressed by

J ðU0; �Þ ¼ exp

�
�
Z

d4x
Nf

3F2V
Tr�2ðxÞ

�
; (16)

to Oðp2Þ. It plays a role just as an additional mass term in
our calculation.

III. CHIRAL LAGRANGIAN AT ONE-LOOP

Since our target system is a complicated mixture of
U0 matrix model and perturbative �-fields, we first sim-
plify the chiral Lagrangian and collect relevant pieces for
our computation. In particular, by introducing non-self-
contracting vertices, we can renormalize (at the one-loop
level) the coupling constants and the � fields in advance.

A. Next-to-leading order (NLO) terms

Without source terms, we have eight NLO terms, whose
low-energy constants are denoted by Li’s (i ¼ 1; � � � 8) [3].
In our perturbative expansion at Oðp5Þ and Oðp6Þ, the
terms with L1, L2, L3 (and the Wess-Zunimo-Witten
term [45,46] as well) do not contribute to pseudoscalar
meson masses and decay constants. By explicitly expand-

ing UðxÞ ¼ U0e
i
ffiffi
2

p
�ðxÞ=F in �, it is sufficient to consider

LNLO ¼ ��

2
Tr½MyU0 þUy

0M� �
�
16L6

F2

X
f

M2
ff

�
þX

i;j

�
1

2
@��ij@��ji

�
� 8

F2

�
L4

XNf

f

M2
ff þ L5M

2
ij

�

þX
i;j

�
1

2
�ij�jiM

2
ij

�
� 16

F2

�
L6

X
f

M2
ff þ L8M

2
ij

�
þ 8L7

F2

XNf

i;j

M2
iiM

2
jj�ii�jj � 4L8

X
i

M4
ii

�½U0 þUy
0 �ii

2
� 1

�

� L8

X
i�j

M2
iiM

2
jjð½U0�ij½U0�ji þ ½Uy

0 �ij½Uy
0 �jiÞ: (17)

Note that we can always omit the constant terms unless
source terms are inserted (the source insertion is separately
discussed below). It is also important to note in the above
expansion that the only L6 term has nontrivial U0 depen-
dence at Oðp4Þ.

B. Non-self-contracting (NSC) vertices

For one-loop level calculations, it is convenient to re-
write the chiral Lagrangian so that quantum corrections are
partly included. This is performed by simply adding and
subtracting all possible �-contractions of the n point term
and define the non-self-contracting (NSC) vertex:

�nðxÞ ¼ ½�nðxÞ�NSC þ ðall possible� contractionsÞ; (18)

½�nðxÞ�NSC � �nðxÞ � ðall possible� contractionsÞ: (19)

The contracted vertices (second term of Eq. (18)) are
treated as shifts of the lower order terms. These � contrac-
tions, as they contain the tadpole diagrams, are typically
UV divergent. We use the dimensional regularization and
absorb it into the higher order low-energy constants
(LECs). In this way, the coupling renormalization can be
done in advance, and one can substantially reduce the
number of remaining one-loop diagrams for an arbitrary
correlation function. Note that h½�nðxÞ�NSCi� ¼ 0 by

definition.
The two-point vertex is the easiest example:

½�2ðxÞ�NSC ¼ �2ðxÞ � h�2ðxÞi�; (20)
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which is applied to the 4-th term of Eq. (7), and in this case,
the � contraction is treated as a shift of � in the second
term of Eq. (7). Its UV divergence is absorbed into L6.

With the NSC vertices, Li terms in Eq. (17), and mea-
sure term Eq. (16) together, we can express the low-energy
effective action asZ

d4xL ¼ ��effV

2
Tr½MyU0 þUy

0M�

þ
Z

d4x
1

2

XNf

i;j

ðZij
� Þ2ð½@��ij@��ji�NSCðxÞ

þ ðM0
ijÞ2½�ij�ji�NSCðxÞÞ þ Sð1Þ

I ðU0; �Þ
þ Sð2Þ

I ðU0Þ þ Sdiag þ S3pt þ S4pt; (21)

where the first two terms are the LO contribution, and the
perturbative interaction terms are given by

Sð1Þ
I ðU0; �Þ �

Z
d4x

�

2F2
Tr½ðMyðU0 � 1Þ

þ ðUy
0 � 1ÞMÞ½�2ðxÞ�NSC�; (22)

Sð2Þ
I ðU0Þ���V

2

X
i

mið½U0þUy
0 �ii�2Þ

�
��Z�

ii þ
8L8

F2
M2

ii

�

�L8V
X
i�j

M2
iiM

2
jjð½U0�ij½U0�jiþ½Uy

0 �ij½Uy
0 �jiÞ:

(23)

Here we have the used notations below,

�eff � �

�
1� 1

F2

�XNf

f

��ð0;M2
ff=2Þ � �Gð0; 0; 0Þ

�

þ 16L6

F2

XNf

f

M2
ff

�
; (24)

�Z�
ii �

1

F2

�XNf

f

ð ��ð0;M2
ifÞ � ��ð0;M2

ff=2ÞÞ

� ð �Gð0;M2
ii;M

2
iiÞ � �Gð0; 0; 0ÞÞ

�
; (25)

Zij
� �1� 1

2F2

�
1

6

XNf

f

ð ��ð0;M2
ifÞþ ��ð0;M2

jfÞÞ

þ1

3
�Að0;M2

ii;M
2
jjÞ�8

�
L4

XNf

f

M2
ffþL5M

2
ij

��
; (26)

and ðM0
ijÞ2 ¼ ðZij

MMijÞ2 þ Nf=F
2V with

Zij
M � 1þ 1

2F2

�
�Gð0;M2

ii;M
2
jjÞ � 8ðL4 � 2L6Þ

XNf

f

M2
ff

� 8ðL5 � 2L8ÞM2
ij

�
: (27)

In the last line of Eq. (21), we have

Sdiag �
Z

d4x
1

2F2

XNf

i;j

�
½@��ii@��jj�NSCðxÞ

��ð0;M2
ijÞ

3

�
�
2

3
M2

ij
��ð0;M2

ijÞ � 16L7M
2
iiM

2
jj þ

1

3V

�

� ½�ii�jj�NSCðxÞ
�
; (28)

S 3pt �
Z

d4x
i�

3
ffiffiffi
2

p
F3

Tr½½�3ðxÞ�NSCðMyU0 �Uy
0MÞ�;

(29)

S4pt �
Z

d4x

�
� 1

12F2

XNf

i

M2
ii½�4ðxÞ�NSCii

þ 1

6F2
Tr½@���@���� �2ð@��Þ2�NSCðxÞ

�
; (30)

but they do not contribute to the calculations in this paper
where we only consider two-point functions of off-
diagonal sources. We therefore simply ignore them in the
following sections. We have also ignored trivial constant
terms in the above expressions.

C. Pseudoscalar (and scalar) source term

The pseudoscalar and scalar source terms are obtained
by extending the mass matrix:

M ! MJ ¼ Mþ iJ ðxÞ; (31)

where the pseudoscalar and scalar parts are given by

pðxÞ ¼ 1

2
ðJ ðxÞ þ J yðxÞÞ; (32)

sðxÞ ¼ i

2
ðJ ðxÞ � J yðxÞÞ; (33)

respectively.
In order to keep a manifest and consistent counting

rule, we treat MJ in the same way as the original mass
matrix, i.e.,

J ðxÞ �Oðp2Þ; J ðxÞðU0 � 1Þ �Oðp3Þ;
J ðxÞðU0 þUy

0 � 2Þ �Oðp4Þ:
(34)

Note however that unlike the original mass matrix,
J -derivative could isolate the matrix element of
(U0 � 1), which could cause ambiguity in the counting
rule of correlation functions. In fact, the leading contribu-
tion of the pseudoscalar two-point function is known to be
Oð1Þ in the � expansion while it becomes one order higher,
Oðp2Þ, in the p expansion. To avoid this problem, we
consider every J ij-derivative multiplied by a factorffiffiffiffiffiffiffiffiffiffiffi
mimj

p
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ffiffiffiffiffiffiffiffiffiffiffi
mimj

p �
�

�J ðxÞ
�
ij
; (35)

as a unit block of the calculation. This prescription keeps
the counting order of the operand unchanged even after
differentiation. Note that the unusual square root does not
appear in the physical results since even numbers of de-
rivatives are always required to give a nonzero correlation
when i � j. The pseudoscalar two-point correlation, which
is our target of this work, is then kept always atOðp6Þ in an
unambiguous way with arbitrary choice of the quark
masses.

Unlike the Lagrangian itself, we need to introduce an
unphysical constant counterterm with a coefficient H2 [3],

�H2

�
2�

F2

�
2
Tr½ðMþ iJ ÞyðMþ iJ Þ�; (36)

to cancel the divergence of the scalar operator at a finite
valence quark mass.
Now let us collect terms linear in J and rewrite it in

terms of NSC vertices at Oðp5Þ:

LJ ¼ i
�eff

2
Tr½J yðxÞU0 �Uy

0J ðxÞ� � �ffiffiffi
2

p
F

XNf

i;j

�ijðxÞ½J yðxÞU0 þUy
0J ðxÞ�ji � Zij

� Z
ij
F ðZij

MÞ2

þ i
�

2

X
i;j

ðpy
ijðxÞ½U0�ji � ½Uy

0 �ijpjiðxÞÞ
�
��Z�

ii þ
16L8

F2
M2

ij

�
þ �

XNf

i

sðxÞii
�
�Z�

ii �
4ð2L8 þH2ÞM2

ii

F2

�

þ
ffiffiffi
2

p
�

3F3

XNf

i;j

piiðxÞ�jjðxÞ ��ð0;M2
ijÞ �

ffiffiffi
2

p
�

F
Tr½pðxÞ� �

�
16L7

F2

XNf

f

M2
ff�ffðxÞ

�

� i
�

2F2
Tr½J yðxÞU0�

2ðxÞ � �2ðxÞUy
0J ðxÞ�NSC; (37)

where a term with the cubic NSC vertex ½�3�NSC is ignored
since it never contributes to the two-point correlation
functions. A new factor Zij

F is defined by

Zij
F � 1� 1

2F2

�
1

2

XNf

f

ð ��ð0;M2
ifÞ þ ��ð0;M2

jfÞÞ

þ �Að0;M2
ii;M

2
jjÞ � 8

�
L4

XNf

f

M2
ff þ L5M

2
ij

��
: (38)

D. Renormalization

In the above results, ��ð0;M2Þ and �Gð0;M2
1;M

2
2Þ have the

same logarithmic divergences as the conventional p ex-
pansion since the absence of the zero mode do not affect
the ultraviolet properties. In the same way as in [3], we can
thus evaluate their divergent parts by the dimensional
regularization at D ¼ 4� 2� (taking � � 1):

��ð0;M2Þ ¼ � M2

16�2

�
1

�
þ 1� �þ ln4�

�
þ � � � ;

�Gð0;M2
1;M

2
2Þ ¼ � 1

16�2

�
M2

1 þM2
2

Nf

� 1

N2
f

XNf

f

M2
ff

�

�
�
1

�
þ 1� �þ ln4�

�
þ � � � ; (39)

where � ¼ 0:577 21 � � � denotes Euler’s constant. As is the
usual case, these divergences can be absorbed into the
renormalization of Li’s and H2 as

Li ¼ Lr
i ð�subÞ � �i

32�2

�
1

�
þ 1� �þ ln4�� ln�2

sub

�
;

(40)

H2 ¼ Hr
2ð�subÞ �

�H2

32�2

�
1

�
þ 1� �þ ln4�� ln�2

sub

�
;

(41)

where Lr
i ð�subÞ’s and Hr

2ð�subÞ denote the renormalized
low-energy constants at the subtraction scale �sub and

�4 ¼ 1

8
; �5 ¼

Nf

8
; �6 ¼ 1

8

�
1

2
þ 1

N2
f

�
;

�7 ¼ 0; �8 ¼
�H2

2
¼ 1

8

�
Nf

2
� 2

Nf

�
: (42)

As a result, �eff , �Z
�
ii , Z

ij
F and Zij

M are kept finite, while Zij
�

still diverges but it never appears in the physical
observables.

