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On Anti-Collusion Codes and Detection Algorithms
for Multimedia Fingerprinting

Minquan Cheng and Ying Miao*

Abstract—Multimedia fingerprinting is an effective technique
to trace the sources of pirate copies of copyrighted multimedia
information. AND anti-collusion codes can be used to construct
fingerprints resistant to collusion attacks on multimedia contents.
In this paper, we first investigate AND anti-collusion codes and
related detection algorithms from a combinatorial viewpoint, and
then introduce a new concept of logical anti-collusion code to
improve the traceability of multimedia fingerprinting. It reveals
that frameproof codes have traceability for multimedia contents.
Relationships among anti-collusion codes and other structures
related to fingerprinting are discussed, and constructions for both
AND anti-collusion codes and logical anti-collusion codes are
provided.

Index Terms—AND anti-collusion code (AND-ACC), detec-
tion algorithm, disjunct matrix, frameproof code, logical anti-
collusion code (LACC), multimedia fingerprinting, NAGTA, sep-
arable code, separable matrix.

I. INTRODUCTION

THE advancement of multimedia technologies, coupled
with the development of an infrastructure of ubiquitous

broadband communication networks, has led to a tremendous
use of multimedia contents in digital marketplace. However,
such an advantage also poses the challenge of insuring that
multimedia contents are appropriately used, especially in view
of the ease of copying and manipulating multimedia data.
Devising techniques for copyright protection of multimedia
contents has been an urgent problem to be solved.

In order to hinder the unauthorized redistribution of digital
data, digital fingerprinting was introduced to trace the autho-
rized customers who redistribute their contents for unintended
purposes [1]. Fingerprints for multimedia data can be embed-
ded through a variety of watermarking techniques prior to their
authorized distribution [6], [14]. Nowadays attacks mounted
by individuals are no longer a main security issue in digital
rights management. The global nature of the Internet makes
authorized customers with differently marked versions of the
same content easy to work together and collectively mount
attacks against the fingerprints. Multiuser collusion attacks
provide a cost-effective approach to remove the embedded
fingerprints. One of the most feasible approaches to perform
a collusion attack is to average multiple copies of the content
together [18]. Other collusion attacks might involve creating
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a new content by selecting different pixels or blocks from
different colluders’ marked contents. By gathering a large
enough coalition of colluders, in an improperly designed
embedding and identification scheme, it is possible to produce
a colluded version of the content where the colluders’ finger-
prints are sufficiently attenuated so that tracing and identifying
the colluders becomes impossible. It is desirable, therefore, to
design fingerprints that can resist collusion and identify the
colluders, thereby discouraging attempts at collusion by the
authorized customers.

Especially, the averaging attack is a serious problem in
multimedia fingerprinting. The averaging attack is an attempt
to remove the embedded fingerprints by averaging all the
fingerprinted signals with an equal weight for each colluder,
so that no colluder would take more of a risk than any other
colluders. This attack reduces the power of each contributing
fingerprint and makes the colluded signal have better percep-
tual quality. When the sizes of potential coalitions are small,
a usual watermarking method that embeds orthogonal signals
as watermarks, called orthogonal fingerprinting, can overcome
the averaging attack. However, as the size of coalition in-
creases, the limitation of orthogonal fingerprinting is clear, and
a more sophisticated fingerprint design for multimedia data is
eagerly expected.

Trappe et al. [20], [21] introduced the notion of an AND
anti-collusion code (AND-ACC) against the averaging attack,
and proposed a construction for AND-ACCs by using the bit
complement of the incidence matrix of a balanced incomplete
block design. A similar idea was proposed in [8], where pro-
jective geometries were used to construct such anti-collusion
codes. Constructions via other mathematical structures such as
cover-free families can be found in [10]. Li and Trappe [11]
investigated collusion-resistant fingerprints from sequence sets
satisfying the Welch bound equality.

In this paper, we investigate AND-ACCs from the stand-
point of combinatorial group testing. We first provide a
combinatorial characterization of an AND-ACC in terms of a
separable matrix, a mathematical structure used in combinato-
rial group testing and satellite communications [9], [7]. As an
immediate consequence of this equivalence, all constructions
for separable matrices can be adopted to AND-ACCs. In fact,
all the known constructions for AND-ACCs are special cases
of those for separable matrices. We introduce the notion of a
separable code, show that separable codes are closely related
with separable matrices, and then discuss the relationships
between AND-ACCs and other codes related to digital finger-
printing. We also investigate the problem of detecting colluders
when AND-ACCs are used with code modulation to construct
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multimedia fingerprints. We point out some flaws of the hard
detection algorithm based on AND-ACCs proposed in [19],
and describe a revised detection algorithm based on special
AND-ACCs. The highlight of this paper is the introduction
of a new anti-collusion code called logical anti-collusion
code (LACC), where not only the logical AND operation
but also the logical OR operation is exploited to identify
colluders. We find an equivalence between a binary LACC
and a binary separable code. We then describe an efficient
identification algorithm based on LACCs constructed from
frameproof codes. Frameproof codes were widely considered
as having no traceability for generic digital data (see for
example [17]). However, our result shows that frameproof
codes actually have traceability for multimedia contents. This
greatly strengthens the importance of frameproof codes in
fingerprinting. Finally we provide a few constructions for
separable codes and frameproof codes.

The paper is organized as follows. In Section 2, we review
the basic concepts of fingerprinting, collusion and detection. In
Sections 3 and 4, we discuss the properties of AND-ACCs and
detection algorithms based on AND-ACCs. In Section 4, we
investigate LACCs and detection algorithms based on LACCs.
Conclusion is drawn in Section 5.

II. FINGERPRINTING, COLLUSION, AND DETECTION

In this section, for the convenience of readers, we reca-
pitulate some basic concepts of fingerprinting, collusion, and
detection. The interested reader is referred to [12] for more
detailed information.

