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Abstract

In this letter, we investigate nonlinear properties of the under-
lying dynamics for the Arctic Oscillation Index (AOI). First, we 
develop a test statistic for surrogate data analysis so that we can 
deal with the high-dimensionality of AOI. Second, we validate the 
test statistic with toy models. Then, by applying the proposed new 
test statistic with surrogate data to the dataset of AOI for the last 
60 years, we show that AOI is nonlinear with determinism beyond 
pseudo-periodicity. These results mean that the underlying dynam-
ics of AOI is consistent with deterministic chaos, implying that it 
is predictable in a short-term but not in a long-term.

1. Introduction

The recent global warming is a serious problem all over the 
world. To understand the mechanism of the global warming better, 
we need to understand weekly and/or seasonal variability of the 
weather better.

It was 27 years ago that Nicolis and Nicolis (1984) suggested 
the existence of a climate attractor by estimating the correlation 
dimension based on the oxygen isotope record obtained from the 
deep-sea core. Since then, it has been debated whether climate and 
weather attractors exist or not by using various types of datasets 
(Grassberger 1986; Essex et al. 1987; Nicolis and Nicolis 1987; 
Grassberger 1987; Tsonis and Elsner 1988). But, the results of the 
debate were not conclusive. In order to estimate the correlation 
dimension correctly, we need a huge amount of data points but 
such a dataset is unfortunately not available (Grassberger 1986).

In this letter, we focus on the Arctic Oscillation Index (AOI) 
(Thompson and Wallace, 1998) and investigate its time series for 
the recent 60 years by employing surrogate data analysis. The Arc-
tic Oscillation is the most dominant atmospheric variability in the 
Northern Hemisphere. Various characteristics of AOI are already 
known: for example, the variability of the AOI is coupled with 
the hydrosphere, cryosphere, and/or external driving forces (Feld-
stein 2002); AOI describes almost similar characteristics to the 
North Atlantic Oscillation (Feldstein and Franzke 2006); AOI is 
highly correlated with the intensity of the polar jet (Monahan and 
Fyfe 2008); when AOI was negative, the Arctic sea ice in summer 
decreased (Ogi and Yamazaki 2010); the transformed Eulerian 
mean circulation is related to the time scale for persistence of the 
AOI (Kidston et al. 2010); and the AOI in sea-level pressure is 
correlated with those of the surface air temperature in the North-
ern Hemisphere (Ohashi and Tanaka 2010).

We analyze the dataset of AOI with surrogate data analysis 
(Scheinkman and LeBaron 1989; Theiler et al. 1992; Schreiber 
and Schmitz 1996; Small et al. 2001). Surrogate data analysis is a 
kind of hypothesis testing used in nonlinear time series analysis. 
After developing a test statistic for surrogate data analysis, we 
show that AOI is nonlinear with determinism beyond pseudo-peri-
odicity. Hence AOI is consistent with deterministic chaos and the 
dynamics can be predicted in a short-term but not in a long-term 
due to the sensitivity on initial conditions.

2. Used dataset

The Arctic Oscillation Index used in this study is the score 
time series of the first empirical orthogonal function of the baro-
tropic component of the atmosphere (Tanaka 2003). The duration 
of the time series is from January 1950 to the mid of June 2010. 
The sampling interval is 6 hours. To this dataset, we applied sur-
rogate data analysis.

3. Surrogate data analysis

In this section, we introduce surrogate data analysis, and 
develop and validate its test statistic.

The surrogate data analysis (Scheinkman and LeBaron 1989; 
Theiler et al. 1992; Schreiber and Schmitz 1996; Small et al. 
2001) is a kind of hypothesis testing in nonlinear time series 
analysis. In the analysis, we first set a null-hypothesis. Second, we 
generate a number of surrogate datasets, i.e., random datasets that 
preserve the properties of the original dataset related to the null-
hypothesis. Then, we compare the original dataset with the surro-
gate datasets with a test statistic. If the test statistic for the original 
dataset is sufficiently out of the range obtained from those of the 
surrogate datasets, then we reject the null-hypothesis. Otherwise, 
we cannot reject the null-hypothesis. 