After this procedure, one can replace ��ð0;M2Þ by,
�� rð0;M2Þ ¼ M2

16�2
ln

M2

�2
sub

þ �g1ðM2Þ; (43)
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where �g1 denotes the finite volume contribution of which the zero-mode part is subtracted. It is well-known that there are
two expressions for �g: one valid for smallML & 1 [11] and the other valid forML * 1 [6], and their convergence around
ML� 1 is discussed in detail in Ref. [34]. Here we just note that on a L� 2 fm box, these two

�g 1ðM2Þ ¼
(Pjnij	nmax

1

a�0

ffiffiffiffiffi
M2

p
4�2jajK1ð

ffiffiffiffiffiffiffi
M2

p
jajÞ � 1

M2V
ðjMjL > 2Þ

� M2

16�2 lnðM2V1=2Þ �Pnmax
2

n¼1
�n

ðn�1Þ!M
2ðn�1ÞVðn�2Þ=2 ðjMjL 	 2Þ

; (44)

at nmax
1 ¼ 7 and nmax

2 ¼ 300 show a good convergence
around the threshold jMjL ¼ 2. Here K1 is the modified
Bessel function and the summation is taken over the four-
vector a� ¼ n�L� with Li ¼ Lði ¼ 1; 2; 3Þ and L4 ¼ T.
�i’s denote the shape coefficients defined in [11].

IV. � CONTRACTIONS IN THE CORRELATOR

We are now calculating a hybrid system of a matrix U0

and fields �whose partition function (with the source J ) is
given by

ZðJ Þ ¼
Z
UðNfÞ

dU0ðdetU0ÞQ

�
Z
SUðNfÞ

d� exp

�
�
Z

d4xðLþLJÞ
�
; (45)

where we need to integrate over both fields. The integral
over U0, in particular, has to be nonperturbatively per-
formed. Our strategy of this study is (i) to perturbatively
calculate � fields first, (ii) then to perform U0 group
integrals.

Let us here define two notations

hO1ðU0ÞiU0

�
R
dU0ðdetU0ÞQeðð�effVÞ=2ÞTr½MyU0þUy

0
M�O1ðU0ÞR

dU0ðdetU0ÞQeðð�effVÞ=2ÞTr½MyU0þUy
0
M� ; (46)

hO2ð�Þi� �
R
d�e

�
R

d4xð1=2ÞP
i;j
ðZij

�
Þ2½�ijð�@2�þM02

ij Þ�ji�NSCO2ð�ÞR
d�e

�
R

d4xð1=2ÞP
i;j
ðZij

�
Þ2½�ijð�@2�þM02

ij Þ�ji�NSC
;

(47)

with which any correlation function of U0 and � (we
denote fðU0; �Þ) can be expressed as

hfðU0; �Þi ¼
hhfðU0; �Þe�Sð1Þ

I ðU0;�Þi�e�Sð2Þ
I ðU0ÞiU0

hhe�Sð1Þ
I ðU0;�Þi�e�Sð2Þ

I ðU0ÞiU0

; (48)

where the interaction terms SðiÞ
I ’s are treated perturbatively.

Noting Sð1Þ
I ðU0; �Þ �OðpÞ and Sð2Þ

I ðU0Þ �Oðp2Þ, the cor-
relation function above at NLO can be divided into four
parts:

hfðU0; �Þi ¼ hfðU0; �Þi00 þ hfðU0; �Þi10 þ hfðU0; �Þi20
þ hfðU0; �Þi01; (49)

where the superscripts 00,10,20,01 mean Oð1Þ, OðSð1Þ
I Þ,

OððSð1Þ
I Þ2Þ and OðSð2Þ

I Þ, respectively. Namely, they are
defined by

hfðU0; �Þi00 � hhfðU0; �Þi�iU0
; (50)

hfðU0; �Þi10 � hh�Sð1Þ
I fðU0; �Þi�iU0

� hh�Sð1Þ
I i�iU0

hhfðU0; �Þi�iU0
; (51)

hfðU0; �Þi20 �
��

1

2
ðSð1Þ

I Þ2fðU0; �Þ
�
�

�
U0

�
��

1

2
ðSð1Þ

I Þ2
�
�

�
U0

hhfðU0; �Þi�iU0
; (52)

hfðU0; �Þi01 � h�Sð2Þ
I hfðU0; �Þi�iU0

� h�Sð2Þ
I iU0

hhfðU0; �Þi�iU0
: (53)

These notations are useful in the following calculation.
In the rest of this section, we calculate the h� � �i� part

using the Feynman rule, Eq. (10).

A. Chiral condensate to NLO

For a warming-up, let us first calculate the one-point
scalar function (i.e. the chiral condensate) to the next-to-
leading order [34]. In this case, we consider a pure imagi-
nary diagonal matrix element of the source

½J �ij ¼ �i�iv�jvsvvðxÞ: (54)

In this case, the source term in the Lagrangian is
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LJ¼��eff

2
svvðxÞ½U0þUy

0 �vv

� i
�ffiffiffi
2

p
F
svvðxÞ½U0�ðxÞ��ðxÞUy

0 �vv

þ�svvðxÞ
�
�Z�

vv�4ð2L8þH2ÞM2
vv

F2

�

þ �

2F2
svvðxÞ½U0�

2ðxÞþ�2ðxÞUy
0 �NSCvv þOðp5Þ; (55)

where the index v is not summed over.
Now we can calculate the chiral condensate of the v-th

valence quark as follows,

mvh �qvqvðxÞi ¼ mv

�

�svvðxÞ lnZðJ Þjsvv¼0

¼ mv

�
�eff

2
½U0 þUy

0 �vv

� �

�
�Z�

vv � 4ð2L8 þH2ÞM2
vv

F2

��
00

¼ mv

�
�eff

2
h½U0 þUy

0 �vviU0

� �

�
�Z�

vv � 4ð2L8 þH2ÞM2
vv

F2

��
; (56)

where we have used h�ðxÞi� ¼ 0 and h1iU0
¼ h1i� ¼ 1.

Note that h �qvqvðxÞi10 ¼ h �qvqvðxÞi20 ¼ h �qvqvðxÞi01 ¼ 0
to our order, which can be easily confirmed by a

direct calculation using the fact h½U0 þUy
0 �vvi01 ¼

h½U0 þUy
0 �vv � 2i01. The result is, of course, consistent

with Ref. [34].

B. Pseudoscalar correlator

Let us next consider the pseudoscalar source. In the
calculation of meson correlators, we take a specific gen-
erator of the chiral group which has v1v2 and v2v1

(v1 � v2) elements only. This choice corresponds to the
charged pion or general kaon-type correlators. Here vi

denotes the valence quark index whose mass is given by
mvi

. For simplicity, we omit ‘‘v’’ in the following: the

indices v1 and v2 are denoted by 1 and 2, and their masses
are expressed by m1 and m2, respectively. Namely, we
consider

½J ðxÞ�ij ¼ 1

2
ð�1i�j2 þ �2i�1jÞpðxÞ; (57)

where pðxÞ is a real classical number.
The pseudoscalar source term in the Lagrangian then

becomes

L J ¼ pðxÞ
2

ðP12ðxÞ þ P21ðxÞÞ; (58)

where

P12ðxÞ ¼ i
�eff

2
ð½U0�12 � ½Uy

0 �21Þ
�
1� �Z�

22 þ
16L8

F2
M2

12

�

� �ffiffiffi
2

p
F
�12ðxÞð½U0�11 þ ½Uy

0 �22ÞZ12
� Z12

F ðZ12
M Þ2

� �ffiffiffi
2

p
F

X
i�1

ð½U0�1i�i2ðxÞ þ �2iðxÞ½Uy
0 �i1Þ

� i
�

2F2

X
i;j

½�2ðxÞ�NSCij ð½U0�1i�j2 � �1i½Uy
0 �j2Þ;

(59)

P21ðxÞ ¼ ð1 $ 2Þ: (60)

Now we are ready to calculate the pseudoscalar-
pseudoscalar (PP) correlator,

m1m2hPðxÞPð0Þi ¼ 2m1m2

1

Zð0Þ
�

�pðxÞ
�

�pð0Þ
�ZðJ ÞjpðxÞ;pð0Þ¼0

¼ m1m2

�
1

2
hP12ðxÞP21ð0Þi

þ 1

2
hP12ðxÞP12ð0Þi þ ð1 $ 2Þ

�
; (61)

where an overall factor of 2 is introduced to compare with
the corresponding lattice connected diagram. Note that the
procedure Eq. (35) is performed but the factor m1m2 will
be omitted for simplicity in the following calculation.
Although the number of diagrams we need to calculate

is substantially reduced by using the NSC vertices, our
calculation is still tedious because of the off-diagonal
elements ofU0 in the source term Eq. (59), which produces
various unusual channels in the correlator. Every step of
calculation is, however, rather straightforward as in the
conventional p expansion, except for the use of the
MðU0 � 1Þ �Oðp3Þ rule. We therefore skip the details
of the calculation in the main text here. Instead, we sum-
marize several useful formulas for the computation in
Appendix A and present each piece of hPðxÞPð0Þi00,
hPðxÞPð0Þi10, hPðxÞPð0Þi20 and hPðxÞPð0Þi01 in
Appendix B. We also use the technique in Appendix D.
After relevant one-loop integrals over �, the pseudosca-

lar correlator is given by
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hPðxÞPð0Þi ¼ hPðxÞPð0Þi00 þ hPðxÞPð0Þi10 þ hPðxÞPð0Þi20 þ hPðxÞPð0Þi01

¼ ��2

4
ðZ12

MZ12
F Þ4C0a þ �2

�1 þ�2

�
�eff

�
� ðZ12

MZ12
F Þ2

�
C0b þ�2

2
ð�Z�

11 � �Z�
22ÞC0c þ

�2

2F2

�
�
ðZ12

F ðZ12
M Þ2Þ2C1 ��ðx;M02

12Þ þ C2
�
�

F2
@M2

�
��ðx;M2ÞjM2¼M2

12
þ C312ð ��ðx;M2

11Þ � ��ðx;M2
12ÞÞ

þ C321ð ��ðx;M2
22Þ � ��ðx;M2

12ÞÞ þ
X
j�1

C41jð ��ðx;M2
2jÞ � ��ðx;M2

12ÞÞ þ
X
i�2

C42ið ��ðx;M2
1iÞ � ��ðx;M2

12ÞÞ

þ C5 �Gðx;M2
11;M

2
22Þ þ C612ð �Gðx;M2

11;M
2
22Þ � �Gðx;M2

11;M
2
11ÞÞ þ C621ð �Gðx;M2

11;M
2
22Þ � �Gðx;M2

22;M
2
22ÞÞ

�
;

(62)

where

C0a �
�
ð½U0�12 � ½Uy

0 �21Þð½U0�21 � ½Uy
0 �12Þ

þ 1

2
ð½U0�12 � ½Uy

0 �21Þ2 þ
1

2
ð½U0�21 � ½Uy

0 �12Þ2
�
U0

;

(63)

C 0b �
�½U0 þUy

0 �11
2

þ ½U0 þUy
0 �22

2

�
U0

; (64)

C 0c � 1

4
hð½U0�12 � ½Uy

0 �21Þ2 � ð½U0�21 � ½Uy
0 �12Þ2iU0

;

(65)

C1 �
�
ð½U0�11 þ ½Uy

0 �22Þð½U0�22 þ ½Uy
0 �11Þ

þ XNf

j�1

½U0�1j½Uy
0 �j1 þ

XNf

i�2

½U0�2i½Uy
0 �i2

þ 1

2
fð½U0�12Þ2 þ ð½Uy

0 �21Þ2 þ ð½U0�21Þ2

þ ð½Uy
0 �12Þ2g

�
U0

; (66)

C 2 �
�
2ð½R�11 þ ½R�22Þ �

X
j�1

½R�1j½R�j1
mj �m1

�X
i�2

½R�2i½R�i2
mi �m2

�
U0

; (67)

C 3
ij �

1

2
hð½U0�jiÞ2 þ ð½Uy

0 �ijÞ2iU0

þ h½R�ij½Uy
0 �ij þ ½U0�ji½R�jiiU0

mi �mj

þ hð½R�ijÞ2 þ ð½R�jiÞ2iU0

2ðmi �mjÞ2
; (68)

C4ij � h½U0�ij½Uy
0 �jiiU0

þ h½R�ji½U0�ij þ ½R�ij½Uy
0 �jiiU0

mj �mi

þ h½R�ij½R�jiiU0

ðmj �miÞ2
; (69)

C5 � �
�
ð½U0�12 þ ½Uy

0 �21Þð½U0�21 þ ½Uy
0 �12Þ

þ 1

2
ð½U0�12 þ ½Uy

0 �21Þ2 þ
1

2
ð½U0�21 þ ½Uy

0 �12Þ2
�
U0

;

(70)

C 6
ij �

1

2
hð½U0�ji þ ½Uy

0 �ijÞ2iU0

þ hð½R�ij þ ½R�jiÞð½U0�ji þ ½Uy
0 �ijÞiU0

mi �mj

þ h2½R�ij½R�ji þ ð½R�ijÞ2 þ ð½R�jiÞ2iU0

2ðmi �mjÞ2
; (71)

where we have used a notation

R � MyðU0 � 1Þ þ ðUy
0 � 1ÞM: (72)

One should note that many unusual channels appear in
Eq. (62), which is a quite unnatural situation when just a
single particle propagator is expected. However, one will
find in the next section, many of them actually disappear,
or many of the coefficients C’s vanish after integration
over U0.