In general, collusion-resistant fingerprinting requires the
design of fingerprints that can survive collusion attacks to
trace and identify colluders, as well as robust embedding
of fingerprints into multimedia host signals. Spread-spectrum
additive embedding is a widely employed robust embedding
technique [6], [14], which is nearly capacity optimal when
the host signal is available in detection [4], [13]. Its capability
of putting multiple marks in overlapped regions also limits
the effective attack strategies mountable by colluders [23].
In spread-spectrum embedding, a watermark signal, often
represented by noise-like orthonormal basis signals, is added
to the host signal. As usual, all signals are regarded as vectors
in some signal spaces. Now let x be the host multimedia
signal, and {wj = (wj(1),wj(2), . . . ,wj(n)) | 1 ≤ j ≤M}
be a family of watermarks that are fingerprints associated
with different users Uj , 1 ≤ j ≤ M , who have purchased
the rights to access x. In practical watermarking, before wj

is added to x, every of its coordinates is usually scaled by
an appropriate factor to achieve the imperceptibility as well
as to control the energy of the embedded watermark, where
the factor can be chosen according to the just-noticeable-
difference from human visual model [14]. Each authorized
user Uj , 1 ≤ j ≤ M , is then assigned with a watermarked
version of the content yj = x + wj . The fingerprints wj ,
1 ≤ j ≤M , are often chosen to be noise-like orthonormal sig-
nals [6], or are built by a linear modulation scheme employing
an orthonormal basis {ui | 1 ≤ i ≤ n} of noise-like signals via
wj =

∑n
i=1 bijui, where bij ∈ {0, 1}, which corresponds to

the on-off keying form of code modulation, or bij ∈ {−1, 1},
which corresponds to the antipodal form of code modulation
[22], [21]. Since signals represented by a linear combination
of noise-like orthonormal ui, 1 ≤ i ≤ n, can distinguish
different users’ fingerprints wj to the maximum extent [12],
and usually antipodal form of code modulation makes more
efficient usage of energy, in this paper, we only consider the
case wj =

∑n
i=1 bijui where bij ∈ {−1, 1}.

The fingerprint wj assigned to the authorized cus-
tomer Uj can be represented uniquely by a vector bj =
(b1j , b2j , . . . , bnj)

T ∈ {−1, 1}n because of the linear inde-
pendence of the basis {ui | 1 ≤ i ≤ n}. The n × M
matrix B = (bij), with column j corresponding to the
fingerprint wj for user Uj , 1 ≤ j ≤ M , is the derived
code matrix of the fingerprints {wj | 1 ≤ j ≤ M}. Since
distinct code matrices correspond to distinct fingerprinting
strategies, we would like to strategically design a code matrix
to accurately identify the contributing fingerprints involved
in collusion attacks. In the remainder of this paper, before
code modulation, we will first design an n×M code matrix
C = (cij) with entries from {0, 1}, then transform C to B by
cij 7−→ bij = 2cij−1. In code modulation phase, information
is encoded into a watermark signal wj via wj =

∑n
i=1 bijui

with bij ∈ {−1, 1}.
When t authorized users, say Uj1 , Uj2 , . . . , Ujt , who have

the same host content but distinct fingerprints come together,
we assume that they have no way of manipulating the indi-
vidual orthonormal signals, that is, the underlying codeword
needs to be taken and proceeded as a single entity, but
they can carry on a linear collusion attack to generate a
pirate copy from their t fingerprinted contents, so that the
venture traced by the pirate copy can be attenuated. For
fingerprinting through additive embedding, this is done by
linearly combining the t fingerprinted contents

∑t
l=1 λjlyjl ,

where the weights {λjl | 1 ≤ l ≤ t} satisfy the condition∑t
l=1λjl = 1 to maintain the average intensity of the original

multimedia signal. In such a collusion attack, the energy of
each of the watermarks wjl is reduced by a factor of λ2jl ,
therefore the trace of Ujl ’s fingerprint becomes weaker and
thus Ujl is less likely to be caught by the detector. In fact, since
normally no colluder is willing to take more of a risk than any
other colluder, the fingerprinted signals are typically averaged
with an equal weight for each user. Averaging attack choosing
λjl = 1/t, 1 ≤ l ≤ t, is the most fair choice for each colluder
to avoid detection, as claimed in [18], [21]. This attack also
makes the pirate copy have better perceptional quality.

Any circulated copy of the host multimedia content may
experience an additional distortion z before it is tested for the
existence of a fingerprint. This additional noise z could be
due to the effect of compression or from an attack mounted
by colluders in an attempt to hinder the detection of the
fingerprint. Based on the averaging attack model, the observed
content y after collusion is

y =
1

t

t∑
l=1

yjl + z =
1

t

t∑
l=1

wjl + x + z,

where z is assumed to follow an i.i.d. Gaussian distribution
with zero mean and variance σ2

z in this paper. For simplicity
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of notation, we can combine x and the possible distortion z
into a single term denoted by d. Therefore,

y =
1

t

t∑
l=1

wjl +x+z =
1

t

t∑
l=1

wjl +d =

t∑
l=1

n∑
i=1

bijl
t

ui+d.

The problem of detecting colluders can be posed in a
hypothesis testing framework where fingerprints are signals to
be detected in the presence of noise. Due to the orthogonality
of the orthonormal basis {ui | 1 ≤ i ≤ n}, in colluder
detection phase, we only need to consider the correlation
vector T = (T(1),T(2), . . . ,T(n)), where T(i) = 1

σz
〈y,ui〉,

1 ≤ i ≤ n, and 〈y,ui〉 is the inner product of y and ui. It is
straightforward to check that

T =
1

tσz
(BΦ)T +

1

σz
(〈d,u1〉, . . . , 〈d,un〉),

where the vector Φ ∈ {0, 1}M indicates colluders via the
location of the coordinates whose value is 1. Three detection
strategies, namely, hard detection, adaptive sorting approach,
and sequential algorithm, were provided in [12] to efficiently
estimate the colluder vector Φ.

III. AND ACCS AND RELATED DETECTION ALGORITHMS

In [20], [21], the notion of an AND anti-collusion code
(AND-ACC) was introduced for protecting multimedia con-
tents, which, with code modulation, can be used to construct
a family of fingerprints with the ability to survive collusion
and trace colluders. Let n,M and q be positive integers, and Q
an alphabet with |Q| = q. A set C = {c1, c2, . . . , cM} ⊆ Qn

is called an (n,M, q) code and each ci is called a codeword.
Without loss of generality, we may assume Q = {0, 1, . . . , q−
1}. When Q = {0, 1}, we also use the word “binary”. Given
an (n,M, q) code, the incidence matrix M(C) is the n ×M
matrix on Q = {0, 1, . . . , q−1} in which the columns are the
M codewords in C. Often, we make no difference between
an (n,M, q) code and its incidence matrix unless otherwise
stated.