In the literature, mainly 4 types of surrogate datasets for a sca-
lar time series have been proposed. The first type is random shuf-
fle surrogates (Scheinkman and LeBaron 1989), where points of 
time series are exchanged randomly to destroy the dependence of 
points on their previous points, which we call serial dependence. 
Therefore, the first null-hypothesis is that there is no serial depen-
dence. The second type is phase-randomized surrogates (Theiler 
et al. 1992), where the linear property, namely the power spectrum 
of the original data, is preserved but the phases are randomized. 
Hence, the second null-hypothesis is that the underlying dynam-
ics is linear noise. The third type is iterative amplitude-adjusted 
Fourier transform surrogates (Schreiber and Schmitz 1996), where 
we preserve the distribution of points perfectly and the power 
spectrum the most. The third null-hypothesis is that the underlying 
dynamics is a nonlinear transformation of linear noise. Therefore, 
the second and third types of surrogates are for testing the nonlin-
earity of given datasets. The fourth type is pseudo-periodic sur-
rogates, where local dynamics, and hence rough periodicity which 
we call pseudo-periodicity, is almost preserved but fine structures 
induced by determinism beyond pseudo-periodicity are destroyed. 
The fourth null-hypothesis is that there is no determinism beyond 
pseudo-periodicity (Small et al. 2001). If all these null-hypotheses 
are rejected, the underlying dynamics is consistent with determin-
istic chaos.

To compare an original dataset with its surrogate datasets, we 
need a test statistic. First, we used the Wayland statistic (Wayland 
et al. 1993), which has been often used in the literature of surro-
gate data analysis (see Hirata et al. (2007) and references therein 
for examples). The Wayland statistic tends to be close to 0 when 
the underlying dynamics is deterministic, and take a larger value 
close to 1 when it is stochastic. When we applied the Wayland 
statistic to the AOI data, although the first null-hypothesis was 
rejected (see Fig. 1), the second and third null-hypotheses were 
not rejected with the Wayland statistic. But, we also could obtain a 
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This quantity is the probability that two neighbors of v are con-
nected with an edge, hence 0 ≤ Cv ≤ 1 as long as kv > 1. The clus-
tering coefficient C is the following average of the local clustering 
coefficients:
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The clustering coefficient is considered to be related to the dimen-
sion of a system since the system dimension becomes higher, then 
Cv , namely the probability that two neighbors are connected with 
an edge, becomes lower.

When we try to apply the clustering coefficient to surrogate 
data analysis, we face a problem. For some time series, the num-
ber kv of neighbors for node v becomes 0 or 1, which makes the Cv 
infinite, hence C as well. To overcome this problem, we define the 
modified local clustering coefficient for v by 
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This modification makes Cv vary between 0 and 1 even if kv = 
0 or 1. This kind of modification is often used in information the-
ory as the Krishevsky-Trofimov estimator (Willems et al. 1995). 
Using this Cv , we define the modified clustering coefficient C by
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As discussed above, C is considered to be related to the sys-
tem dimension: If the system dimension is larger, then Cv becomes 
smaller, which makes C smaller as well. The advantage of C over 
the correlation dimension is that C can be calculated straightfor-
ward and objectively; on the other hand, the estimation of the cor-
relation dimension mostly contains a step of finding a scaling 
region, which can be subjective.

First, we tested that the new test statistic C works correctly 
using toy models. Here we use five different toy models: white 
noise, an auto-regressive linear (AR) model, the Rössler model 
with a stable periodic orbit, the Lorenz’63 model with a chaotic 
orbit, and the Lorenz’96 model.

The white noise is defined by

y i i( ) ,= h 	 (8)

where hi follows the Gaussian distribution of mean 0 and stan-
dard deviation 1.