2

V. ZERO-MODE INTEGRALS

The zero mode’s contribution to the so-called graded
partition function of n bosons and m fermions is analyti-
cally known [47–49],

2The readers might wonder if the integration over �0 first is
then inefficient. But if we perform U0 integrals first, we need
much more tedious computation over U0 than what we will see
in Sec. V, which do not disappear until � integration is com-
pleted. We thus believe our order of calculation is easier.
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Z Q
n;mðf�igÞ ¼

det½�j�1
i J Qþj�1ð�iÞ�i;j¼1;���nþmQ

n
j>i¼1ð�2

j ��2
i Þ
Q

nþm
j>i¼nþ1ð�2

j ��2
i Þ
;

(73)

in a fixed topological sector of Q where �i ¼ mi�V. Here
J ’s are defined as J Qþj�1ð�iÞ � ð�1Þj�1KQþj�1ð�iÞ for
i ¼ 1; � � � n and J Qþj�1ð�iÞ � IQþj�1ð�iÞ for i ¼
nþ 1; � � �nþm, where I	 and K	 denote the modified
Bessel functions. Partial quenching is completed by taking
the boson masses to those of the valence fermions at the
very end of calculation.

Exact group integrals of various matrix elements over
U0 can be calculated by differentiating the above partition
function. The most basic pieces are

S v � 1

2
h½U0�vv þ ½Uy

0 �vviU0

¼ lim
�b!�v

@

@�v

lnZQ
1;1þNf

ð�b;�v; f�seagÞ; (74)

D v � 1

4
hð½U0�vv þ ½U0�yvvÞ2i

¼ 1

ZQ
Nf
ðf�seagÞ

lim
�b!�v

@2

@�2
v

ZQ
1;1þNf

ð�b;�v; f�seagÞ;

(75)

Dv1v2
� 1

4
hð½U0�v1v1

þ ½U0�yv1v1
Þð½U0�v2v2

þ ½U0�yv2v2
Þi

¼ 1

ZQ
Nf
ðf�seagÞ

lim
�b1

!�v1
;�b2

!�v2

@

@�v1

� @

@�v2

ZQ
2;2þNf

ð�b1 ; �b2 ; �v1
; �v2

; f�seagÞ; (76)

where �bi denotes the bosonic spinor mass and f�seag
indicates a set of sea quark masses (normalized by �V).
Note thatDv1v2

andDv differ even whenmv1
¼mv2

¼mv.

In Ref. [16], more nontrivial matrix elements are calcu-
lated in terms of the above S’s and D’s using the left and
right invariance of the group integrals. Their results are
summarized in Appendix C.

Now we can simplify Ci’s in terms of S’s andD’s. Note
here that for the leading contribution, namely, for C0a and
C1, we need to use �eff instead of � in the arguments.
We distinguish them by putting a superscript ‘‘eff’’ like
�eff

i ð¼ mi�effVÞ and Seff
i . The results are summarized

below.

C 0a ¼ � 4

�eff
1 þ�eff

2

ðSeff
1 þ Seff

2 Þ; (77)

C 0b ¼ S1 þ S2; (78)

C 0c ¼ 0; (79)

C 1 ¼ 2

�
1þDeff

12 þ Q2

�eff
1 �eff

2

�
; (80)

m1m2C2 ¼ 2m1m2

�
2m1ðS1 � 1Þ þ 2m2ðS2 � 1Þ

þ X
j�1

m1 �mj

�1 þ�j

þX
i�2

m2 �mi

�2 þ�i

�
; (81)

C 3
ij ¼ 0; (82)

miC4ij ¼ miC6ij �Oðp6Þ; (83)

C 5 ¼ � 4

�1 ��2

ðS1 � S2Þ: (84)

Note that we have used miðSi � 1Þ �Oðp4Þ.
Since the C2 term contributes only in the p regime, one

can substitute the perturbative expression to Si [42,44]:

S i ¼ 1�XNf

j

1

�i þ�j

þ Q2

2�2
i

þ � � � ; (85)

and obtain

m1m2C2 ¼ 4m1m2

�
� Nf

�V
þ Q2

2�1�2

ðm1 þm2Þ þ � � �
�
:

(86)

Noting m1m2C1 ¼ 4m1m2 þOðp6Þ, the 5th term of
Eq. (62) can be absorbed into the 4th term (namely, C1

term) by shifting the meson mass as

M02
12 ! M02

12 �
Nf

F2V
þ Q2

2�1�2

M2
12: (87)

We recall that an unexpected term
Nf

F2V
is found in the

definition of M0
12 but it is now canceled out.

Thus the result can be expressed in a simpler form,

hPðxÞPð0ÞiQ¼�2ðZ12
F Þ2ðZ12

M Þ2S
eff
1 þSeff

2

�1þ�2

þ�2

F2
ðZ12

F Þ2ðZ12
M Þ4

�
�
1þDeff

12 þ
Q2

�eff
1 �eff

2

�
��ðx;ðMQ

12Þ2Þ

�2�2

F2

S1�S2

�1��2

�Gðx;M2
11;M

2
22Þ; (88)

where

ðMQ
ijÞ2 � M2

ij

�
Zij
M þ Q2

4�i�j

�
2
: (89)

SINYA AOKI AND HIDENORI FUKAYA PHYSICAL REVIEW D 84, 014501 (2011)

014501-10



VI. RESULTS

A. Pseudoscalar correlator at fixed topology and in � ¼ 0 vacuum

Let us take the zero-mode projection, or integrate Eq. (88) over three-dimensional space (see Eq. (A1)),

PP ðt; m1; m2ÞQ �
Z

d3xhPðxÞPð0ÞiQ

¼ �2ðZ12
F Z12

M Þ4
F2ðZ12

F Þ2
1

2

�
1þDeff

12 þ Q2

�eff
1 �eff

2

�
coshðMQ

12ðt� T=2ÞÞ
MQ

12 sinhðMQ
12T=2Þ

þ L3 �
2ðZ12

F Z12
M Þ2

�1 þ�2

�
Seff
1 þ Seff

2

�
�
1þDeff

12 þ Q2

�eff
1 �eff

2

�	�
1þ Q2

2�1�2

��
� 2�2

F2

S1 � S2

�1 ��2

r12ðtÞ; (90)

which is more useful to compare with lattice QCD results, where

rijðtÞ �
Z

d3x �Gðx;M2
ii;M

2
jjÞ: (91)

This is our main result in this paper valid for an arbitrary number of nondegenerate flavors.
It is also important to consider the correlator in the � ¼ 0 vacuum,

PP ðt;m1;m2Þ�¼0 �
Z

d3xhPðxÞPð0Þi�¼0

¼�2ðZ12
F Z12

M Þ4
F2ðZ12

F Þ2
1

2

�
1þðDeff

12 Þ�¼0 þ ðQ2Þ�¼0

�eff
1 �eff

2

�
coshðM�¼0

12 ðt�T=2ÞÞ
M�¼0

12 sinhðM�¼0
12 T=2ÞþL3

�2ðZ12
F Z12

M Þ2
�1 þ�2

�
ðSeff

1 Þ�¼0

þðSeff
2 Þ�¼0 �

�
1þðDeff

12 Þ�¼0 þ ðQ2Þ�¼0

�eff
1 �eff

2

�	�
1þðQ2Þ�¼0

2�1�2

��
� 2�2

F2

ðS1Þ�¼0 �ðS2Þ�¼0

�1 ��2

r12ðtÞ; (92)

where ðM�¼0
ij Þ2 � M2

ijðZij
M þ ðQ2Þ�¼0

4�i�j
Þ2. The summation over

topology,

ðOÞ�¼0 �
P

Q OðQÞZQ
0;Nf

ðf�eff
i gÞP

Q ZQ
0;Nf

ðf�eff
i gÞ ; (93)

can be, at least, numerically performed using the analytic
expression for ZQ

0;Nf
ðf�eff

i gÞ, which is finite. For small Nf

cases, simple analytic forms are also known [50]. Note in
the p regime, that we can easily calculate ðQ2Þ�¼0 ¼ �� �
�m�V ¼ 
tV where �m ¼ 1=

P
fð1=mfÞ and 
t denotes the

topological susceptibility.3

As seen above, we find a constant contribution in the
pseudoscalar correlator in addition to the conventional
cosh function of time t. This constant term is indispensable
for keeping the result IR finite and giving a smooth inter-
polation between the � and p regime limits.

B. Check in the p regime and � regime limits

Let us confirm whether our above formulas recover the
conventional p expansion results when both of m1, m2 are
large (or m1, m2 � 1=�V). In that limit, we can use (see
Appendix C and Refs. [42,44])

1

�1 þ�2

�Oðp2Þ; (94)

S i � 1�X
f

1

�i þ�f

þ Q2

2�2
i

þOðp4Þ; (95)

D12 � S1S2 � 1�X
f

1

�1 þ�f

þ Q2

2�2
1

�X
f

1

�2 þ�f

þ Q2

2�2
2

þOðp4Þ; (96)

ðQ2Þ�¼0 � ��: (97)

Here one should remember that in the conventional p

expansion, Z factors are expressed not by ��ð0;M2Þ but by
�ð0;M2Þ ¼ ��ð0;M2Þ þ 1=M2V. To take this into account,
it is useful to redefine the Z factors,

½Z12
M �p � Z12

M

�
1þ ��

4�1�2

�
; (98)

½Z12
F �p � Z12

F

�
1� 1

4

X
f

�
1

�1 þ�f

þ 1

�2 þ�f

�

þ 1

8

�
1

�1

� 1

�2

�
2
��

�
: (99)3In the p regime, the LO calculation of 
t is enough in this

work. See Refs. [51,52] for the NLO correction.
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The well-known result in the p expansion is then precisely
recovered,

P P ðt; m1; m2Þ�¼0 ¼
�2ð½Z12

F �p½Z12
M �pÞ4

F2ð½Z12
F �pÞ2

� coshðM�¼0
12 ðt� T=2ÞÞ

M�¼0
12 sinhðM�¼0

12 T=2Þ ; (100)

whereM�¼0
12 ¼ M12½Z12

M �p. Note that the constant term and

r12ðtÞ term rapidly vanish as m1 or m2 grows. We also
confirm that our result at fixed topology agrees with the one
in the p expansion [51].