Intuitively, we say that an (n,M, q) code C is an anti-
collusion code, briefly ACC(n,M, q), if the coordinates shared
between codewords uniquely identify sets of codewords. Be-
low we give a formal definition of AND anti-collusion codes.

Definition 3.1: An (n,M, 2) code C is a t-resilient AND-
ACC, briefly t-AND-ACC(n,M, 2), if the bitwise AND of
any subset of t or fewer codewords of C is distinct from the
bitwise AND of any other subset of t or fewer codewords of
C.

AND-ACCs are closely related to separable matrices.
Definition 3.2: A binary matrix S is a t-separable matrix if

the bitwise OR of any subset of t or fewer column vectors of
S is distinct from the bitwise OR of any other subset of t or
fewer column vectors of S. If for any column, the number of
1s is a constant k, then we say S is a k-uniform t-separable
matrix.

For any (n,M, 2) code C, its complementary code C is
defined to be

C = {c = (c(1), . . . , c(n))T | c = (c(1), . . . , c(n))T ∈ C},

where, as usual,

c(j) =

{
1, if c(j) = 0,
0, if c(j) = 1.

Theorem 3.3: An (n,M, 2) code C is a t-AND-ACC(n,M,
2) if and only if the incidence matrix of its complementary
code C is an n×M t-separable matrix.

Proof: The result follows from the facts that
∧

c∈C0c =∨
c∈C0c and

∨
c∈C0c =

∧
c∈C0c for any C0 ⊆ C, where

∧
and∨

are logical AND and OR, respectively.
From Theorem 3.3, we immediately know that to construct

t-AND-ACCs, we only need to construct their equivalent t-
separable matrices. There are systematic methods for con-
structing infinite families of t-separable matrices [7], which
thus provide a vast supply of t-AND-ACCs. In fact, almost
all t-AND-ACCs constructed so far (see, for example, [12]
and references therein) can be found in [7] under the disguise
of t-separable matrices.

As was pointed out in [12], constructing fingerprints is
only half of the battle in battling illicit content manipulation
and redistribution. It is also essential to devise instruments
that will allow content distributors to effectively identify
those authorized users involved in creating pirate copies. In
the remaining of this section, we discuss the problem of
identifying colluders when AND-ACCs are used with code
modulation to construct multimedia fingerprints.

An algorithm to identify colluders was described in [9], [7]
by means of a t-separable matrix used as the complement
of the incidence matrix of a t-AND-ACC. For any pirate
copy created by averaging attack from t or fewer users, that
algorithm can identify the set of colluders in time Θ(nM t),
where M is the total number of authorized users and n is the
length of the code. For large values of t, that algorithm is
clearly not sufficiently efficient. A more efficient algorithm is
definitely desired.

Trappe et al. [19] developed the following hard detection
algorithm based on a t-AND-ACC(n,M, 2) to find a suspi-
cious set of colluders in time O(nM). Here, the outcome
vector y = (y(1), . . . ,y(n))T is obtained by applying hard
thresholding to the detection statistics T(i) such that y(i) = 1
if T(i) > τa and y(i) = 0 otherwise, where τa is the threshold
appropriately determined by the detector. In this algorithm, the
operation · denotes the bitwise AND of binary vectors.

Algorithm 1: HardDetAlg

Define J to be the set of indices where y(j) = 1
and J = (J(1), . . . ,J(|J |)) to be the vector
representing y’s non-zero coordinates
Φ = 1T ;
for t = 1 to |J | do
j = J(t);
Define ej to be the jth row of C;
Φ = Φ · eTj ;

end
return Φ

We should note that HardDetAlg cannot identify the set
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of colluders if it is based only on a conventional AND-ACC. In
fact, it is even not an algorithm which can effectively narrow
the suspicious set of colluders if the number of colluders is
greater than t. The following shows such examples.

Example 3.4: We first consider a (7, 7, 2)-code C1 = {c11,
. . . , c17}, where c11 = (0, 0, 1, 0, 1, 1, 1)T , c12 = (1, 0, 0, 1,
0, 1, 1)T , c13 = (1, 1, 0, 0, 1, 0, 1)T , c14 = (1, 1, 1, 0, 0, 1, 0)T ,
c15 = (0, 1, 1, 1, 0, 0, 1)T , c16 = (1, 0, 1, 1, 1, 0, 0)T , and
c17 = (0, 1, 0, 1, 1, 0, 0)T . It is easily checked that C1 is a
2-AND-ACC(7, 7, 2), so we can identify up to 2 colluders by
means of C1. For example, suppose that user U1, who is as-
signed with c11, and user U7, who is assigned with c17, come
together to carry out a collusion attack. Then the outcome
vector detected is y = (0, 0, 0, 0, 1, 0, 0)T , which is different
from the logical AND of any subset of up to 2 codewords, so
U1 and U7 are identified precisely as the colluders. However,
algorithm HardDetAlg cannot identify U1 and U7 correctly.
It can only output Φ = (1, 0, 1, 0, 0, 1, 1)T , that is, it can only
show that U1, U3, U6 and U7 are suspicious colluders.

Next we consider another (7, 7, 2)-code C2 = {c21, . . . ,
c27}, where c21 = (0, 0, 1, 0, 1, 1, 1)T , c22 = (1, 0, 0, 1, 0, 1,
1)T , c23 = (1, 1, 0, 0, 1, 0, 1)T , c24 = (1, 1, 1, 0, 0, 1, 0)T ,
c25 = (0, 1, 1, 1, 0, 0, 1)T , c26 = (1, 0, 1, 1, 1, 0, 0)T , and
c27 = (0, 1, 0, 1, 1, 1, 0)T . It is again straightforward to check
that C2 is a 2-AND-ACC(7, 7, 2), and we can identify up
to 2 colluders. However, if users U1, U5 and U7, assigned
with c21, c25 and c27, respectively, come together to carry
out a collusion attack, then the outcome vector detected is
y′ = (0, 0, 0, 0, 0, 0, 0)T , and HardDetAlg can only output
Φ = (1, 1, 1, 1, 1, 1, 1)T , that is, all users are suspicious
colluders.