The AR model is defined by

y i y i i( ) . ( ) .+ =- +1 0 7 h 	 (9)

As for the Rössler model (Rössler 1976) with a stable periodic 
orbit, we used the following equations to generate a time series:

y y y1 2 3=- +( ), 	 (10)

y y y2 1 20 2= + . , 	 (11)

y y y3 3 10 4 4 5= + -. ( . ). 	 (12)

Here, we used y1 observed every 0.1 unit time.

hint of the underlying dynamics from these results since the direc-
tion of the rejection for the first null-hypothesis was opposite, i.e., 
the value for the original time series was greater than those for its 
random shuffle surrogates (Hirata et al. 2007). This is a typical 
characteristic for high-dimensional systems. There is a possibility 
that since the Wayland statistic was designed for identifying deter-
minism in a low-dimensional space, the second and the third null-
hypotheses were not rejected in this case of AOI. This reasoning 
motivated us to define a new test statistic. 

Let us modify a recently defined statistic (Marwan et al. 2009) 
based on recurrence plots. Recurrence plots (Eckmann et al. 1987; 
Marwan et al. 2007) are originally two-dimensional graphs for 
visualizing time series data. Suppose that a scalar time series {s(i) 
 R : i = 1, 2, . . . , n} is given. Then, to reconstruct original states 
of the underlying dynamics from a scalar time series, we employ 
delay coordinates z(i) = (s(i), s(i+1), . . . , s(i+(m – 1))), where m is 
called as the embedding dimension. Let d be the function defining 
the Euclidean distance in Rm. Then, a recurrence plot is defined as
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When R(i, j) = 1, we plot a dot at (i, j). Otherwise, we do not 
plot anything at (i, j). Since recurrence plots can contain almost 
all information of time series except for the spatial scale (Hirata 
et al. 2008a), recurrence plots are good tools for representing time 
series data. 

One of the recent trends of research on recurrence plots is to 
regard a recurrence plot as a network and quantify the character-
istics of the network (Marwan et al. 2009). Suppose that there are 
n – m + 1 nodes labelled from 1 to n – m + 1. If R(i, j) = 1, then 
nodes i and j are connected by an edge. Nodes i and j are not con-
nected by an edge if R(i, j) = 0. When i = j, we ignore R and do 
not consider the self-loops. Therefore, the adjacency matrix A(i, j) 
for the network is defined as A(i, j) = R(i, j) – d(i, j), where d is the 
Kronecker delta, i.e.,
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Marwan et al. (2009) used a set of statistics, one of which is 
the clustering coefficient. Let kv be the number of neighbors for 
node v, which is defined by

Fig. 1. Wayland statistic obtained from the original time series of AOI, 
which is denoted by symbol +. The maximum and minimum of the Way-
land statistic for 39 random shuffle surrogates are also shown with solid 
lines.
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The Lorenz’63 model (Lorenz 1963) is a typical model of 
low-dimensional chaos. We used the following equations:

y y y1 1 210=- -( ), 	 (13)

y y y y y2 1 3 1 228=- + - , 	 (14)

y y y y3 1 2 3

8
3

= - . 	 (15)

In this model, we observed y1 every 0.01 unit time.
The Lorenz’96 model (Lorenz 1996) is in a 240-dimensional 

state space and is a model of high-dimensional chaotic atmo-
sphere. In the Lorenz’96 model, there are the number I of large 
scale variables xi and the number I × J of small scale variables yj, i. 
Using these variables, the equations are defined as
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where we used the following cyclic boundary conditions:

x x y y y yI i i j J i j i j J i j i+ + + - -= = =, , ., , , ,1 1 	 (18)

We used I = 40, J = 5, F = 8, b = 10, c = 10, hx = 1, and hy = 1.  
We observed y1,1 every 0.05 unit time to obtain a scalar time 
series.