Next let us consider the � regime limit, where both of the
valence masses are near the chiral limit, m1 �m2 �
1=�V. In this case, one can expand the hyperbolic cosine
term in the meson mass as

coshðMðt� T=2ÞÞ
M sinhðMT=2Þ ¼ 2

M2T
þ 2Th1ðt=TÞ þOðM2Þ;

(101)

where

h1ðt=TÞ � 1

2

�
t

T
� 1

2

�
2 � 1

24
; (102)

and obtains

PP ðt;m1;m2ÞQ¼ �2
eff

F2ðZ12
F Þ2

�
1þDeff

12 þ
Q2

�eff
1 �eff

2

�
Th1ðt=TÞ

þL3�2
eff

Seff
1 þSeff

2

�eff
1 þ�eff

2

�2�2

F2

S1�S2

�1��2

r12ðtÞ; (103)

which is consistent with the result in the � expansion
(Ref. [18]). Note that we have used �ðZ12

MZ12
F Þ2 ¼ �eff þ

OðM2
11Þ þOðM2

22Þ.

C. When m2 is large

One of our main interests in this work is to consider
when one valence quark is always large, in the p regime:
m2�V �Oð1=p2Þ. Namely, we consider the chiral limit of
the kaon-type correlators in a finite box.

In this case, we can perturbatively treat (see
Appendix C)

1

�1 þ�2

� 1

�2

�Oðp2Þ; (104)

S 2 � 1�X
f

1

�2 þ�f

þ Q2

2�2
2

þOðp4Þ; (105)

D 12 � S1

�
1�X

f

1

�2 þ�f

þ Q2

2�2
2

�
; (106)

and the correlator in that limit is

PP ðt; m1; m2ÞQ
¼ �2ðZ12

F Z12
M Þ4

F2ðZ12
F Þ2

�
1þ Seff

1

�
1�X

f

1

�2 þ�f

þ Q2

2�2
2

�

þ Q2

�1�2

�
coshðMQ

12ðt� T=2ÞÞ
2MQ

12 sinhðMQ
12T=2Þ

: (107)

The result in the � ¼ 0 case is obtained by replacing Q2

with ðQ2Þ�¼0 and Seff
v with ðSeff

v Þ�¼0.
One can see that the overall factor (and therefore the

calculation of the decay constant FK) still has a large finite
volume correction from the zero-mode integration, while

the meson mass (MQ
12 here) has a rather small perturbative

correction.

D. Origin of the �Gðx;M2
11;M

2
22Þ term

The third term in Eq. (90) becomes significant only
when both of m1 and m2 are in the � regime. Here we
consider the origin of that term.
Although nonperturbative integration of the zero mode

is supposed to be the most reliable way of calculating the
finite size effects near the chiral limit, it obscures the
physical meaning as propagation of the pions. Let us
here go back to a perturbative picture in the definition of
Eq. (70) and express the corresponding correlation func-
tion using Appendix D and putting labels ‘‘(x)’’ and ‘‘(y)’’
to explicitly show where the original operators are located.
For example, the first term of Eq. (70) is expressed by

hð½U0ðxÞ�12 þ½Uy
0 ðxÞ�21Þð½U0ðyÞ�21 þ½Uy

0 ðyÞ�12ÞiU0

¼� 2

F2
ðh½�0ðxÞ�12½�0ðyÞ�21iU0

þh½�0ðxÞ�21½�0ðyÞ�12iU0
Þþ 1

F4
hð½�2

0ðxÞ�12 þ½�2
0ðxÞ�21Þð½�2

0ðyÞ�21 þ½�2
0ðyÞ�12ÞiU0

þ 2

3F4
ðhð½�0ðxÞ�12 �½�0ðxÞ�21Þð½�3

0ðyÞ�21�½�3
0ðyÞ�12ÞiU0

þhð½�3
0ðxÞ�12�½�3

0ðxÞ�21Þð½�0ðyÞ�21 �½�0ðyÞ�12ÞiU0
Þþ � � � :

(108)

With this perturbative picture of the zero mode, the C5 term can be expressed as
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C5 �Gðx� y;M2
11;M

2
22Þ

¼ 1

F4
hð½�2

0ðxÞ�12 þ ½�2
0ðxÞ�21Þð½�2

0ðyÞ�21 þ ½�2
0ðyÞ�12ÞiU0

� hð½�ðxÞ�11½�ðyÞ�22 þ ½�ðxÞ�22½�ðyÞ�11Þi� þ � � � :
(109)

It is then obvious that this term is originally a three-pion-
state propagator which is suppressed in the ordinary p
regime. As the system enters the � regime, however, two
of their zero mode’s contributions are nonperturbatively
enhanced and it becomes an NLO contribution.

VII. USEFUL EXAMPLES

In this section we present two specific examples in the
Nf ¼ 2 (with degenerate up and down quarks) and 2þ 1

(with up, down and strange quarks) theories, which are
useful to analyze lattice QCD results simulated in finite
volumes. In the formulas below, we denote the sea quark

masses by mu ¼ md ¼ m and ms (� ¼ m�V and �s ¼
ms�V).
We consider two types of the pseudoscalar correlators:

the pion-type correlator whose two valence masses are
degenerate, m1 ¼ m2 ¼ mv (�v ¼ mv�V), and the
kaon-type correlator for which we take m2 always to be
in the p regime (see the general formula Eq. (107)).

A. Simplified �Gðx;M2;M2Þ
For small Nf, we can simplify the �Gðx;M2

11;M
2
22Þ (or

r12ðtÞ) term. Since it contributes only when both of m1 and
m2 are in the � regime, it is sufficient to consider the pion-
type correlator case with m1 ¼ m2 ¼ mv. The result was
already presented in Ref. [51], except for the presence of
the zero-mode part: Gðx;M2

11;M
2
22Þ ¼ �Gðx;M2

11;M
2
22Þ þ

1=ðVM2
11M

2
22ð

P
f1=M

2
ffÞÞ, which does not affect the coef-

ficient of each term. Here we just present the results for the
Nf ¼ 2 and 2þ 1 cases,

�Gðx;M2
vv;M

2
vvÞ

¼

8>>><
>>>:

1
2½ ��ðx;M2

vvÞþðM2
vv�M2

�Þ@M2
vv

��ðx;M2
vvÞ� ðNf¼2Þ;

1
3

�
�1

2

ðM2
��M2

�Þ2
ðM2

vv�M2
�Þ2

��ðx;M2
�Þþ

�
1þ 1

2

ðM2
��M2

�Þ2
ðM2

vv�M2
�Þ2
�
��ðx;M2

vvÞþðM2
vv�M2

�Þf3ðM2
vv�M2

�Þ�ðM2
vv�M2

�Þg
2ðM2

vv�M2
�Þ @M2

vv

��ðx;M2
vvÞ

�
ðNf¼2þ1Þ;

(110)

where M2
vv ¼ 2mv�=F

2, M2
� ¼ 2m�=F2, and M2

� ¼
ð2mþ 4msÞ�=3F2. Noting that ��ðx;M2

�Þ rapidly con-
verges to �1=M2

�V for large jxj and remembering that
the corresponding term contributes only when M2

vv �
Oðp4Þ, it is sufficient to consider (See also Eq. (A1).)

rvvðtÞ’

8>>><
>>>:

1
2

�
coshðMQ

vvðt�T=2ÞÞ
2MQ

vv sinhðMQ
vvT=2Þ�

1
ðMQ

vvÞ2T

�
ðNf¼2Þ;

1
2

�
coshðMQ

vvðt�T=2ÞÞ
2MQ

vv sinhðMQ
vvT=2Þ�

1
ðMQ

vvÞ2T

�
þ 1

6M2
�T

ðNf¼2þ1Þ:
(111)

Here we have used an additional assumption that the
valence pion mass is not taken very differently from the
physical pion mass and the OðM2

vv �M2
�Þ contribution is

ignored. The only exceptional case: M2
� � M2

vv will be
discussed later. Note that we have replaced the tree-level
massMvv by the NLOmassMQ

vv for later convenience (the
difference is next-to-next-to-leading order.).

B. Nf ¼ 2 and 2þ 1 flavor results

Using Eq. (111), the pion-type correlator can be ex-
pressed in a compact form,

�ðt; mvÞQ � PP ðt; mv;mvÞQ

¼ CQ
PP

coshðMQ
vvðt� T=2ÞÞ

MQ
vv sinhðMQ

vvT=2Þ
þDQ

PP; (112)

where the valence pion mass is given by

MQ
vv ¼ MvvZ

vv
M

�
1þ Q2

4�2
v

�
; (113)

and

CQ
PP ¼ �2

F2

ðZvv
M Zvv

F Þ4
ðZvv

F Þ2
1

2

�
1þDeff

vv þ Q2

ð�eff
v Þ2 �

@Seff
v

@�eff
v

�
;

(114)

DQ
PP ¼

8>>><
>>>:
L3 �2

eff

2�eff
v

�
2Seff

v �
�
1þDeff

vv þ Q2

ð�eff
v Þ2 � @Seff

v

@�eff
v

�	�
1þ Q2

2�2
v

��
ðNf ¼ 2Þ;

L3 �2
eff

2�eff
v

�
2Seff

v �
�
1þDeff

vv þ Q2

ð�eff
v Þ2 � @Seff

v

@�eff
v

�	�
1þ Q2

2�2
v

�
� �eff

v

�effþ2�eff
s

�
@Seff

v

@�eff
v

��
ðNf ¼ 2þ 1Þ:

(115)
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Here we have used �eff ¼ �ðZvv
M Zvv

F Þ2 þOðmvÞ and

lim
m1!m2¼mv

S1 � S2

�1 ��2

¼ @Sv

@�v

: (116)

It is also possible to simplify the kaon-type correlator
(here we choose the second valence mass to be the physical
strange quark mass:m2 ¼ ms in the 2þ 1-flavor theory) as

K ðt; mvÞQ � PP ðt; mv;msÞQ

¼ EQ
PP

coshðMQ
vsðt� T=2ÞÞ

MQ
vs sinhðMQ

vsT=2Þ
; (117)

where the valence kaon mass is given by

MQ
vs ¼ MvsZ

vs
M

�
1þ Q2

4�v�s

�
;

Mvs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmv þmsÞ�=F2

q
;

(118)

and

EQ
PP ¼

�2

F2

ðZvs
MZvs

F Þ4
ðZvs

F Þ2
1

2

�
1þ Seff

v

�
1� 2

�s þ�

� 1

2�s

þ Q2

2�2
s

�
þ Q2

�v�s

�
: (119)

The result in the � ¼ 0 vacuum is obtained by simply
replacing Q2 with ðQ2Þ�¼0, Seff

v with ðSeff
v Þ�¼0 and Deff

vv

with ðDeff
vvÞ�¼0 in the above formulas.

