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Abstract 

Origin and domestication process of foxtail millet [Setaria italica (L.) P. Beauv.] have been 

studied by several groups but still in discussion with ambiguity.  It is cardinal to elucidate 

the issue by studying large number of accessions with enough number of markers 

covering the whole genomic regions.  Genetic structures were analyzed by transposon 

display (TD) using 425 landraces of foxtail millet and 12 accessions of the wild ancestor, 

green foxtail.  We applied three recently-active transposons (TSI-1, TSI-7 and TSI-10) 

as genome-wide markers and succeeded in demonstrating geographical structures of 

foxtail millet.  A neighbor-joining dendrogram based on TD grouped the set of foxtail 

millet accessions into eight major clusters each of which consisted of accessions 

collected from geographically adjacent areas.  Eleven out of twelve green foxtails were 
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grouped separately from the clusters of foxtail millet.  These results pointed that the 

strong regional differentiations and long history of the cultivation in each region.  

Relationship between foxtail millet and green foxtail regarding intraspecific hybridization 

and suggested monophyletic origin of foxtail millet domestication were also discussed.  
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Introduction 

Foxtail millet, Setaria italica (L.) P. Beauv. ssp. italica is one of the oldest cereals 

in Eurasia. Archaeological remains of this crop were found at Peiligang and Cishan sites 

near the Yellow River in China dating back to 5,000-6,000 BC (Li and Wu 1996), at 

prehistoric sites in Europe (Küster 1984) and in the Transcaucasus (Lisitsina 1976). It has 

been traditionally consumed in various ways among cultures and regions in Eurasia and 

is thought to have played an important role in early agriculture of the Old World 

(Sakamoto 1987). The geographical origin of foxtail millet, however, remains a 

controversial issue.  

Cytological and genetic studies had provided S. italica ssp. viridis as the 

presumed wild ancestor of this crop (Kihara and Kishimoto 1942; Li et al. 1945; Le 

Thierry d’Ennequin et al. 2000; Wang et al. 1995).  However, geographical origin of 

domestication could not be elucidated simply due to the wide distribution of this wild 

species throughout Europe and Asia and even in the New World (Wang et al. 1995; Le 

Thierry d’Ennenquin et al. 2000). Vavilov (1926) inferred that the primary center of 

diversity of foxtail millet is East Asia, including China and Japan. Harlan (1975) 

suggested independent domestication in China and Europe according to archaeological 

evidence, which is supported by several studies based on archaeological, morphological 

or molecular evidences (de Wet et al. 1979; Jusuf and Pernes 1985; Benabdelmouna et 

al. 2001; Li et al. 1995a, b, 1998). Li et al. (1995b) suggested another independent and 

recent domestication in Afghanistan and Lebanon, where the landraces have primitive 

characteristics such as numerous tillers with small panicles. In contrast, Sakamoto (1987) 

reported foxtail millet in Central Asia, Afghanistan, Pakistan and north west India have not 

only primitive morphological traits but relatively higher cross compatibility with those from 
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other regions (Kawase and Sakamoto 1987) and thus proposed that foxtail millet 

originated somewhere in these regions, and China might be the secondary center of 

diversification.  

Such controversies might be partly due to lack of sufficient tools in genetic 

analyses and effective experimental sizes in the past research Thus, 1) more genetic 

markers covering the whole genome and 2) a large-scale analysis might be a key to 

elucidate this entangled issue.  

Transposon display (TD), which is a modified AFLP, has been shown to be a 

suitable marker system for phylogenetic studies and linkage analyses (Casa et al., 2000, 

Kwon SJ, 2006), because some transposon elements (TEs) such as long terminal repeat 

(LTR)-retrotransposons are enriched in centromeric and pericentromeric regions while 

others like miniature inverted-repeat transposable elements (MITEs) are often in 

euchromatic, gene-rich regions. More importantly, plant genomes are comprised of TEs 

(Feschotte et al. 2002). Especially, TEs that are active or were recently active may 

display higher level of polymorphism (Casa et al. 2000), which has been clearly shown in 

a linkage analysis between very closely related genomes using an active TE as markers 

in rice (Monden et al. 2009). 