To make HardDetAlg complete, we need the notion of a
t-disjunct matrix. A binary vector x is said to cover another
binary vector y of the same length if whenever y has a 1 in
the ith coordinate, so does x.

Definition 3.5: A binary matrix D is called a t-disjunct
matrix if the bitwise OR of any subset of t column vectors of
D does not cover any other column vector of D. If for any
column of D, the number of 1s is a constant k, we say D is
a k-uniform t-disjunct matrix.

Disjunct matrices are closely related to separable matri-
ces, as the following Lemma 3.6 shows. The first half of
Lemma 3.6 is obvious, while the second half was proved in
[9].

Lemma 3.6: Any t-disjunct matrix is a t-separable matrix.
Conversely, any t-separable matrix is a (t−1)-disjunct matrix.

The interested reader is referred to [7] for more relationships
between separable matrices and disjunct matrices.

Separable matrices and disjunct matrices can be described
in terms of set systems. A set system is a pair (X,B), where
X = {x1, . . . , xv} is a set of elements called points, and
B = {B1, . . . , Bb} is a set of subsets of X called blocks. The
incidence matrix of (X,B) is the v×b binary matrix A = (aij)
defined by

aij =

{
1, if xi ∈ Bj ,
0, if xi 6∈ Bj .

Conversely, given an incidence matrix, we can define an
associated set system in an obvious way.

The following descriptions can be easily seen by regarding
separable matrices (or disjunct matrices, respectively) in the
same light as incidence matrices.

Lemma 3.7: Let A be a binary v × b matrix. Then A is a
t-separable matrix if and only if A is the incidence matrix of
a set system (X,B) where |X| = v, |B| = b, and for any two
distinct subsets B1, B2 of B with |B1| ≤ t, |B2| ≤ t, it holds
that

⋃
B∈B1

B 6=
⋃
B∈B2

B.
Lemma 3.8: Let A be a binary v × b matrix. Then A is a

t-disjunct matrix if and only if A is the incidence matrix of a
set system (X,B) where |X| = v, |B| = b, and for any subset
B0 ⊆ B with |B0| ≤ t and for any A ∈ B \ B0, it holds that
A 6⊆

⋃
B∈B0

B.
The dual of a set system (X,B) is the set system (B, X)

where B ∈ B is contained in x ∈ X if and only if x ∈ X is
contained in B ∈ B.

Definition 3.9: A set system (X,B) is called a non-adaptive
group testing algorithm, or briefly t-NAGTA(v, b), if |X| =
v, |B| = b, and for any two distinct subsets X1, X2 of X
with |X1| ≤ t, |X2| ≤ t, it holds in the dual of (X,B) that⋃
x∈X1

x 6=
⋃
x∈X2

x.
Clearly, an n × M t-separable matrix corresponds to the

transpose of the incidence matrix of a t-NAGTA(M,n).
The following well-known detection algorithm IdenAlg

(see [16] for example) based on a t-NAGTA(M,n), or equiva-
lently a t-AND-ACC(n,M, 2), with computational complexity
O(nM), is an improved version of HardDetAlg. Given the
outcome vector y = (y(1), . . . ,y(n))T , which is obtained
by applying hard thresholding to the detection statistics T(i),
algorithm IdenAlg will output a suspicious set of colluders
U if |U | ≤ t and report that |U | > t otherwise, where C is
the transpose of the complement of the incidence matrix of a
t-NAGTA(M,n).

Algorithm 2: IdenAlg

Define J to be the set of indices where y(j) = 1
and J = (J(1), . . . ,J(|J |)) to be the vector
representing y’s non-zero coordinates
Φ = 1T ;
U = ∅;
for t = 1 to |J | do
j = J(t);
Define ej to be the jth row of C;
Φ = Φ · eTj ;

end
for i = 1 to M do

if Φ(i) = 1 then
U = {i} ∪ U ;

end
end
if |U | ≤ t, then

output U ;
else

output “the set of colluders has size at least t+ 1”.
end

The case where algorithm IdenAlg outputs the exact set
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of colluders U when U ≤ t is of more interest.
Definition 3.10: A t-NAGTA(v, b), (X,B), is said to be

strong if for any subset X ′ ⊆ X with |X ′| ≤ t, it holds that
IdenAlg(y(X ′)) = X ′, where y(X ′) is the outcome vector
of X ′ in the dual of (X,B). (X,B) is said to be k-uniform
if for any x ∈ X , it holds in the dual of (X,B) that |x| = k.
(X,B) is proper if for any B ∈ B, it holds that |B| ≥ 2.

Example 3.11: We consider the set system (X2,B2) cor-
responding to the 2-AND-ACC(7, 7, 2), C2, in Example 3.4,
where X2 = {1, 2, . . . , 7} and B2 = {B1, . . . , B7} with B1

= {1, 5, 7}, B2 = {1, 2, 6}, B3 = {2, 3, 7}, B4 = {1, 3, 4},
B5 = {2, 4, 5}, B6 = {3, 5, 6}, B7 = {4, 6, 7}. It is easy
to check that (X2,B2) is a proper and strong 3-uniform 2-
NAGTA(7, 7).

Theorem 3.12: The transpose of an n ×M (k-uniform) t-
disjunct matrix is equivalent to the incidence matrix of a strong
(k-uniform) t-NAGTA(M,n).

Proof: Let D be an arbitrary subset of column vectors of
an n ×M matrix D with |D| ≤ t. The result follows from
the fact that a column vector d′ of D is included in D if and
only if d′ covers

∧
d∈Dd, that is,

∨
d∈Dd covers d′, where

the equivalence of the uniformity is obvious.
Theorem 3.12 shows that if we use an n ×M t-disjunct

matrix instead of an n ×M t-separable matrix, then we can
identify the exact set C0 of colluders in time O(nM) provided
that |C0| ≤ t.