Using a notation for the renormalized logarithmic
term which is given in Eq. (43), the explicit forms of Z
factors [53,54], �eff=�, Sv andDvv (see Appendix C) are
given by
(i) Nf ¼ 2 case:

Zvv
M ¼ 1þ 1

2F2

�
1

2
��rð0;M2

vvÞ

þ 1

2
ðM2

vv �M2
�Þ@M2

vv

��rð0;M2
vvÞ

� 16ðLr
4 � 2Lr

6ÞM2
� � 8ðLr

5 � 2Lr
8ÞM2

vv

�
;

(120)

Zvv
F ¼ 1� 1

2F2
½2 ��rð0; ðM2

vv þM2
�Þ=2Þ

� 8ð2Lr
4M

2
� þ Lr

5M
2
vvÞ�; (121)

�eff

�
¼ 1� 1

F2

�
2 ��rð0;M2

�=2Þ � 1

2



� �1ffiffiffiffi

V
p

�M2
�

�
� 1

16�2
lnV1=2�2

sub � �2

��

� 32Lr
6M

2
�

�
; (122)

S v ¼ � 1

ð�2 ��2
vÞ2

�

det

@�v
KQð�vÞ IQð�vÞ IQð�Þ ��1IQ�1ð�Þ

�@�v
ð�vKQþ1ð�vÞÞ �vIQþ1ð�vÞ �IQþ1ð�Þ IQð�Þ

@�v
ð�2

vKQþ2ð�vÞÞ �2
vIQþ2ð�vÞ �2IQþ2ð�Þ �IQþ1ð�Þ

�@�v
ð�3

vKQþ3ð�vÞÞ �3
vIQþ3ð�vÞ �3IQþ3ð�Þ �2IQþ2ð�Þ

0
BBB@

1
CCCA

det
IQð�Þ ��1IQ�1ð�Þ

�IQþ1ð�Þ IQð�Þ
� � ; (123)

D vv ¼ � 1

ð�2 ��2
vÞ2

�

det

@�v
KQð�vÞ @�v

IQð�vÞ IQð�Þ ��1IQ�1ð�Þ
�@�v

ð�vKQþ1ð�vÞÞ @�v
ð�vIQþ1ð�vÞÞ �IQþ1ð�Þ IQð�Þ

@�v
ð�2

vKQþ2ð�vÞÞ @�v
ð�2

vIQþ2ð�vÞÞ �2IQþ2ð�Þ �IQþ1ð�Þ
�@�v

ð�3
vKQþ3ð�vÞÞ @�v

ð�3
vIQþ3ð�vÞÞ �3IQþ3ð�Þ �2IQþ2ð�Þ

0
BBB@

1
CCCA

det
IQð�Þ ��1IQ�1ð�Þ

�IQþ1ð�Þ IQð�Þ
� � þ 4�v

�2 ��2
v

Sv:

(124)

(ii) Nf ¼ 2þ 1 case:

Zvv
M ¼ 1þ 1

2F2

�
� 1

6

ðM2
� �M2

�Þ2
ðM2

vv �M2
�Þ2

��rð0;M2
�Þ þ 1

3

�
1þ 1

2

ðM2
� �M2

�Þ2
ðM2

vv �M2
�Þ2

�
��rð0;M2

vvÞ þ 1

6

ðM2
vv �M2

�Þ
ðM2

vv �M2
�Þ

f3ðM2
vv �M2

�Þ

� ðM2
vv �M2

�Þg@M2
vv

��rð0;M2
vvÞ � 8ðLr

4 � 2Lr
6ÞðM2

� þ 2M2
KÞ � 8ðLr

5 � 2Lr
8ÞM2

vv

�
; (125)
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Zvs
M ¼ 1þ 1

2F2

�
1

3

M2
� �M2

�

M2
vv �M2

�

��rð0;M2
�Þ þ 1

3

M2
vv �M2

�

M2
vv �M2

�

��rð0;M2
vvÞ � 8ðLr

4 � 2Lr
6ÞðM2

� þ 2M2
KÞ � 8ðLr

5 � 2Lr
8ÞM2

vs

�
;

(126)

Zvv
F ¼ 1� 1

2F2
½2 ��rð0; ðM2

vv þM2
�Þ=2Þ þ ��rð0;M2

vsÞ � 8ðLr
4ðM2

� þ 2M2
KÞ þ Lr

5M
2
vvÞ�; (127)

Zvs
F ¼ 1� 1

2F2

�
��rð0; ðM2

vv þM2
�Þ=2Þ þ 1

2
��rð0;M2

vsÞ þ ��rð0;M2
KÞ þ

1

3

�
1þ 1

2

M2
� �M2

�

M2
vv �M2

�

�
2
��rð0;M2

�Þ

þ 1

3



M2

vv �M2
�

M2
vv �M2

�

� 1

2
� 1

4

�
M2

� �M2
�

M2
vv �M2

�

�
2
�
��rð0;M2

vvÞ � 1

12

ðM2
vv �M2

�Þ
ðM2

vv �M2
�Þ

f3ðM2
vv �M2

�Þ

� ðM2
vv �M2

�Þg@M2
vv

��rð0;M2
vvÞ � 8ðLr

4ðM2
� þ 2M2

KÞ þ Lr
5M

2
vsÞ

�
; (128)

�eff

�
¼ 1� 1

F2

�
2 ��rð0;M2

�=2Þ þ ��rð0;M2
ss=2Þ � 1

3



�ðM2

� �M2
�Þ2

2M4
�

��rð0;M2
�Þ þ

�
1þ ðM2

� �M2
�Þ2

2M4
�

��
� �1ffiffiffiffi

V
p

�

þM2
�ðM2

� � 3M2
�Þ

2M2
�

�
� 1

16�2
lnV1=2�2

sub � �2

��
� 16Lr

6ðM2
� þ 2M2

KÞ
�
; (129)

S v ¼ � 1

ð�2 ��2
vÞ2ð�2

s ��2
vÞ

�

det

@�v
KQð�vÞ IQð�vÞ IQð�Þ ��1IQ�1ð�Þ IQð�sÞ

�@�v
ð�vKQþ1ð�vÞÞ �vIQþ1ð�vÞ �IQþ1ð�Þ IQð�Þ �sIQþ1ð�sÞ

@�v
ð�2

vKQþ2ð�vÞÞ �2
vIQþ2ð�vÞ �2IQþ2ð�Þ �IQþ1ð�Þ �2

sIQþ2ð�sÞ
�@�v

ð�3
vKQþ3ð�vÞÞ �3

vIQþ3ð�vÞ �3IQþ3ð�Þ �2IQþ2ð�Þ �3
sIQþ3ð�sÞ

@�v
ð�4

vKQþ4ð�vÞÞ �4
vIQþ4ð�vÞ �4IQþ4ð�Þ �3IQþ3ð�Þ �4

sIQþ4ð�sÞ

0
BBBBB@

1
CCCCCA

det
IQð�Þ ��1IQ�1ð�Þ IQð�sÞ

�IQþ1ð�Þ IQð�Þ �sIQþ1ð�sÞ
�2IQþ2ð�Þ �IQþ1ð�Þ �2

sIQþ2ð�sÞ

0
B@

1
CA

; (130)

Dvv ¼ � 1

ð�2 ��2
vÞ2ð�2

s ��2
vÞ

�

det

@�v
KQð�vÞ @�v

IQð�vÞ IQð�Þ ��1IQ�1ð�Þ IQð�sÞ
�@�v

ð�vKQþ1ð�vÞÞ @�v
ð�vIQþ1ð�vÞÞ �IQþ1ð�Þ IQð�Þ �sIQþ1ð�sÞ

@�v
ð�2

vKQþ2ð�vÞÞ @�v
ð�2

vIQþ2ð�vÞÞ �2IQþ2ð�Þ �IQþ1ð�Þ �2
sIQþ2ð�sÞ

�@�v
ð�3

vKQþ3ð�vÞÞ @�v
ð�3

vIQþ3ð�vÞÞ �3IQþ3ð�Þ �2IQþ2ð�Þ �3
sIQþ3ð�sÞ

@�v
ð�4

vKQþ4ð�vÞÞ @�v
ð�4

vIQþ4ð�vÞÞ �4IQþ4ð�Þ �3IQþ3ð�Þ �4
sIQþ4ð�sÞ

0
BBBBBBBBB@

1
CCCCCCCCCA

det

IQð�Þ ��1IQ�1ð�Þ IQð�sÞ
�IQþ1ð�Þ IQð�Þ �sIQþ1ð�sÞ
�2IQþ2ð�Þ �IQþ1ð�Þ �2

sIQþ2ð�sÞ

0
BB@

1
CCA

þ
�

4�v

�2 ��2
v

þ 2�v

�2
s ��2

v

�
Sv: (131)
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Here we have used explicit expressions for
�Gð0;M2

1;M
2
2Þ’s shown in Ref. [51] and

lim
M!0

��rð0;M2Þ ¼ � �1ffiffiffiffi
V

p ; (132)

lim
M!0

@M2
��rð0;M2Þ ¼ � 1

16�2
lnV1=2�2

sub � �2: (133)

For Sv and Dvv at degenerate up and down quark
masses, we have used an expansion ð�þ��Þ�I�ð�þ
��Þ ¼ ��I�ð�Þ þ���½���1I��1ð�Þ� þOðð��Þ2Þ for
any �, and a similar expansion for K	’s. Note that Seff and
Deff are obtained by simply replacing � with �eff in the
above formulas.

C. When Mvv � M�

In Eq. (111), we have neglected a term proportional to
M2

vv �M2
�. One might, however, encounter the case where

one wants to reduce the valence quark mass to the very
vicinity of the chiral limit while keeping the physical pion
mass at the p regime. In such a case, a partial quenching
artifact is enhanced as a double-pole contribution and
one has to add the following contributions to the pion
correlator,

��ðt; mvÞQ ¼ �FQ
PP@M2

vv

�
coshðMvvðt� T=2ÞÞ
2Mvv sinhðMvvT=2Þ �

1

M2
vvT

�
;

(134)

where

FQ
PP¼

8>>><
>>>:

�2

F2

�
@Sv

@�v

�
ðM2

vv�M2
�Þ ðNf¼2Þ;

�2

F2

�
@Sv

@�v

�
ðM2

vv�M2
�Þ
�
1� 1

3
M2

vv�M2
�

M2
vv�M2

�

�
ðNf¼2þ1Þ:

(135)

D. Masses and decay constants

In this subsection we demonstrate how to extract the
masses and decay constants of the pions (and kaons) from
lattice QCD data using our formula. We plot in Fig. 1 the
pion correlator Eq. (112) (normalized by �) at several
different quark masses. We take mud ¼ mv in all cases.
In the plot, the strange quark mass is fixed at ms ¼
111 MeV, and the topological charge is fixed at Q ¼ 0.
We choose the finite box size as V ¼ L3T ¼ ð1:8 fmÞ3 �
ð5:4 fmÞ and the boundary condition is periodic in all
directions. For the inputs, we use one of the latest lattice
QCD results for the chiral condensate and the pion decay

constant, � ¼ ½234 MeV�3 (in the MS scheme at 2 GeV)
and F ¼ 71 MeV from Ref. [41]. For the other low-energy
constants, phenomenological estimates from Ref. [3],
Lr
4ð770 MeVÞ ¼ 0:0, Lr

5ð770 MeVÞ ¼ 2:2� 10�3,

Lr
6ð770 MeVÞ ¼ 0:0, and Lr

8ð770 MeVÞ ¼ 1:1� 10�3

are used.
As the first step of the analysis, one should identify the

presence (or absence) of the constant term DQ
PP, which is a

signal of entering (or leaving) the � regime. As shown in
Fig. 2, it is a rapidly decreasing function of the quark mass.
Since this constant comes from the zero-mode part, it is
essentially controlled by the chiral condensate. Using lat-
tice QCD data for � (or �eff) or taking time derivative of

the correlator, DQ
PP can be subtracted.

Next, from the remaining cosh function part, the meson
masses can be determined. In Fig. 3, we plot the quark
mass dependence of the pion mass squared divided by the

quark mass: ðMQ¼0=�¼0
vv Þ2=ð2mudÞ and that for the kaon

mass: ðMQ¼0=�¼0
vs Þ2=ðmud þmsÞ. Here the same inputs

shown above are used. The � ¼ 0 results here and in the
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m
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FIG. 1 (color online). The Nf ¼ 2þ 1 ChPT prediction for
the pion correlator �ðt; mvÞQ (normalized by �) at Q ¼ 0

and mv ¼ mud. The finite periodic box size is V ¼ L3T ¼
ð1:8 fmÞ3 � ð5:4 fmÞ. We use ms ¼ 111 MeV, �MSð2 GeVÞ ¼
½234 MeV�3, F¼71MeV, Lr

4ð770 MeVÞ ¼ 0:0,
Lr
5ð770 MeVÞ ¼ 2:2� 10�3, Lr

6ð770 MeVÞ ¼ 0:0 and

Lr
8ð770 MeVÞ ¼ 1:1� 10�3 as the inputs.
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FIG. 2 (color online). The quark mass mudð¼ mvÞ dependence
of �DQ

PP (normalized by �) at Q ¼ 0. The same inputs as Fig. 1

are used.
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following are calculated via Eq. (93) truncating the sum at
jQj ¼ 20, which already shows a good convergence. For
the pion mass, 10%–20% deviation from the infinite V
result (thick curves) is found near the chiral limit while
the kaon mass suggests only �1% finite volume effects.
Note that there is no contribution from the zero mode to the
meson masses at Q ¼ 0 (See Eq. (89).).