In foxtail millet, several TEs including LTR-retrotransposons and MITEs have 

been identified in the mutant alleles of Waxy (GBSS1) gene, which controls amylose 

content in the endosperm starch (Fukunaga et al. 2002a; Kawase et al. 2005). This fact 

indicated that people in early Asia favored and repeatedly selected for the sticky 

endosperm trait of waxy phenotype generated by TE insertions (Kawase et al. 2005). 

Thus, these TEs might have been still active after the domestication event (less than 

10,000 years ago) and be useful for markers. 

In this paper, we developed a TD marker system utilizing three TEs identified in 

waxy alleles and performed a large scale analysis with 425 accessions of foxtail millet 
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and 12 green foxtails worldwide, including Asia, Europe, and Africa. The following 

phylogenetic analysis revealed clear clustering of geographically adjacent foxtail millet 

accessions but most green foxtails were clustered into one group, which is often 

observed in crops with monophyletic origin. The evolution and dissimilation of foxtail 

millet will be further discussed.  

 

Materials and methods 

Plant materials and transposon display 

A total of 425 foxtail millet accessions covering the major traditional geographical 

distribution and 12 accessions of green foxtail were used in this study (Table 1).  

Genomic DNA was extracted from the leaf samples of 1-month-old seedlings or from 20 

mature seed grains from each landrace, using the CTAB method of Murray and 

Thompson (1980) with some modifications. 

Three TEs {TSI-1 (Tourist MITE), TSI-7 (LTR-retrotransposon) and TSI-10 

(SINE)} were selected from different classes and characteristics on the basis of the 

transposon sequences found in GBSS1 gene of foxtail millet reported by Kawase et al. 

(2005). Sequences of the element-specific primers were shown in Table 2.  Transposon 

display was carried out following the method of Casa et al. (2004) with following 

modifications.  Selective amplification using a “touchdown” protocol: 94°C for 3 min 

followed by 95°C for 30 sec, 64°C for 45 sec, and 72°C for 45 sec. In subsequent cycles, 

the annealing temperature was reduced from 63°C to 58°C in 1°C increments each cycle.  

Twenty-nine cycles were performed at the 58°C annealing temperature, followed by a 

final extension of 72°C for 3 min.  The PCR products were separated by capillary 

electrophoresis, using an automated DNA sequencer ABI model 3130 (Applied 

Biosystems Inc.).  Two accessions (SI85 from Turkey and SI200 from Korea) were failed 



6 

in amplification and excluded.  Genotyping was performed by Gene Mapper 3.0 software 

(Applied Biosystems Inc).  The threshold for allele calling was set at 500 relative 

fluorescent unit (RFU) based on the stable call from reference samples.  

 

Data analysis 

Genotype data were analysed using AFLPsurv1.0 (Vekemans 2002) to evaluate the 

genetic variation.  Cluster analysis was performed using distant matrix with Neighbor-

Joining (NJ) method in Phylip package (Felsenstein, 2004) and then visualized with the 

TreeExplorer (Kumar et al. 2004).  Statistical testing for the clustering was performed 

with pooled individual which grouped into the same cluster in the NJ tree.  This smaller 

number of group, it was possible to perform statistical testing via 1,000 times bootstrap 

resampling.  We also performed Principal Coordinate Analysis (PCoA) to determine 

major pattern within a multivariate dataset by GenAlEx 6 (Peakall and Somuse 2006).  

First, we calculated the binary genetic distance and made a distance matrix (Huff et al. 

1993).  Principal coordinates elements were calculated using the distance matrix, then 

the calculated first two principal coordinates were plotted on the graph. 