We are more interested in strong NAGTAs. We notice that
the strong 2-NAGTA(7, 7), (X2,B2), in Example 3.11 is in
fact a balanced incomplete block design (7, 3, 1)-BIBD.

Definition 3.13: A balanced incomplete block design, or
briefly (v, k, λ)-BIBD, is a set system (X,A) with |X| = v
such that each block in A contains exactly k ≥ 2 points of X ,
and every parir of distinct points in X is contained in exactly
λ blocks of A.

It is easy to see ([5]) that in a (v, k, λ)-BIBD, there are
exactly b = λv(v−1)

k(k−1) blocks, and each point appears in exactly

r = λ(v−1)
k−1 blocks.

The following theorem shows that a (v, k, 1)-BIBD can be
used to construct a strong (k − 1)-NAGTA(b, v).

Theorem 3.14: ([16]) If there exists a (v, k, 1)-BIBD,
then there exists a proper and strong k-uniform (k − 1)-
NAGTA(b, v).

The example described in [19] was constructed from a
(16, 4, 1)-BIBD. Theorem 3.14 provides a theoretic explana-
tion for the fact that HardDetAlg worked properly for up
to k − 1 colluders.

IV. RELATIONSHIPS BETWEEN AND-ACCS AND OTHER
CODES

In Section III, we showed an equivalence between a binary
AND-ACC and a separable matrix. In fact, AND-ACCs also
have close relationships with other structures related to digital
fingerprinting. In this section, we discuss relationships be-
tween AND-ACCs and several other codes and hash families.

For any code C ⊆ Qn, we define the set of ith coordinates
of C as

C(i) = {c(i) ∈ Q | c = (c(1), . . . , c(n))T ∈ C}

for any 1 ≤ i ≤ n.
For any subset of codewords C0 ⊆ C, we define the

descendant code of C0 by

desc(C0) = {(x(1), . . . ,x(n))T ∈ Qn |x(i) ∈ C0(i), 1 ≤ i ≤ n}.

The set desc(C0) consists of the n-tuples that could be pro-
duced by a coalition holding the codewords in C0.

Using the notions of descendant codes and sets of ith
coordinates of codes, we can define the following two different
types of codes.

Definition 4.1: Suppose C is an (n,M, q) code and t ≥ 2
is an integer.
(1) C is a t-separable code, or t-SC(n,M, q), if for any
C1, C2 ⊆ C such that |C1| ≤ t, |C2| ≤ t and C1 6= C2,
we have desc(C1) 6= desc(C2), that is, there is at least
one coordinate i, 1 ≤ i ≤ n, such that (desc(C1))(i) 6=
(desc(C2))(i).

(2) C is a t-frameproof code, or t-FPC(n,M, q), if for any
C′ ⊆ C such that |C′| ≤ t, we have desc(C′)

⋂
C = C′,

that is, for any c = (c(1), . . . , c(n))T ∈ C \ C′, there is
at least one coordinate i, 1 ≤ i ≤ n, such that c(i) 6∈
(desc(C′))(i).

Define X = {1, 2, . . . , n}×Q, and for each codeword c =
(c(1), . . . , c(n))T ∈ C, define an n-subset of X as follows:

Bc = {(i, c(i)) | i = 1, 2, . . . , n}.

Also define B = {Bc | c ∈ C}. Then we obtain the following
relationship between a t-separable code and a t-separable
matrix.

Theorem 4.2: Let C be an (n,M, q) code on an alphabet Q.
Then C is a t-separable code if and only if the incidence matrix
of the set system (X,B) is an n-uniform nq×M t-separable
matrix.

Proof: The result follows from the fact that for any subset
of codewords C0 ⊆ C and for any index i ∈ {1, 2, . . . , n}, we
have

⋃
c∈C0 Bc

⋂
({i} ×Q) = {i} × (desc(C0))(i).

A similar result on the relationship between a t-frameproof
code and a t-disjunct matrix was proved in [15] in terms of
a cover-free family, which is equivalent to a disjunct matrix
[17].

Theorem 4.3: ([15]) Let C be an (n,M, q) code on an
alphabet Q. Then C is a t-frameproof code if and only if
the incidence matrix of the set system (X,B) is an n-uniform
nq ×M t-disjunct matrix.

Now we consider relationships between a separable code
and a frameproof code. The following is a consequence of
Theorem 4.3 and Lemma 3.6.

Corollary 4.4: Let C be an (n,M, q) code on an alphabet
Q. If C is a t-frameproof code, then the incidence matrix of
the set system (X,B) defined in Theorem 4.2 is an n-uniform
nq ×M t-separable matrix.

As an immediate consequence of Corollary 4.4 and Theo-
rem 4.2, we have the following result.

Lemma 4.5: If C is a t-FPC(n,M, q), then C is also a t-
SC(n,M, q).

We note that the converse of Lemma 4.5 is not true. For
example, consider the following (3, 3, 2) code C = {(0, 0, 1)T ,
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Figure 1: Relationships among different types of codes and hash families

PHF(n;M, q, b (t+2)2

4
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⇓

⇐⇒ SHF(n;M, q, {t, 1})t-CFF(nq,M) ⇐=

q=2⇐⇒ t-LACC(n,M, 2)

(n,M, q) code with dmin > n(1− 1/t2)

⇓

(t, 1− 1/t)-CFC(n,M, q)

⇓

t-TAC(n,M, q)

⇓

t-IPPC(n,M, q)

⇓

t-SFPC(n,M, q)

⇓

t-FPC(n,M, q)

⇓

t-SC(n,M, q)

⇓ q = 2

t-AND-ACC(2n,M, 2)

⇓

t-LACC(2n,M, 2)

Key

dmin minimum distance of the code
CFC cover-free code
TAC traceability code
IPPC identifiable parent property code
SFPC secure frameproof code
FPC frameproof code
SC separable code
AND-ACC AND anti-collusion code
LACC logical anti-collusion code
PHF perfect hash family
SHF separating hash family
CFF cover-free family

(1, 0, 1)T , (1, 1, 0)T }. According to the definition, desc({(0, 0,
1)T }) = {0} × {0} × {1}, desc({(1, 0, 1)T }) = {1} × {0} ×
{1}, desc({(1, 1, 0)T }) = {1} × {1} × {0}, desc({(0, 0, 1)T ,
(1, 0, 1)T }) = {0, 1}×{0}×{1}, desc({(0, 0, 1)T , (1, 1, 0)T })
= {0, 1}×{0, 1}×{0, 1}, desc({(1, 0, 1)T , (1, 1, 0)T }) = {1}
×{0, 1}×{0, 1}. These six distinct subsets are the all subsets
of C with cardinality less than or equal to 2, so we know that
C is a 2-separable code. But (1, 0, 1)T ∈ desc({(0, 0, 1)T ,
(1, 1, 0)T }), which means that C is not a 2-frameproof code.
However, by Theorem 4.2, Lemma 3.6 and Theorem 4.3, the
following assertion holds.