From each of the models, we generated a scalar time series of 
length 5518 and applied surrogate data analysis with the test sta-
tistic C. Let {s(i)} be a scalar time series generated from one of 
the models. First, we cut both ends of each time series so that the 
changes at the end points do not produce artificial high frequency 
components (Schreiber and Schmitz 2000). Second, we used delay 
coordinates to define z(i) = (s(i), s(i + 1), . . . , s(i + (m – 1))). We 
varied m between 1 and 20. Then, we obtained recurrence plots 
using thresholds such that the recurrence rate became 0.05. For 
each null-hypothesis, we generated 39 of its surrogates, which 
made the significance level 5% for each m. We declared that a 
null-hypothesis is rejected with the significance level of 2% if the 
C for the original time series is out of the range of those for the 
surrogate datasets in more than 3 different m’s.

The results are summarized in Table 1 (see also Fig. 2 for the 
results of the Lorenz’96 model). The datasets of the white noise, 
the AR model, the periodic Rössler model, and the Lorenz’96 
model generated the results we expected. As for the time series 
generated from the chaotic Lorenz’63 model, the fourth null-
hypothesis was not rejected. This implies that the new test statistic 
C is sensitive only when the system is in a high-dimensional state 
space.

4. Application to the Arctic Oscillation Index

Finally, we applied the proposed test statistic C to the time 
series of AOI. As preprocessing, we sub-sampled the dataset every 
4 days, which made the length of time series 5518. Then, we con-
firmed the stationarity of the dataset using the method of Kennel 
(1997). Except for this, the rest was the same as the cases of the 
above toy models. The results, shown in Table 1 and Fig. 3, were 
similar to those of Lorenz’96 model, implying that they are con-
sistent with high-dimensional deterministic chaos.

Table 1. Results of surrogate data analysis. In this table, each column 
shows the results of different null-hypotheses, namely, the first, the sec-
ond, the third, and the fourth null-hypotheses mentioned in the main text. 
Symbol × means that the null-hypothesis was not rejected and  means 
that the null-hypothesis was rejected.

time series first second third fourth

white noise
AR model
periodic Rössler
chaotic Lorenz’63
Lorenz’96

×





×
×




×
×




×
×
×
×


AOI    

Fig. 2. Results of the surrogate data analysis for the dataset generated from 
the Lorenz’96 model with the newly proposed test statistic. (a) Random 
shuffle surrogates based on the first null-hypothesis. (b) Phase-randomized 
surrogates based on the second null-hypothesis. (c) Iterative amplitude  
adjusted Fourier transform (IAAFT) surrogates based on the third null- 
hypothesis. (d) Pseudo-periodic surrogates based on the fourth null- 
hypothesis. In each panel, the vertical axis shows the difference CS – CO 
between the test statistic CS obtained from a surrogate dataset and the test 
statistic CO obtained from the original data, i.e., the dash-dotted lines are 
the minimum and the maximum of CS – CO.

Fig. 3. Results of the surrogate data analysis for the dataset of AOI. See 
the caption of Fig. 2 to find how to read this figure.



36 Hirata et al., Nonlinear Properties of AOI

5. Summary and discussions

To further characterize the dataset of the Arctic Oscillation 
Index (AOI) as a nonlinear time series, we tried to estimate the 
maximal Lyapunov exponent. Although we observed that the dis-
tances between nearby orbits tended to diverge almost exponen-
tially, we failed to obtain a consistent value when sub-sampling 
the dataset. It is possibly due to the dimension of AOI. We also 
confirmed that AOI of the next day can be predicted from the  
previous AOIs better by nonlinear time series prediction than the 
persistent prediction (Hirata et al. 2008b), under which, in this 
case, the prediction of the AOI for the next day is provided by the 
current value of the AOI.

Our results are significantly different from the debate held 
mostly in 1980s since our test statistic, which can be obtained 
objectively, is specially tuned for high-dimensional systems.

The overall results imply that the underlying dynamics of AOI 
is of deterministic chaos and is not white noise. Thus, the dynam-
ics may be predictable in a short-term but not in a long-term due 
to the sensitive dependence of initial conditions.
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