 

Results 

Insertion and clustering pattern of the three TEs with different 
characteristics 

Three different types of TEs showed 356 polymorphic bands and 129 of them were 

polymorphic between accessions at 5 % level (allelic frequency of 0.05 - 0.95).  The 

numbers of polymorphic/scored bands were 67/149 (TSI-1), 17/93 (TSI-7), and 45/114 

(TSI-10) (Table 3).  One hundred seventeen one band were found in foxtail millet (spp. 

italica) but not in green foxtail (spp. viridis), whereas 17 bands were exclusively found in 
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green foxtail.  Statistical test (student t-test) for copy number of each TEs between 

foxtail millet and green foxtail showed significant differences in TSI-7 (p<0.00) and TSI-10 

(p<0.03) but not in TSI-1. (Fig. 1). 

 

Clustering pattern of Neighbor-Joining dendrogram 

We analyzed the genetic relationships among the 423 accessions of foxtail millet with 12 

accessions of green foxtail using the NJ dendrogram.  The foxtail millet accessions were 

grouped into eight major groups and each of them consisted of accessions collected from 

geographically adjacent areas (Fig. 2).  Accessions from East Asia (cluster I, II and III) 

formed three large clusters. The cluster I was mainly comprised of accessions from 

Japan and Korea, while accessions from Nansei islands, Japan (the south most islands 

of the country) was grouped into the cluster II with those from Taiwan and the Philippines.  

Interestingly, seven Nepal accessions were also included in this cluster.  Most of the 

other East Asian accessions (from China, Japan and Korea) were grouped into the 

cluster III.  Three accessions from China (SI97) and Japan (SI157; SI132) grouped 

together with one green foxtail accession collected from Pakistan (cluster IV).  

Accessions from East Europe (Uzbekistan, Ukraine, Turkey, Bulgaria, Poland, Hungary 

and Czech Republic), one from Morocco, and four from China formed the cluster V.  The 

cluster VI was the second largest and comprised of accessions from South Asia, 

Southeast Asia, China, Taiwan, Africa, West Europe and Middle East.  Three 

subclusters were observed in this cluster, each of which represents (a) mainly Nepal, (b) 

Southeast Asia including Pakistan and India, and (c) South Asia and Myanmar plus Africa.  

Accessions in this cluster seem to be distributed surrounding the Indian Ocean.  The 

accessions of Western Europe (Germany, France, Belgium and Spain), Western Asia 

(Turkey, Lebanon and Georgia), and South Asia (Iran, Afghanistan, and Pakistan) formed 

the cluster VII.  One cluster was consisted exclusively of accessions from Northeast 
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Pakistan (cluster VIII).  All the green foxtail accessions were outgrouped, except one 

from Pakistan.  Two accessions (SI74, SI101) were located between clusters of foxtail 

millets and green foxtails. It is noteworthy that Chinese accessions were present in 

almost all the clusters except the cluster II, VII and VIII.  Bootstrapping provability of this 

clustering revealed closer genetic relationship between cluster I and III (97 %), and 

cluster II and VI (86 %) which is shown in Fig. 2b (supplemental electronic figure).  We 

plotted the geographical distribution of foxtail millet and green foxtail accessions on a 

map with cluster indications (Fig. 3).  

 

Principal coordinate analysis 

Principal coordinate analysis (PCoA) was performed to further explore the relationships 

among foxtail millet accessions with TD data.  Principal coordinates represent 33.22 % 

and 21.19% for PC1 and 2 respectively (Fig. 4).  The pattern of geographic 

diversification of the foxtail millet accessions overall corresponds to what was observed in 

the dendrogram.  Foxtail millet accessions were scattered on the graphic area of PCoA 

diagram with clear grouping of geographic structures, while all the green foxtail 

accessions were gathered around the center of the diagram. 

 

Discussions 

Diversity and dissimilation of foxtail millet illustrated by recently 
active transposons 

Lack of enough markers or genotypes has always limited the resolution of 

genetic analysis of foxtail millets. For example, AFLP analysis with 39 foxtail millet 

accessions did not reveal any geographic structure (Le Thierry d’Ennequin 2000).  
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Better results have been obtained by some other studies using RFLP (Fukunaga et al. 