Lemma 4.6: If C is a t-SC(n,M, q), then C is also a (t−1)-
FPC(n,M, q).

In [15], Stinson et al. summarized the relationships among
different types of codes and hash families in their Figure
1. Now their Figure 1 can be extended to include the
newly introduced separable code. Here we only provide the
definition of a separating hash family. For those undefined
terms in Figure 1, the reader is refereed to [15] for the details.

Note that the term “LACC” (logical anti-collusion code) will
be defined in Section V.

Definition 4.7: An (n,m, {w1, w2})-separating hash family
is a set of functions F such that |X| = n, |Y | = m, f : X −→
Y for each f ∈ F , and for any C1, C2 ⊆ X with |C1| = w1,
|C2| = w2 and C1

⋂
C2 = ∅, there exists at least one function

f ∈ F such that {f(x) | x ∈ C1}
⋂
{f(x) | x ∈ C2} = ∅.

The notation SHF(N ;n,m, {w1, w2}) is used to denote an
(n,m,w1, w2)-separating hash family with |F| = N .

V. LOGICAL ANTI-COLLUSION CODES

In the beginning of this paper, we assumed that user Uj is
assigned with a fingerprint wj =

∑n
i=1bijui, and we derived

an n ×M matrix C = (cij) with cij = (1 + bij)/2. If we
examine the matrix C in more details, we may notice that an
AND-ACC can only reflect partial of the properties C holds.
Apart from the bitwise AND of the codewords, we can also
exploit the bitwise OR of the codewords for fingerprinting. The
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corresponding threshold τo for bitwise OR of the codewords
can be easily taken as τo = 1− τa, since the complement of
OR (respectively, AND) of bits is AND (respectively, OR) of
complements of those bits. In this section, we will introduce
the notion of a logical anti-collusion code, provide some
constructions for this type of codes, and describe a detection
algorithm based on such an anti-collusion code.

Definition 5.1: Suppose that C is an (n,M, 2)-code. C is
said to be a t-resilient logical anti-collusion code if for any
C1, C2 ⊆ C such that |C1| ≤ t, |C2| ≤ t and C1 6= C2, at least
one of the following boolean inequalities holds:∨

c∈C1

c 6=
∨
c∈C2

c,
∧
c∈C1

c 6=
∧
c∈C2

c.

We will say that C is a t-LACC(n,M, 2) for short.
For a given number of users, to design a good fingerprinting

code to trace the potential colluders means to make the
codeword length as short as possible while maintaining its
capability to trace the colluders. From the definitions of a t-
AND-ACC(n,M, 2) and a t-LACC(n,M, 2), we immediately
know that a t-AND-ACC(n,M, 2) is also a t-LACC(n,M, 2),
and consequently, a t-LACC(n,M, 2) is usually better than a
t-AND-ACC(n,M, 2).

Example 5.2: Consider a (3, 4, 2) code C = {c1, . . . , c4},
where c1 = (1, 1, 0)T , c2 = (1, 0, 1)T , c3 = (0, 1, 1)T and
c4 = (0, 0, 0)T . Then
c1∨c2 = (1, 1, 1)T , c1∨c3 = (1, 1, 1)T , c1∨c4 = (1, 1, 0)T ,
c2∨c3 = (1, 1, 1)T , c2∨c4 = (1, 0, 1)T , c3∨c4 = (0, 1, 1)T .
However,
c1∧c2 = (1, 0, 0)T , c1∧c3 = (0, 1, 0)T , c2∧c3 = (0, 0, 1)T ;
and
c1∧c4 = (0, 0, 0)T ; c2∧c4 = (0, 0, 0)T ; c3∧c4 = (0, 0, 0)T .
Therefore, by performing these twelve logical operations, we
can know that C is a 2-LACC(3, 4, 2), although C is not a
2-AND-ACC(3, 4, 2).

We can also show this fact by first checking
∧

inequalities
and then

∨
inequalities.

c1∧c2 = (1, 0, 0)T , c1∧c3 = (0, 1, 0)T , c1∧c4 = (0, 0, 0)T ,
c2∧c3 = (0, 0, 1)T , c2∧c4 = (0, 0, 0)T , c3∧c4 = (0, 0, 0)T .
However,
c1∨c4 = (1, 1, 0)T , c2∨c4 = (1, 0, 1)T , c3∨c4 = (0, 1, 1)T .
These nine logical operations are also sufficient to show that
C is a 2-LACC(3, 4, 2).

As showed in Example 5.2, although conceptually there is
no difference between the boolean inequality checks beginning
with

∨
and those begining with

∧
, computationally, the two

check procedures may have different computational complex-
ities. It is an interesting problem to find an optimal check
procedure so that the number of boolean inequalities to be
checked is the smallest. We conjecture that the computational
complexity of the optimal one is impossible to be O(nM),
where M is the number of codewords and n is the length of
the code.

It is interesting that LACCs are closely related with sepa-
rable codes.

Theorem 5.3: Let C be an (n,M, 2) code. Then C is a t-
LACC(n,M, 2) if and only if it is a t-SC(n,M, 2).

Proof: For any subset of codewords C0 ⊆ C and any
index i, 1 ≤ i ≤ n, the pair of AND and OR, respec-
tively, of ith coordinates of codewords in C0 possesses the
whole information on (desc(C0))(i); namely, we have (AND,
OR)= (1, 1) (respectively (0, 0), or (0, 1)) if and only if
(desc(C0))(i) = {1} (respectively {0}, or {0, 1}).