Finally, let us discuss how to determine the pion

decay constant from the coefficient CQ
PP. It is not difficult

to check that a naive conventional definition FQ
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4m2
vC

Q
PP=ðMQ

vvÞ4
q

or its counterpart in the � ¼ 0 vacuum

F�¼0
� � ðFQ

� Þ�¼0 actually leads to the right infinite volume
limit F� ¼ FZvv

F jV¼1 as V increases. It is also the case for

the kaon decay constant: FQ
K �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmv þmsÞ2EQ

PP=ðMQ
vsÞ4

q
(or F�¼0

K ) converges to the infinite volume limit of
FK ¼ FZvs

F jV¼1. Note however that the curves in Fig. 4
show a considerable deviation (� 50%) as the quark mass
is reduced, which is a typical consequence of the non-
perturbative zero-mode integrals. Unlike the meson
masses, not only the pion decay constant but also the
kaon decay constant receives a large contribution from
the zero mode. These zero-mode integrals are again con-
trolled by the chiral condensate, and therefore one should
in principle be able to subtract this part using lattice
QCD data for � (or �eff). Once the zero-mode part,

Deff
vv � 1þ Q2

ð�eff
v Þ2 � @Seff

v

@�eff
v

or Seff
v ð1� 2

�sþ� � 1
2�s

þ Q2

2�2
s
Þ þ

Q2

�v�s
� 1, is subtracted, one obtains F0

� � FZvv
F or F0

K �
FZvs

F , which have a much milder volume dependence (at
most a few% level) as shown by the dotted curves in Fig. 4.

We emphasize that the accuracy of our calculation is
NLO even though the zero-mode contribution is partly
treated to all-order. It is interesting to compare our results
with the conventional finite volume formulas in the p

expansion since higher order loop calculations are avail-
able á la Lüscher formula [55] for the latter. In Figs. 5 and
6, we plot our results for

RM�=K
� MQ=�¼0

�=K ðLÞ
M�=KðL ¼ 1Þ � 1;

RF�=K
� FQ=�¼0

�=K ðLÞ
F�=KðL ¼ 1Þ � 1;

(136)

comparing with those in the two-loop (and one-loop) cal-
culations in the p expansion by Colangelo et al. [7]. The
same inputs for�, F and Li’s above are used. For the other
higher order LECs, the values given in [7] are used.
Our formula at one-loop (denoted by i exp.) in the

� ¼ 0 vacuum is drawn by the solid (T ¼ 5:4 fm) and
thick (T ¼ 7:2 fm) curves while the dotted curves
(T ¼ 5:4 fm) show the results from which the zero-mode
contribution is subtracted. Note that even in the region
M�L< 2, our formulas are finite while the p expansion
(dashed curves) results show an unphysical divergence. For
M�L> 2, on the other hand, we observe that our result is
consistent with the p expansion. It is, in particular, remark-
able that our one-loop result is closer to the two-loop
formula rather than one-loop in the p expansion. In order
to understand whether this is a just coincidence or can be
explained by the effect of the zero-mode resummation, a
further study in the limit of T ! 1, which enters another
regime (the � regime [56–62]), is needed.
We have observed that, as the quark masses decrease, the

pseudoscalar correlator in a finite volume is largely dis-
torted from the form in the infinite volume limit because of
the zero-momentum mode fluctuation. By a careful re-
moval of its contribution using the ChPT formulas, how-
ever, we can obtain a milder volume dependence, which
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FIG. 3 (color online). The up-down quark mass mudð¼ mvÞ
dependence of ðMQ¼0=�¼0

vv Þ2=ð2mudÞ (upper panel) and

ðMQ¼0=�¼0
vs Þ2=ðmud þmsÞ (lower) is plotted at different volume

sizes. The same inputs as Fig. 1 are used.
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FIG. 4 (color online). mudð¼ mvÞ dependence of the pion

(upper panel) and kaon (lower) decay constants FQ¼0=�¼0
� and

FQ¼0=�¼0
K at different volume sizes. The curves with the index

‘‘zero-mode subt.’’ denote F0
� or F0

K. See the text for the
notation. The same inputs as Fig. 1 are used.
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makes it possible to extract the V ! 1 limit of the meson
masses or decay constants.

VIII. A SHORT-CUT PRESCRIPTION

We have performed a complete calculation to obtain the
general form of the pseudoscalar correlation function in
Eq. (90), which contains a conventional cosh function as
well as a constant term and a contribution from three-
particle states.

It is no surprise that the constant term appears since the
correlator in the conventional p regime shows an unphys-
ical infrared divergence in the chiral limit. To remove this
divergence, the zero-mode or the constant-mode contribu-
tion is indispensable.

With this observation we find that the result in Eq. (90) is
obtained by an easier prescription below. Starting from the
conventional p expansion formula in Eq. (100),
(1) Replace the Z factors with those from which the

zero-mode contribution is subtracted, namely, ½Zij
F �p

and ½Zij
M�p with Zij

F and Zij
M.

(2) Replace

coshðM�¼0
ij ðt� T=2ÞÞ

M�¼0
ij sinhðM�¼0

ij T=2Þ with

coshðMQ
ijðt� T=2ÞÞ

MQ
ij sinhðMQ

ijT=2Þ
� 2

ðMQ
ijÞ2T

:

(137)

(3) Multiply a factor coming from the exact zero-mode
integrals, which can be read off from the coefficient
of the t dependent term or the 2Th1ðt=TÞ term in
the � expansion result. In the case of Eq. (90), it

is 1
2 ð1þDeff

12 þ Q2

�eff
1
�eff

2

Þ obtained from Eq. (103).

Note that the NLO condensate �eff , which contains
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FIG. 5 (color online). Comparison with the p expansion results
á la Lüscher formula [55]. Our new ChPT calculation (i exp.)
and the p expansion (p exp.) result from Ref. [7] for RM�

(top)

and RMK
(bottom) are drawn (note that one-loop correction in the

p expansion on RMK
is zero). The same inputs as Fig. 1 and those

given in Ref. [7] for the other higher LECs are used. The
M�L ¼ 2 (thick) curve is drawn using the two-loop result.
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chiral-log terms, should be used instead of the bare
value �.

(4) Add the constant and r12ðtÞ terms if they exist in the
� expansion.

In fact, in a similar prescription, it is not difficult to
obtain (a conjecture for) the axialvector-pseudoscalar and
axialvector-axialvector correlators:

AP ðt; m1; m2ÞQ �
Z

d3xhA0ðxÞPð0ÞiQ ¼ �ðZ12
F Z12

M Þ2
2

��
1þDeff

12 þ Q2

�eff
1 �eff

2

�	�
1þ Q2

2�1�2

��
sinhðMQ

12ðt� T=2ÞÞ
sinhðMQ

12T=2Þ

þ �ðZ12
F Z12

M Þ2
�
ðSeff

1 þ Seff
2 Þ �

�
1þDeff

12 þ Q2

�eff
1 �eff

2

�	�
1þ Q2

2�1�2

���
t

T
� 1

2

�

�M2
12�

S1 � S2

�1 ��2

@

@t
ð@M2

11
r12ðtÞ þ @M2

22
r12ðtÞÞ; (138)

AAðt; m1; m2ÞQ �
Z

d3xhA0ðxÞA0ð0ÞiQ

¼ ��ðZ12
F Z12

M Þ2
2

ðm1 þm2ÞðSeff
1 þ Seff

2 Þ coshðM
Q
12ðt� T=2ÞÞ

MQ
12 sinhðMQ

12T=2Þ
þ ðFZ12

F Þ2
T

�
ðSeff

1 þ Seff
2 Þ

	�
1þ Q2

2�1�2

�

�
�
1þDeff

12 � Q2

�eff
1 �eff

2

��
þ T

2V

�
1�Deff

12 þ Q2

�eff
1 �eff

2

�XNf

i

ð �k00ðM2
1iÞ þ �k00ðM2

2iÞÞ; (139)

where

�k 00ðM2Þ � X
q¼ðp1;p2;p3Þ

�1

4sinh2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijqj2 þM2
p

T=2Þ
þ 1

M2T2
;

(140)

which is UV finite (and of course IR finite as well) and can
be thus numerically evaluated.

We confirm that Eqs. (138) and (139) indeed converge to
those in the p expansion [51] for the larger masses and

those in the � expansion [16,18] near the chiral limit. The
above prescription thus achieves at least a smooth inter-
polation between the � and p regimes. Note that the �
regime result is not found in the literature for the
AP ðt; m1; m2ÞQ correlator. We present in Appendix E

our own calculation.
Furthermore, we find a more nontrivial evidence

that supports our prescription: the axial Ward-Takahashi
identities

@

@t
AP ðt; m1; m2ÞQ ¼ ðm1 þm2ÞPP ðt; m1; m2ÞQ

¼ �ðZ12
F Z12

M Þ2
2

��
1þDeff

12 þ Q2

�eff
1 �eff

2

�	�
1þ Q2

2�1�2

��
MQ

12 coshðMQ
12ðt� T=2ÞÞ

sinhðMQ
12T=2Þ

þ�ðZ12
F Z12

M Þ2
T

�
�
ðSeff

1 þ Seff
2 Þ �

�
1þDeff

12 þ Q2

�eff
1 �eff

2

�	�
1þ Q2

2�1�2

��
� 2�

S1 � S2

�1 ��2

M2
12r12ðtÞ þOðp4Þ;

(141)

and

� @

@t
AAðt; m1; m2ÞQ ¼ ðm1 þm2ÞAP ðt; m1; m2ÞQ

¼ �ðZ12
F Z12

M Þ2ðm1 þm2ÞS
eff
1 þ Seff

2

2

sinhðMQ
12ðt� T=2ÞÞ

sinhðMQ
12T=2Þ

þOðp4Þ; (142)

are precisely satisfied. Here we have used

INTERPOLATION BETWEEN THE � AND p . . . PHYSICAL REVIEW D 84, 014501 (2011)

014501-19



�
ðSeff

1 þ Seff
2 Þ �

�
1þDeff

12 þ Q2

�eff
1 �eff

2

�	�
1þ Q2

2�1�2

���
t

T
� 1

2

�

¼
�
ðSeff

1 þ Seff
2 Þ �

�
1þDeff

12 þ Q2

�eff
1 �eff

2

�	�
1þ Q2

2�1�2

��
sinhðMQ

12ðt� T=2ÞÞ
2 sinhðMQ

12T=2Þ
; (143)

which is valid up to a higher order contribution near the
chiral limit, and

@2

@t2
ð@M2

ii
r12ðtÞÞ ¼ r12ðtÞ þOðM2

iiÞði ¼ 1; 2Þ: (144)

Our results in Eqs. (90), (138), and (139) not only smoothly
connect the � and p regimes but also keep the symmetry of
the theory even in the intermediate region.

IX. CONCLUSION

With the new perturbative scheme of ChPT proposed in
Ref. [34], we have calculated the two-point correlation
function in the pseudoscalar channel. The counting rule
for the computation is essentially the same as in the con-
ventional p expansion (except for the additional rule for
the mixing term of the zero and non-zero modes) while
some of the zero-mode integrals are performed nonpertur-
batively as in the � expansion.

As seen in Eqs. (90) and (112), the correlator is ex-
pressed by a hyperbolic cosine function of time t plus an
additional constant term as well as a nontrivial contribution
from three-particle states, which smoothly interpolates the
p regime results and those in the � regime.

The presence of the constant term in the correlator was
known as a remarkable feature of the � expansion. We have
found that this constant plays an essential role in canceling
the unphysical divergence coming from the cosh term in
the p expansion and keep the correlator always IR finite.