2002b), RAPD (Schontz and Rether 1999) or other molecular markers (Fukunaga et al. 

1997; Justuf and Pernes 1985; Li et al. 1995b; Nakayama et al. 1999), but no more than 

five genetic groups have been identified in these studies. However, in this study, the large 

scale analyses with TD markers have successfully depicted genetic relationship of foxtail 

millet,  providing eight clusters with very clear geographic structures as well as 

evolutional history of foxtail millets and green foxtails with higher resolution than ever. 

Our results also indicated the merit of TD as a tool for studying genetic variations.  TD 

mainly detects variations in insertions of TEs and these variations are rapidly generated 

by active TEs.  As such, the use of TEs which had been active even after domestication 

event (Kawase et al. 2005) as markers might have revealed dynamics of variation during 

the history of cultivation.  Thus, TD would be a suitable marker system for elucidating 

crop dissimilation after domestication, if active or recently-active TEs were available. 

Although geographical structures of foxtail millet have been indicated in previous studies 

(Li et al. 1995b; Schontz and Rether 1999; Fukunaga et al., 2002b, 2006; Kawase et al. 

2005), the NJ tree drawn in this study has provided more detailed image because of the 

higher number of accessions and the higher number and diversity of the marker used.  

East Asia was the region of the largest genetic diversity of foxtail millet, as mentioned by 

Vavilov (1926).  Indeed, Chinese landraces were present in six of the eight clusters 

detected in this study.  Although not all the information on the collection localities was 

available, these accessions were grouped together with accessions which share the 

originated habitat. 

Some of the landraces from Nepal was revealed to be in the cluster II, which is 

mainly comprised of landraces in Taiwan and Japanese Nansei Islands but not in China 

or anywhere in between.  The separate distribution of this group might be because only 

a few accessions from south China were available in this study. This sub-region may be 
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intriguing and unique spots.   

Accessions collected from northeast China (Heilongjiang Province) were grouped 

with the accessions originated East Europe in cluster V.  The landraces in the cluster V 

was also in Russia and Mongolia and genetically close to those in East Asia, suggesting 

that the close genetic relationship between East European strains and northeast China.  

Close genetic relationship within cluster V indicate that adaptation to the similar habitat 

rather geographical vicinity not like other clusters. 

There was another genetic border between East Europe and West Europe.  All 

but one accessions from West Europe belonged to the cluster VII while all the East 

European landraces were in the cluster V.  The West European landraces were 

genetically distinct from East Asian landraces and formed a cluster with those from 

Middle East and Pakistan.  Although foxtail millet is known from remains of ~5000 years 

ago in Europe (Austin 2006), West Europeans’ landraces showed the least genetic 

diversity.  It indicates that West Europe is the periphery of foxtail millet cultivation, where 

genetic diversity comes to a close.  Moreover, the dramatic decline of foxtail millet 

cultivation in 19th century (de Wet 1995; Jarman et al. 1982) may accelerate the decline 

of the genetic diversity. 

Although most of the accessions from South Asia and Southeast Asia belonged 

to only one cluster (VI), they were divided into three geographic subclusters; one was 

mainly comprised of Nepal landraces, another formed by those from India, Pakistan and 

Southeast Asia except Myanmar, and the other with those from Myanmar, India, Sri 

Lanka and Africa.  These results indicated that Myanmar is South Asia rather than 

Southeast Asia according to genetic structure of foxtail millet, and that the African foxtail 

millets had been introduced from South Asia, maybe from India.  Two accessions 

originated from Southwest China (Yunnan Province) were also grouped with this group. 