So, for any two subsets of codewords C1, C2 ⊆ C with |C1| ≤
t, |C2| ≤ t and C1 6= C2, there exists a coordinate i, 1 ≤ i ≤ n,
such that the inequality (desc(C1))(i) 6= (desc(C2))(i) holds if
and only if the pairs of (AND, OR) of C1 and C2 are distinct.

In order to construct a t-LACC(n,M, 2), according to
Theorem 5.3, we only need to construct its corresponding
t-SC(n,M, 2). The following is a recursive construction for
t-separable codes.

Lemma 5.4: If there exist a t-SC(n1,M, q) and a t-
SC(n2, q, q

′), then there exists a t-SC(n1n2,M, q′).
Proof: Let B = {b1, . . . ,bM} be a t-SC(n1,M, q) and

C = {c1, . . . , cq} be a t-SC(n2, q, q
′), respectively. Let f :

{0, 1, . . . , q−1} −→ C be a bijective mapping such that f(i) =
ci+1. For any b = (b(1), . . . ,b(n1))T ∈ B, we define f(b) =
(f(b(1)), . . . , f(b(n1)))T . Obviously, f(b) is a q′-ary vector
of length n1n2. We define a new (n1n2,M, q′) code F =
{f(b1), . . . , f(bM )}. We are going to show that F is in fact
a t-separable code.

Consider any two codeword sets F1,F2 ⊆ F with |F1| ≤ t,
|F2| ≤ t and F1 6= F2. They correspond to two code-
word sets B1,B2 ⊆ B, respectively, such that |B1| ≤ t,
|B2| ≤ t and B1 6= B2, where F1 = {f(b) | b ∈ B1} and
F2 = {f(b) | b ∈ B2}. Then there must be a coordinate
i0, 1 ≤ i0 ≤ n1, such that B1(i0) 6= B2(i0), because B is a
t-separable code. This implies that {f(b(i0)) | b ∈ B1} 6=
{f(b(i0)) | b ∈ B2}. Clearly, {f(b(i0)) | b ∈ B1} ⊆ C,
{f(b(i0)) | b ∈ B2} ⊆ C, and |{f(b(i0)) | b ∈ B1}| ≤ t,
|{f(b(i0)) | b ∈ B2}| ≤ t. But C is also a t-separable code, so
we have desc({f(b(i0)) | b ∈ B1}) 6= desc({f(b(i0)) | b ∈
B2}). Then desc({(f(b(1)), . . . , f(b(n1)))T | b ∈ B1}) 6=
desc({(f(b(1)), . . . , f(b(n1)))T | b ∈ B2}), that is,
desc(F1) 6= desc(F2), which means that F is a t-separable
code.

As was shown in Theorem 5.3, we can use any binary t-
separable code as a t-LACC to resist averaging attack and trace
up to t colluders. In this case, we should investigate all subsets
of users with cardinality up to t, and thus the computational
complexity to trace colluders is O(nM t), where M is the total
number of users to whom multimedia content is distributed and
n is the length of the code. Clearly, it is desirable that we find
a structure which could be used as a t-LACC in an algorithm
with a lower computational complexity to trace colluders.

Theorem 5.5: Any t-FPC(n,M, 2) is a t-LACC(n,M, 2),
and can be used to identify the colluders with computational
complexity O(nM) by using the algorithm LACCIdenAlg
(Algorithm 3 below).

Proof: Suppose that C is a t-FPC(n,M, 2). By Lemma
4.5 and Theorem 5.3, C is also a t-LACC(n,M, 2).

Let a = (a(1), . . . ,a(n))T and o = (o(1), . . . ,o(n))T

be the outcome binary AND and OR vectors, respectively,
which are obtained by applying hard thresholding twice to the
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detection statistics T(i) such that a(i) = 1 if T(i) > τa and
a(i) = 0 otherwise, and o(i) = 0 if T(i) < τo and o(i) = 1
otherwise, where τa and τo are the two thresholds satisfying
τo+τa = 1, 0 ≤ τo < τa ≤ 1 appropriately determined by the
detector. It is shown [19], [21] that an appropriate threshold τa
would make a to be the logical AND of column vectors in C
corresponding to the contributing fingerprints involved in the
collusion attack, where C is the incidence matrix M(C) of the
code C. Similarly, since the complement of OR (respectively
AND) of bits is AND (respectively, OR) of complements of
those bits, the appropriate threshold τo would also make o to
be the logical OR of column vectors in C corresponding to
the contributing fingerprints involved in the collusion attack.
By deleting all columns {c | c ∈ C such that ∃ 1 ≤ i ≤
n, a(i) = 1, c(i) = 0, or o(i) = 0, c(i) = 1}, we obtain a
sub-matrix C ′ of C with at most t columns. The following
detection algorithm shows the procedure described above.

Algorithm 3: LACCIdenAlg

Define Ja, Jo to be the sets of indices where a(j) = 1,
o(j) = 0 respectively, and Ja = (Ja(1), . . . ,Ja(|Ja|)),
Jo = (Jo(1), . . . ,Jo(|Jo|)) to be the vector representing
a’s non-zero and o’s zero coordinates.
Φ = 1T ;
U1 = ∅;
for t = 1 to |Ja| do
j = Ja(t);
Define ej to be the jth row of C;
Φ = Φ · eTj ;

end
for i = 1 to M do

if Φ(i) = 1 then
U1 = {i}

⋃
U1;

end
end
Φ = 1T ;
U2 = ∅;
for t = 1 to |Jo| do
j = Jo(t);
Φ = Φ · ejT ;

end
for i = 1 to M do

if Φ(i) = 1 then
U2 = {i}

⋃
U2;

end
end
U = U1

⋂
U2;

if |U | ≤ t, then
output U ;

else
output “the set of colluders has size at least t+ 1”.

end

We claim that the set of columns in C ′ corresponds exactly
to the set of colluders. Suppose that C0 = {c′1, . . . , c′r},
1 ≤ r ≤ t, is the set of colluders. It is clear that any
column corresponding to a colluder cannot be deleted by this

algorithm. We then consider a column c in C, and suppose
that c is not a codeword assigned to any colluder. Since C is
a t-FPC(n,M, 2), and |C0| = r ≤ t, c ∈ C \ C0, we know that
there must be a coordinate i, 1 ≤ i ≤ n, such that c(i) 6∈ C0(i).
If c(i) = 1, then c′1(i) = c′2(i) = . . . = c′r(i) = 0, and the
column c should be deleted since o(i) = 0. If c(i) = 0, then
c′1(i) = c′2(i) = . . . = c′r(i) = 1, and the column c should be
deleted since a(i) = 1. This means that every column in C ′

is corresponding to a colluder. Therefore we can identify all
the colluders exactly by this algorithm and its computational
complexity is O(nM).