Giving examples for the Nf ¼ 2 and 2þ 1 theories, we

have proposed a new method of determining the meson
masses and decay constants from lattice QCD data ob-
tained in a finite volume. Once one has a good control of
the chiral condensate �, and therefore, of the nontrivial

coefficients CQ
PP, D

Q
PP and EQ

PP in the correlators Eqs. (112)
and (117), the zero-mode contributions can be subtracted
and the remaining meson masses (see Fig. 3) and decay
constants (Fig. 4) show a much milder volume dependence.
Our results will be useful to precisely estimate the finite
volume effects in lattice QCD data for the pion mass
M� and kaon mass MK, as well as their decay constants
F� and FK.

From our calculation we have found a short-cut pre-
scription as shown in Sec. VIII. According to this greatly
simplified scheme, we have derived the axialvector-
pseudoscalar and axialvector-axialvector correlators. It
turned out that these results not only give a smooth inter-
polation between the � and p regimes but also keep the

axial Ward-Takahashi identities at an arbitrary choice of
quark masses. It will be important to check if this simpli-
fied prescription is valid for the other quantities like three
or four point functions.
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APPENDIX A: � CORRELATORS IN FINITE
VOLUME

Integrals over � fields are expressed by ��ðx;M2Þ and
�Gðx;M2

1;M
2
2Þ defined by Eqs. (11) and (12). Here we

summarize useful formulas in the calculation of meson
correlators.
We first note that even simple (three-dimensional) inte-

grals and derivatives of them have unusual forms like

Z
d3x ��ðx;M2Þ ¼ coshðMðt� T=2ÞÞ

2M sinhðMT=2Þ � 1

M2T
; (A1)

@2� ��ðx;M2Þ ¼ M2 ��ðx;M2Þ þ 1

V
; (A2)

due to absence of the zero mode.

For the OðSð1ÞI Þ contribution, we need
Z

d4y ��ðx� y;M2
1Þ ��ðy;M2

2Þ

¼ 1

V

X
p�0

eipx

ðp2 þM2
1Þðp2 þM2

2Þ

¼ 1

M2
2 �M2

1

ð ��ðx;M2
1Þ � ��ðx;M2

2ÞÞ: (A3)

which becomes �@M2
��ðx;M2ÞjM2¼M2

1
in the limit

M2
1 ¼ M2

2.
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In the same way,Z
d4y ��ðx� y;M2

1Þ �Gðy;M2
2;M

2
3Þ

¼ 1

M2
2 �M2

1

ð �Gðx;M2
1;M

2
3Þ � �Gðx;M2

2;M
2
3ÞÞ; (A4)

which can be expressed in two different ways:

¼ 1

M2
3 �M2

2

ð �Gðx;M2
1;M

2
2Þ � �Gðx;M2

1;M
2
3ÞÞ;

¼ 1

M2
3 �M2

1

ð �Gðx;M2
1;M

2
2Þ � �Gðx;M2

2;M
2
3ÞÞ: (A5)

For OððSð1ÞI Þ2Þ contributions, we use

Z
d4yd4z ��ðx� y;M2

1Þ ��ðy� z;M2
2Þ ��ðz;M2

1Þ ¼
1

V

X
p�0

eipx

ðp2 þM2
1Þ2ðp2 þM2

2Þ

¼ 1

ðM2
2 �M2

1Þ2
ð ��ðx;M2

2Þ � ��ðx;M2
1ÞÞ �

1

M2
2 �M2

1

@M2
��ðx;M2ÞjM2¼M2

1
;

(A6)

whose degenerate limit, M2
1 ¼ M2

2, becomes ð@M2Þ2 ��ðx;M2ÞjM2¼M2
1
. We also need

Z
d4yd4z ��ðx� y;M2

1Þ �Gðy� z;M2
2;M

2
3Þ ��ðz;M2

1Þ ¼
�Gðx;M2

1;M
2
1Þ þ �Gðx;M2

2;M
2
3Þ � �Gðx;M2

1;M
2
3Þ � �Gðx;M2

1;M
2
2Þ

ðM2
2 �M2

1ÞðM2
3 �M2

1Þ
;

(A7)

which becomes in the limit M2
2 ¼ M2

3,

¼
�Gðx;M2

1;M
2
1Þ þ �Gðx;M2

2;M
2
2Þ � 2 �Gðx;M2

1;M
2
2Þ

ðM2
2 �M2

1Þ2
: (A8)

For the disconnected part, we compute

Z
d4x ��ðx;M2

1Þ ��ðx;M2
2Þ ¼

1

M2
2 �M2

1

ð ��ð0;M2
1Þ � ��ð0;M2

2ÞÞ; (A9)

and

Z
d4x ��ðx;M2

1Þ �Gðx;M2
2;M

2
3Þ¼

1

2

�
1

M2
1�M2

2

ð �Gð0;M2
2;M

2
3Þ� �Gð0;M2

1;M
2
3ÞÞþ

1

M2
1�M2

3

ð �Gð0;M2
2;M

2
3Þ� �Gð0;M2

1;M
2
2ÞÞ

�
;

(A10)

of which divergent part is treated with the dimensional regularization as usual.
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APPENDIX B: � CONTRACTION IN THE PSEUDOSCALAR CORRELATOR

Here we summarize the � contractions in hPðxÞPð0Þi00, hPðxÞPð0Þi10, hPðxÞPð0Þi20 and hPðxÞPð0Þi01.
The first leading contribution is given by

hPðxÞPð0Þi00 ¼ ��2ðZ12
MZ12

F Þ4
4

�
ð½U0�12 � ½Uy

0 �21Þð½U0�21 � ½Uy
0 �12Þ þ

1

2
ð½U0�12 � ½Uy

0 �21Þ2 þ
1

2
ð½U0�21 � ½Uy

0 �12Þ2
�
U0

� �2

8
ð�Z�

11 � �Z�
22Þhð½U0�12 � ½Uy

0 �21Þ2 � ð½U0�21 � ½Uy
0 �12Þ2iU0

þ �2

2F2
ðZ12

F ðZ12
M Þ2Þ2 ��ðx;M02

12Þhð½U0�11 þ ½Uy
0 �22Þð½U0�22 þ ½Uy

0 �11ÞiU0

þ �2

2F2

X
j�1

��ðx;M2
j2Þh½U0�1j½Uy

0 �j1iU0
þ �2

2F2

X
i�2

��ðx;M2
i1Þh½U0�2i½Uy

0 �i2iU0

� �2

2F2
�Gðx;M2

11;M
2
22Þhð½U0�12 þ ½Uy

0 �21Þð½U0�21 þ ½Uy
0 �12ÞiU0

þ �2

4F2
��ðx;M2

22Þhð½U0�12Þ2 þ ð½Uy
0 �21Þ2iU0

þ �2

4F2
��ðx;M2

11Þhð½U0�21Þ2 þ ð½Uy
0 �12Þ2iU0

� �2

4F2
�Gðx;M2

22;M
2
22Þhð½U0�12 þ ½Uy

0 �21Þ2iU0
� �2

4F2
�Gðx;M2

11;M
2
11Þhð½U0�21 þ ½Uy

0 �12Þ2iU0
; (B1)

where we have used

�2
eff

�
1��Z�

22 þ
16L8

F2
M2

12

��
1� �Z�

11 þ
16L8

F2
M2

12

�
¼ �2ðZ12

MZ12
F Þ4:

Next we calculate the OðSð1Þ
I Þ contribution. In this NLO part, we can set Zij

� ¼ Zij
F ¼ Zij

M ¼ 1. Note that � contractions

have to be all connected since the self-contraction is not allowed in the NSC vertex in Sð1Þ
I .

Using a notation given in Eq. (72) and the integration formulas given in Appendix A, we obtain

hPðxÞPð0Þi10 ¼ �2

2F2
2h½R�11 þ ½R�22iU0

�
�

F2
@M2

�
��ðx;M2ÞjM2¼M2

12

� �2

2F2

XNf

j�1

h½R�j1½U0�1j þ ½R�1j½Uy
0 �j1iU0

mj �m1

ð ��ðx;M2
12Þ � ��ðx;M2

2jÞÞ

� �2

2F2

XNf

i�2

h½R�i2½U0�2i þ ½R�2i½Uy
0 �i2iU0

mi �m2

ð ��ðx;M2
12Þ � ��ðx;M2

1iÞÞ

� �2

2F2

h½R�12½Uy
0 �12 þ ½U0�21½R�21iU0

m1 �m2

ð ��ðx;M2
12Þ � ��ðx;M2

11ÞÞ

� �2

2F2

h½R�21½Uy
0 �21 þ ½U0�12½R�12iU0

m2 �m1

ð ��ðx;M2
12Þ � ��ðx;M2

22ÞÞ

þ �2

2F2

h½R�12ð½U0�21 þ ½Uy
0 �12Þ þ ð½U0�21 þ ½Uy

0 �12Þ½R�21iU0

m1 �m2

ð �Gðx;M2
11;M

2
22Þ � �Gðx;M2

11;M
2
11ÞÞ

þ �2

2F2

h½R�21ð½U0�12 þ ½Uy
0 �21Þ þ ð½U0�12 þ ½Uy

0 �21Þ½R�12iU0

m2 �m1

ð �Gðx;M2
11;M

2
22Þ � �Gðx;M2

22;M
2
22ÞÞ: (B2)

For theOððSð1Þ
I Þ2Þ contribution we have both connected and disconnected parts. Note that we can set Zij

� ¼Zij
F ¼Zij

M¼1

here, too.
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The connected part (noted by the subscript ‘‘con’’) is given by

hPðxÞPð0Þi20con ¼ �2

2F2

�
�
�X
j�1

h½R�1j½R�j1iU0

ðmj �m1Þ þX
i�2

h½R�2i½R�i2iU0

ðmi �m2Þ
��

�

F2
@M2

�
��ðx;M2ÞjM2¼M2

12

� X
j�1

h½R�1j½R�j1iU0

ðmj �m1Þ2
ð ��ðx;M2

12Þ � ��ðx;M2
2jÞÞ �

X
i�2

h½R�2i½R�i2iU0

ðmi �m2Þ2
ð ��ðx;M2

12Þ � ��ðx;M2
1iÞÞ

þ hð½R�12Þ2 þ ð½R�21Þ2iU0

2ðm2 �m1Þ2
ð ��ðx;M2

11Þ þ ��ðx;M2
22Þ � 2 ��ðx;M2

12ÞÞ

þ h2½R�12½R�21 þ ð½R�12Þ2 þ ð½R�21Þ2iU0

ðm1 �m2Þ2
�Aðx;M2

11;M
2
22Þ

�
: (B3)

For the disconnected contribution, we first calculate

1

2
hðSð1Þ

I Þ2i� ¼ ��2V

8F2

X
i�j

2RijRji

M2
ii �M2

jj

ð�Z�
ii ��Z�

jjÞ;

(B4)

using Eqs. (A9) and (A10) in Appendix A. Then we obtain
(noted by the subscript ‘‘dis’’)

hPðxÞPð0Þi20dis ¼
1

2
½h�ðU0ÞhðSð1Þ

I Þ2i�iU0

� h�ðU0ÞiU0
hðSð1Þ

I Þ2i�;U0
�

þ 1

2
½h�ðU0ÞhðSð1Þ

I Þ2i�iU0

� h�ðU0ÞiU0
hðSð1Þ

I Þ2i�;U0
� ��ðx;M2

12Þ; (B5)

where

�ðU0Þ � ��2

4

�
ð½U0�12 � ½Uy

0 �21Þð½U0�21 � ½Uy
0 �12Þ

þ 1

2
ð½U0�12 � ½Uy

0 �21Þ2 þ
1

2
ð½U0�21 � ½Uy

0 �12Þ2
�
;

(B6)

�ðU0Þ � �2

2F2
ð½U0�11 þ ½Uy

0 �22Þð½U0�22 þ ½Uy
0 �11Þ: (B7)

Since �Z�
ii rapidly decreases as the mass mi reaches the

� regime, the contribution is important only deeply inside
the p regime. Therefore, we can perturbatively perform
this part of the U0 integral in advance. Using the technique
presented in Appendix D, the calculation is given by

h�ðU0ÞRijRjiiU0
� h�ðU0ÞiU0

hRijRjiiU0

¼ 4�2ðm1 �m2Þ2
ð�1 þ�2Þ2

ð�i2�j1 þ �j2�i1Þ þOðp9Þ; (B8)

h�ðU0ÞRijRjiiU0
� h�ðU0ÞiU0

hRijRjiiU0
¼ Oðp10Þ;

(B9)

where �i ¼ mi�V and we obtain

hPðxÞPð0Þi20dis ¼ ��2ð�1 ��2Þ
ð�1 þ�2Þ2

�½U0 þUy
0 �11

2

þ ½U0 þUy
0 �22

2

�
U0

�
1

2
�Z�

11 �
1

2
�Z�

22

�
;

(B10)

where we have used

2 ¼
�½U0 þUy

0 �11
2

þ ½U0 þUy
0 �22

2

�
U0

þOðp2Þ (B11)

for the later convenience.