In this study, landrace groups of a cluster and/or sub-cluster are often endemic 
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to a small geographical region.  Reproductive isolation has been shown between 

landraces from different area (Kawase and Sakamoto 1987).  This might reflect the 

characteristics of foxtail millet as a minor crop.  Foxtail millet germplasm has not 

experienced modern breeding in global scale like bread wheat.  The limited exchange of 

germplasm has preserved the historical distribution of the landraces.  The differentiation 

of a landrace group in foxtail millet might have occurred along with the dispersal from the 

place of domestication as is the case for Asian rice (Khush 1997).  The strong 

geographical vicinities and genetic differentiation from one another imply a long history of 

cultivation of foxtail millet in each region, because the establishment of landraces is the 

result of the adaptation of the crop for the local ecological environment and agricultural 

practices (Sakamoto 1987). 

 

Relationship of foxtail millet and green foxtail 

The Significant differences in detected copy number of two types of TEs (TSI-7 

and TSI-10) between green and foxtail millet indicate the higher activities of these TEs in 

foxtail millet but not in green foxtail.  These two TEs are retrotransposons, the sequence 

at the insertion sites are retained as they transpose via the replication mechanism, and 

increased the copy number.  On the other hands, TSI-1 is a DNA transposon which 

transposes copy and paste system.  We observed excess of copy number of TEs in 

green foxtail compared with the foxtail millet.  TEs used in this study are assumed to be 

activated after the domestication of foxtail millet; thus, we expected larger copy number of 

TEs in foxtail millet than that in green foxtail.  However, number of bands which found 

exclusively in green foxtail was larger in proportion to the sample size differences 

between foxtail millet and green foxtail.  It has been reported that green foxtail, which is 

a wild progenitor of foxtail millet, shows greater genetic diversity than the genetic distance 

between green foxtail and foxtail millet from the same region (Wang et al. 1995; Le 
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Thierry d’Ennequin et al. 2000).  As indicated in the previous studies, the bands found 

only in green foxtail might transposed in green foxtail rather indicate the broader genetic 

background of green foxtail and genetic bottle neck which experienced foxtail millet than 

transposition independently after the differentiation of these sub species. 

Previous studies on intraspecific hybridization of green and foxtail millet have 

indicated repeated genetic introgression (Darmency et al. 1987; Wang et al. 1995; Jarvis 

and Hodgkin; 1999).  However, the TD marker system in this study has provided 

different image from the previous studies.  Eleven of the twelve green foxtail accessions 

collected from various areas of Eurasia were grouped into one cluster separated from all 

the foxtail accessions.  In addition, green and foxtail millet accessions originated Japan 

and Korea distributed separately on PCoA plot, whereas those from China were 

overlapped with each other (Fig. 4).  This result has indicated that interspecific 

hybridization between green and foxtail millet had not been so frequent as had been 

expected in particular region.  The low genetic relationships between green and foxtail 

millet in Korea and Japan might be explained by intensive selection and adaptation of 

foxtail millet in the region and strict isolation of crop and the weedy form by cultivation 

practices.  Human selection for agricultural use has probably accelerated formation of 

region-specific populations of foxtail millet. 

Interestingly, there is a small cluster including one green foxtail accession from 

Pakistan (Cluster IV) in between the clusters of East Asia and the clusters of South Asia 

and Europe.  The three foxtail millets accessions belonging to this cluster stretched from 

China and Japan.  Given the origins of the foxtails and the green foxtail in this cluster 

were geographically distant; this clustering did not seem to be a result of a recent 

hybridization event.  As such, this cluster might represent the idea of Sakamoto (1987) 

that foxtail millet originated somewhere in Central Asia, Afghanistan, Pakistan, and 

northwestern India spread to East Asia and later diversified.  Comparing the sequence 
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of the TE shared within this cluster could offer a check for the molecular lineage. 