We would like to make an important remark here. Frame-
proof codes were widely considered as having no traceability
for generic digital contents (see for example [17]). Surpris-
ingly enough, Theorem 5.5 shows that frameproof codes have
traceability for multimedia contents. This phenomenon is in
fact due to the special embedding method for fingerprinting
multimedia contents.

We would also like to point out the following fact. By defi-
nitions, an n×M t-disjunct matrix implies a t-FPC(n,M, 2);
however, the converse is not necessarily true. It can be easily
checked that the 2-LACC(3, 4, 2) in Example 5.2 1 1 0 0

1 0 1 0
0 1 1 0


is a 2-FPC(3, 4, 2), but (0, 1, 1)T is covered by the bitwise
OR of (1, 1, 0)T and (1, 0, 1)T , which means that the above
matrix is not a 2-disjunct matrix.

In a similar fashion to the proof of Lemma 5.4, we can
prove the following result.

Lemma 5.6: If there exist a t-FPC(n1,M, q) and a t-
FPC(n2, q, q

′), then there exists a t-FPC(n1n2,M, q′).
As was shown in Figure 1, a t-FPC(n,M, q) is equivalent

to an SHF(n;M, q, {t, 1}). Separating hash families have
been extensively investigated by numerous researchers, and
many interesting results on separating hash families have been
obtained. We can apply Lemma 5.6 with known separating
hash families to produce infinite series of frameproof codes.
For example, the following result [2] can be used to produce
an infinite series of frameproof codes.

Theorem 5.7: ([2]) If q is a prime power, then there exists
an SHF(2d+ 1; qd+1, q, {2, 1}) with 2d ≤ q.

Corollary 5.8: For any non-negative integer s, there ex-
ists an SHF(

∏
0≤i≤s(2

i+1 + 1); 2

∏
0≤i≤s

(2i+1)
, 2, {2, 1}), or

equivalently, a 2-FPC(
∏

0≤i≤s(2
i+1 + 1), 2

∏
0≤i≤s

(2i+1)
, 2).

Proof: We already knew that the 2-LACC(3, 4, 2) in
Example 5.2 is a 2-FPC(3, 4, 2), that is, an SHF(21+1; 22

0+1,
21, {2, 1}). Applying Theorem 5.7 with d = 21, we obtain
an SHF(22 + 1; 2(2

0+1)(21+1), 22
0+1, {2, 1}). By Lemma 5.6,

we obtain an SHF((21 + 1)(22 + 1); 2(2
0+1)(21+1), 2, {2, 1}).

Iterating this procedure with d = 2i in step i until i = s, we
obtain the desired result.

Similar to Corollary 5.8, by applying Lemma 5.4 with
Theorem 5.7, we can get the following 2-separable codes.

Corollary 5.9: For any positive integer s, there exists an
2-SC(

∏
1≤i≤s(2

i + 1), 5
(2s+1)−1

∏
1≤i≤s

(2i+1)
, 2).
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Proof: It is clear that an SHF(n;M, 2, {2, 1}) is also a
2-SC(n,M, 2). The starting 2-SC(21 +1, 5, 2) is listed below:
C1 = {(1, 1, 0)T , (1, 0, 1)T , (0, 1, 1)T , (0, 0, 0)T , (1, 1, 1)T }.

We also know the following result.
Theorem 5.10: ([2]) For any prime power q and any integer

t with t ≤ q − 1, there exists an SHF(t+ 1; q2, q, {t, 1}).
In a similar fashion, we have the following consequence.
Theorem 5.11: For any prime power q, any positive integer

t ≤ q − 1, and any non-negative integer s, there exists a t-
FPC(q(t+ 1)s, q2

s

, 2).
Proof: For any prime power q and any positive integer

t ≤ q − 1, the (q, q, 2) code

C = {(1, 0, . . . , 0)T , (0, 1, . . . , 0)T , . . . , (0, 0, . . . , 1)T }

is clearly a t-FPC(q, q, 2). We also have a t-FPC(t+1, q2, q) by
Theorem 5.10. Applying Lemma 5.6, we obtain a t-FPC(q(t+
1), q2, 2). There is a t-FPC(t + 1, q2

2

, q2) by Theorem 5.10.
Applying Lemma 5.6, we obtain a t-FPC(q(t + 1)2, q2

2

, 2).
Iterating this procedure, we obtain the desired result.

Other constructions for frameproof codes can be found in,
for example, [3].

VI. CONCLUSION

In this paper, we investigated anti-collusion codes for mul-
timedia fingerprinting. We showed an equivalence between a
t-AND-ACC and a t-separable matrix. We pointed out some
flaws of algorithm HardDetAlg, improved it, and further-
more, described an efficient detection algorithm IdenAlg
based on t-AND-ACCs constructed from t-disjunct matrices.
We investigated relationships between AND-ACCs and other
structures related to fingerprinting. We also introduced LACCs
for multimedia fingerprinting, which can be used to identify
more colluders than AND-ACCs. In fact, we proposed an
efficient identification algorithm based on LACCs constructed
from frameproof codes. This showed an important fact that
frameproof codes have traceability for multimedia contents.
We also provided a few constructions for separable codes and
frameproof codes.

It would be of interest if we could find more properties
and constructions of separable codes and frameproof codes. It
would be also interesting if we could find an optimal check
procedure for LACC so that the number of boolean inequalities
to be checked is the smallest.
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