Finally, let us calculate the OðSð2Þ
I Þ contribution. As in

the calculation above, using the technique in Appendix D,
we obtain

hPðxÞPð0Þi01

¼ � �2

ð�1 þ�2Þ2
�½U0 þUy

0 �11
2

þ ½U0 þUy
0 �22

2

�
U0

�
�
�1

�
��Z�

11 þ
16L8

F2
M2

12

�

þ�2

�
��Z�

22 þ
16L8

F2
M2

12

��
: (B12)

Here we note

hPðxÞPð0Þi20dis þ hPðxÞPð0Þi01

¼ �2

ð�1 þ�2Þ
�½U0 þUy

0 �11
2

þ ½U0 þUy
0 �22

2

�
U0

�
�
�eff

�
� ðZ12

MZ12
F Þ2

�
: (B13)

In order to obtain the final expression in Eq. (90), we use
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��2

4
ðZ12

MZ12
F Þ4C0a þ �2

�1 þ�2

�
�eff

�
� ðZ12

MZ12
F Þ2

�
C0b

¼ �2ðZ12
MZ12

F Þ2 S
eff
1 þ Seff

2

�1 þ�2

; (B14)

neglecting the higher order contributions.

APPENDIX C: U0 INTEGRALS

The zero-mode U0 integrals of various matrix elements
have been calculated in Ref. [16]. Here we summarize the
results in our notation for this paper.

1

2
h½U0�vv � ½Uy

0 �vviU0
¼ � Q

�v

; (C1)

1

4
hð½U0�vv � ½Uy

0 �vvÞ2iU0
¼ � Sv

�v

þ Q2

�2
v

; (C2)

1

4
hð½U0�v1v1

�½Uy
0 �v1v1

Þð½U0�v2v2
�½Uy

0 �v2v2
ÞiU0

¼ Q2

�v1
�v2

; (C3)

1

4
hð½U0�v1v2


 ½Uy
0 �v2v1

Þ2iU0

¼ 1

4
hð½U0�v2v1


 ½Uy
0 �v1v2

Þ2iU0

¼ 
1

�2
v1
��2

v2

ð�v1
Sv1

��v2
Sv2

Þ; (C4)

1

4
hð½U0�v1v2


 ½Uy
0 �v2v1

Þð½U0�v2v1

 ½Uy

0 �v1v2
ÞiU0

¼ 1

�2
v1
��2

v2

ð�v2
Sv1

��v1
Sv2

Þ: (C5)

Here it is useful to define

�iSj � lim
NfþN!Nf

@

@�i

Sj; (C6)

or more explicitly,

�iSj ¼

8>>><
>>>:

lim
�b1

!�i;�b2
!�j

@
@�i

@
@�j

lnZQ
2;2þNf

ð�b1 ; �b2 ; �i; �j; f�seagÞ ði � jÞ;

lim
�b!�i

@2

@�2
i

lnZQ
1;1þNf

ð�b;�i; f�seagÞ ði ¼ jÞ:
(C7)

Note that the partial quenching is performed after the
differentiation. Then D’s can be expressed as

D i ¼ �iSi þ S2
i ; (C8)

D ij ¼ �iSj þ SiSj ¼ �jSi þ SiSj: (C9)

We note

miðSi � 1Þ �Oðp4Þ; (C10)

mjmi�jSi �Oðp8Þ; (C11)

which is useful to simplify our results.
We also note that Dvv (or D12 in the degenerate case

m1 ¼ m2 ¼ mv) can be written in a simpler form than the
original definition. Introducing simplified notations for the
zero-mode partition functions:

Z 0 ¼ ZQ
0;Nf

ðf�seagÞ; (C12)

Z 1ð�bj�vÞ ¼ ZQ
1;1þNf

ð�b;�v; f�seagÞ; (C13)

Z2ð�b1; �b2j�v1; �v2Þ
¼ ZQ

2;2þNf
ð�b1; �b2; �v1; �v2; f�seagÞ; (C14)

and noting that these partition functions satisfy

lim
�b!�v

Z1ð�bj�vÞ ¼ Z0; (C15)

lim
�b2!�v2

Z2ð�b1; �b2j�v1; �v2Þ ¼ Z1ð�b1j�v1Þ; (C16)

lim
�b2!�v1

Z2ð�b1; �b2j�v1; �v2Þ ¼ Z1ð�b1j�v2Þ; (C17)

it is easy to show�
@

@�bi

þ @

@�vi

�
Z2ð�b1; �b2j�v1; �v2Þj�bi¼�vi

¼ 0

(C18)

for any i. We then obtain

D vv ¼ � 1

Z0

@

@�b

@

@�v

Z1ð�bj�vÞj�b¼�v
; (C19)

which is used to obtain expressions in Eqs. (124) and (131).
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APPENDIX D: U0 INTEGRALS IN
THE p REGIME

In our calculation, we sometimes encounters a situation
that the zero-mode integrals are needed only in the pertur-
bative p regime. It is not impossible to nonperturbatively
perform the zero-mode integrals even in such cases, but it
is more convenient to go back to the perturbative analysis
to obtain the final results in a simple form.

Let us start with an expansion of the U0 field:

U0 ¼ exp

�
i

ffiffiffi
2

p
�0

F

�
¼ 1þ i

ffiffiffi
2

p
�0

F
� 1

F2
�2
0 þ � � � ; (D1)

and give a Feynman rule for �0

h½�0�ij½�0�kli ¼ �il�jk

1

M2
ijV

: (D2)

Note that it reproduces the ordinary propagator in the p

expansion together with ��ðx;M2
ijÞ. It is here important to

note that �0 is an element not of SUðNÞ but of UðNÞ Lie
algebra and there is no diagonal contribution like non-zero
mode � has.4 Then we can calculate the zero-mode inte-
grals in the p regime as

h½U0�ij½U0�kliU0
¼ ��il�jk

2

�i þ�j

þOðp3Þ; (D3)

h½U0�ij½Uy
0 �kliU0

¼ þ�il�jk

2

�i þ�j

þOðp3Þ; (D4)

h½U0�ij½U0�ji½U0 þUy
0 �kkiU0

2

� h½U0�ij½U0�jiiU0
h½U0 þUy

0 �kkiU0

2

¼ 2ð�ik þ �jkÞ
�

1

�i þ�j

�
2
; (D5)

h½U0�ij½Uy
0 �ji½U0 þUy

0 �kkiU0

2

� h½U0�ij½Uy
0 �jiiU0

h½U0 þUy
0 �kkiU0

2

¼ �2ð�ik þ �jkÞ
�

1

�i þ�j

�
2
: (D6)

These results can be, of course, confirmed by directly
performing the exact group integrals and then taking the
asymptotic expansion in large mi�V’s.

APPENDIX E: AXIALVECTOR-PSEUDOSCALAR
CORRELATOR IN THE

PURE � REGIME

In this appendix we present the axialvector-pseudoscalar
correlator in the � regime, which is, to our knowledge, not
found in the literature.
Since M2 �Oð�4Þ is deep inside the � regime, we can

neglect the meson mass in the Z factors: let us remove the
superscripts and use notations such as ZM, ZF. We also

note �eff ¼ �Z2
MZ

2
F and �Z�

22 ¼ 0 to NLO in the �
regime.
The source terms are then simplified as

P12ðxÞ ¼ i
�eff

2
ð½U0�12 � ½Uy

0 �21Þ �
�ffiffiffi
2

p
F

X
i;j

�ijðxÞ

� ð½U0�1i�j2 þ �1i½Uy
0 �j2ÞZ�ZFðZMÞ2

� i
�

2F2

X
i;j

½�2ðxÞ�NSCij ð½U0�1i�j2 � �1i½Uy
0 �j2Þ;

(E1)

P21ðxÞ ¼ ð1 $ 2Þ; (E2)

and the axialvector sources can be similarly written as

A12
0 ðxÞ ¼ � Fffiffiffi

2
p X

i;j

½@0�ðxÞ�jið½Uy
0 �i2½U0�1j þ �i2�1jÞZ�ZF

þ i

2

X
i;j

½@0��� �@0��NSCji ðxÞ

� ð½Uy
0 �i2½U0�1j � �i2�1jÞ; (E3)

A21
0 ðxÞ ¼ ð1 $ 2Þ: (E4)

Note that the mass term is now an NLO contribution,
which can be treated as a perturbative interaction term and
one can omit the mass in the Feynman rule for �:

h�ijðxÞ�klðyÞi� ¼ �il�jk
��ðx� y; 0Þ � �ij�kl

�Gðx� y; 0; 0Þ;
(E5)

We therefore replace Sð1Þ
I by

S I � �

2F2

Z
d4xTr½R0½�2ðxÞ�NSC�; (E6)

where

R 0 � MyU0 þUy
0Mþ Nf

�V
1: (E7)

4This argument is subtle for the summation over topology
whose next-to-next-to-leading order contribution produces
hQ2i=�i�j ¼ 1=�i�jðPf1=�fÞ, which comes from the diago-
nal contribution, h½�0�ii½�0�jji. Fortunately, however, only off-
diagonal contributions are needed in the calculation of this
paper, and we can therefore ignore this subtlety.
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Since SI �Oð�2Þ, it is sufficient to calculate

hA0ðxÞPð0Þi ¼ 1

2
½hA12

0 ðxÞP21ð0Þ þ A12
0 ðxÞP12ð0Þi00 þ hA12

0 ðxÞP21ð0Þ þ A12
0 ðxÞP12ð0Þi10� þ ð1 $ 2Þ: (E8)

Noting h½@0��� �@0��NSCji ðxÞ½�2�NSCkl ð0Þi� ¼ 0, and (see Ref. [18])

h½U0MU0�11iU0
¼ m1 � 2

�V
ðNf þQÞh½U0�11iU0

; (E9)

h½Uy
0MUy

0 �11iU0
¼ m1 � 2

�V
ðNf �QÞh½Uy

0 �11iU0
; (E10)

hð½U0�12 þ ½Uy
0 �12Þð½U0�21 þ ½Uy

0 �21ÞiU0
¼ 1

4
h2ð½U0�12 þ ½Uy

0 �21Þð½U0�21 þ ½Uy
0 �12Þ þ 2ð½U0�12 � ½Uy

0 �21Þð½U0�21 � ½Uy
0 �12Þ

þ ð½U0�12 þ ½Uy
0 �21Þ2 þ ð½U0�21 þ ½Uy

0 �12Þ2 � ð½U0�12 � ½Uy
0 �21Þ2

� ð½U0�21 � ½Uy
0 �12Þ2i; (E11)

and using the integration formulas in Appendix A, we obtain the correlator,

hA0ðxÞPð0Þi¼�eff

�
1þDeff

12 þ
Q2

�eff
1 �eff

2

�
@0 ��ðx;M2

12Þþ�eff

�
Seff
1 þSeff

2 �
�
1þDeff

12 þ
Q2

�eff
1 �eff

2

��
@0 ��ðx;0Þ

�M2
12�

S1�S2

�1��2

@M2@0ð �Gðx;M2;0Þþ �Gðx;0;M2ÞÞjM¼0: (E12)
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