It should also be noted that the phylogenetic tree in this study exhibited a 

monophyletic pattern of foxtail millet from green foxtail, contrasting with many previous 

studies which have supported polyphyletic origin of foxtail millet (Harlan 1975; de Wet et 

al. 1979; Jusuf and Pernes 1985; Li et al. 1995a, b, 1998; Schontz and Rether 1998; Le 

Thierry d’Enequin et al. 2000; Benabdelmouna et al. 2001).  However, Allaby and Brown 

(2003) addressed monophyletic pattern is erroneously inferred by genotyping of 

anonymous marker and NJ analysis when linkage disequilibrium (LD) is not assured 

carrying out a simulation study of imaginary crop with several different multiple 

domestication scenarios.  Since our monophyletic assumption was based on an 

anonymous marker with low LD, we could not avoid the chance of erroneous 

interpretation.  Thus, to discuss domestication origin of the foxtail millet, it is necessary 

to test larger number of the green foxtail millet collected from wider range of Eurasia.  In 

addition, even a crop species with sequenced genomes such as rice, the origin is still 

under discussion (Vaughan et al. 2008).  Particular genes related to the domestication 

traits will allow us to further elucidate the phylogeny and evolution of the foxtail millet.  

Integrated genome sequence data would accelerate disentangling complex network 

lineages of this species. 

 

Conclusion 

In this study, geographical genetic structure of foxtail millet was successfully 

demonstrated by large scale phylogenetic analysis using TE insertion polymorphism as 

DNA markers. Two clear genetic borders were identified: 1) between accessions from 

East Asia and those from other regions including Central, South, or Southeast Asia and 

the Middle East, and 2) between West Europe and East Europe. Almost all green foxtail 
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accessions were outgrouped; indicating intercrossing intensity between foxtail millet and 

it wild ancestor differs among regions. The domestication origin still remained unclear, but 

our results might require reconsidering of the widely-accepted argument that this crop 

has multiple origins of domestication. However, this long-standing issue will be elucidated 

by further studies such as in silico approach using upcoming complete genome sequence 

(Doust et al. 2009) with larger number of green foxtail accessions. 
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Figure titles 

 

Fig. 1 Box plot of copy number of each transposable element in foxtail millet and 
green foxtail. The box comprised 50 % of the data and bold line within the box 
represents the median value. Open circles indicate outside values. 

 

Fig. 2Neighbour joining dendrogram based on transposon display. Black bars indicate 
the clusters. Asterisks identify those accessions of Nansei islands, south most islands 
of Japan. Colours of branches indicate geographic origin of each accession. 

 

Fig. 3 Geographical distribution of foxtail millet and green foxtail accessions. The 
colours of circles on the map indicate the cluster which each accession belongs to. 
Country/area name, cluster ID and number of accessions belong to each cluster are 
indicated in boxes. 

 

Fig. 4 Graph of first two axes from a principal coordinate analysis of foxtail millet 
accessions and green foxtail accessions.  The first two coordinates explains 33.22 % 
and 21.19 % of the total variation. 

 



19 

Tables 

Table 1 Number of accessions and their origins of foxtail millet (S. italia spp. italica) 
and green foxtail (S. italia spp. viridis) used in the study.  

Countries and areas No. of 
Accs.  Countries and areas No. of 

Accs. 
Setaria italica spp. italica (Total 425) 
East Asia   West Asia  
China 23  Georgia 2 
Japan 125  Lebanon 6 
Korea 41  Turkey 6 
Taiwan 21  Europe  
Mongolia 1  Belgium 3 
Southeast Asia   Bulgaria 1 
Indonesia 7  Czech 1 
Laos 1  France 3 
Myanmar 30  Germany 1 
Philippines 9  Hungary 5 
Thailand 2  Poland 1 
South Asia   Russia 2 
Afghanistan 5  Spain 1 
Bangladesh 3  Switzerland 1 
Bhutan 1  Ukraine 1 
India 44  Africa  
Iran 3  Ethiopia 1 
Nepal 25  Kenya 2 
Pakistan 36  Morocco 1 
Sri Lanka 6  South Africa 2 
Central Asia     
Kyrgyzstan 1    
Uzbekistan 1    
     
Setaria italica spp. viridis (Total 12) 
China 4  Korea 1 
Iran 1  Pakistan 1 
Japan 5    
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Table 2 Primer sequences for transposon display used in the diversity study of 
Setaria italia 
Element PCR Specific primer MseI primer 

TSI-1 Primary CTCCTAATTAGTGTCCAAACATTCG GACGATGAGTCCTGAGTAAG 

(AB21023) Secondary ATGGGACGGGGGCTAAAAT 
 

GACGATGAGTCCTGAGTAAGTA 
GACGATGAGTCCTGAGTAAGTC 
GACGATGAGTCCTGAGTAAGTG 

TSI-7 Primary GCTAGCAGGTTCAAGGGTGT GACGATGAGTCCTGAGTAA 

(AB210216) Secondary TACCCCTCCTCTCATCGAAA GACGATGAGTCCTGAGTAA 

TSI-10 Primary TCCCTCCAAATTGTCCATGT GACGATGAGTCCTGAGTAAG 

(AB210219) Secondary CTCCTGCTCTCATCGACCAC GACGATGAGTCCTGAGTAAGTA 
GACGATGAGTCCTGAGTAAGTC 
GACGATGAGTCCTGAGTAAGTT 
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Table 3 Number of bands detected by transposon display in Setaria spp. 

 

 

 

 

Selective base TSI-1 TSI-7 TSI-10 

0 - 93 - 
+gta 47 - 32 
+gtc 54 - 47 
+gtg 48 - - 
+gtt - - 35 
Total 149 93 114 

(Average per accession) (24.3) (11.0) (30.89) 
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Fig.	  1	  Box	  plot	  of	  copy	  number	  of	  each	  transposable	  element	  in	  foxtail	  millet	  
and	  green	  foxtail.	  The	  box	  comprised	  50	  %	  of	  the	  data	  and	  bold	  line	  within	  
the	  box	  represents	  the	  median	  value.	  Open	  circles	  indicate	  outside	  values.	  



Fig. 2Neighbour joining dendrogram based on transposon display. Black bars indicate the 
clusters. Asterisks identify those accessions of Nansei islands, south most islands of Japan. 
Colours of branches indicate geographic origin of each accession. 
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Fig.	  3	  Geographical	  distribu\on	  of	  foxtail	  millet	  and	  green	  foxtail	  accessions.	  The	  colours	  of	  circles	  on	  the	  map	  indicate	  
the	  cluster	  which	  each	  accession	  belongs	  to.	  Country/area	  name,	  cluster	  ID	  and	  number	  of	  accessions	  belong	  to	  each	  
cluster	  are	  indicated	  in	  boxes.	
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Fig.	  4	  Graph	  of	  first	  two	  axes	  from	  a	  principal	  coordinate	  analysis	  of	  foxtail	  millet	  
accessions	  and	  green	  foxtail	  accessions.	  	  The	  first	  two	  coordinates	  explains	  33.22	  %	  and	  
21.19	  %	  of	  the	  total	  varia\on.	  	

-‐0.80	  

-‐0.40	  

0.00	  

0.40	  

0.80	  

-‐0.80	   -‐0.40	   0.00	   0.40	   0.80	  

Co
or
d.
	  2
	  (2

1.
19

	  %
)

Coord.	  1	  (33.22	  %)

Japan (w/o Nansei Isls.)	

Korea	

China,	  Mongolia	

Nansei Isls.	

Taiwan	

Southeast Asia;	  
(Indonesia, Lao, Myanmar, 
Philippines, Thailand)	

Bangladesh, Bhutan, Sri Lanka	

Napal	

India	

Pakistan	

Afghanistan	

Iran	

Central & West Asia	  
(Kyrgyz, Uzbekistan, Georgia, Lebanon, 
Turkey)	

Europe	  
(Blugalia, Czech, Hungary, Poland, 
Russia, Ukraine, Spain, Belgium, France, 
Germany, Switzerland)	

Africa	  
(Ethiopia, Kenya, Morocco, South Africa)	

spp. viridis CN	

spp. viridis JP	

spp. viridis KR	

spp. viridis IR	

spp. viridis PK	


	Genome.pdf
	Genome Figures_RMH_rev1

