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ABSTRACT 

Shifts of Ni(II)/Ni(III) redox potentials of a nickel-pincer complex, [Ni(SCS)Br] (SCS = 

2,6-bis(benzylaminothiocarbonyl)phenyl), on addition of bases have been investigated.  

The complex showed two-step shifts of the Ni(II)/Ni(III) redox potential, and the shifts are 

associated to two-step deprotonation of the SCS ligand on addition of 

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).  DBU led to a negative shift of the 

Ni(II)/Ni(III) redox potential by approximately 500 mV.   
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spectra; Acid-base equilibrium 

 

In recent years, there have been significant interests in metal-thioamide complexes [1].  

In particular, transition metal complexes bearing secondary thioamides have been the 

subject of recent interest [2].  Several transition metal pincer complexes having reactive 

secondary thioamide unit(s) (-C(=S)-NH-) in the pincer ligand have been reported as 

exemplified by the complex shown in Scheme 1 [3]. 

 

 

 

 

Scheme 1. Structure of [Ni(SCS)Br]. 

Deprotonation of the thioamide unit gives an anionic thioamidate unit, 

, which results in an increase in the 

electron-donating ability of the pincer ligand to the metal center; the oxidation potential of 

the complex is thought to be shifted to a lower potential by the deprotonation.  Actually 

such an interesting shift in the oxidation potential by addition of base to pincer complexes 

have been reported for several transition metal complexes [4], however, there has not been 

such a report for Ni complexes to our knowledge.  In this paper, we report the control of 

the oxidation potential of the secondary thioamide-containing nickel pincer complex, 

[Ni(SCS)Br] (cf. Scheme 1), by addition of bases.   

[Ni(SCS)Br] was prepared as reported previously [3a].  Fig. 1 displays the cyclic 

voltammogram (CV) of [Ni(SCS)Br] in DMF.  As shown in Fig. 1, [Ni(SCS)Br] shows 
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reversible redox wave at E1/2 = +0.156 V (vs. Fc
+/Fc), which is assigned to an Ni(II)/Ni(III) 

redox process.  The E1/2(Ni(II)/Ni(III)) is comparable to that of a previously reported Ni-pincer 

complex, [Ni(NCN)Br] (NCN = C6H3(CH2NMe2)2-o,o'; E1/2(Ni(II)/Ni(III)) = +0.15 V (vs. 

SCE)) [5].  The strong electron-donating ability of the pincer ligand seems to give such a 

lower Ni(II)/Ni(III) potential than that of usual Ni(II) complexes; for instance, 

E1/2(Ni(II)/Ni(III)) of [Ni(bpy)3]
2+ (bpy = 2,2’-bipyridyl) is observed at 1.66 V vs. SCE (or 1.13 

V vs. Fc
+
/Fc) [6].  The second oxidation peak (shoulder) at Epa = +0.854 V may involve 

oxidation of the SCS ligand.   

Effects of the added base on the electrochemical processes were investigated using NEt3 

and DBU as a base.  Fig. 2 shows changes in the CV curve of [Ni(SCS)Br] on addition of 

NEt3 in DMF.  As shown in Fig. 2, the most part of the original Ni(II)/Ni(III) redox wave 

of [Ni(SCS)Br] disappears on addition of NEt3, and a new redox wave appears at E1/2 = 

-0.08 V vs. Fc
+
/Fc.  When methanesulfonic acid (MSA) is added to the [Ni(SCS)Br]-NEt3 

solution, the redox wave of original [Ni(SCS)Br] is recovered completely.  These results 

suggest that the redox potential of [Ni(SCS)Br] can be controlled by 

deprotonation/protonation reactions of the thioamide unit. 

Scheme 2. Deprotonation-protonation reactions of [Ni(SCS)Br]. 
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NEt3 is a moderately strong base (pKa of NEt3·H
+ = 18.8 in MeCN [7]), and NEt3 is 

thought to give only a one-proton lost complex [Ni(SCS)Br(-H
+
)].  When a strong organic 

base, DBU (pKa of DBU·H
+
 = 24.3 in MeCN [7]), was added to [Ni(SCS)Br], E1/2(Ni(II)/Ni(III)) 

showed second-step shifts to a negative potential.  Fig. 3 exhibits CV curves of 

[Ni(SCS)Br] on addition of DBU.  Addition of DBU apparently leads to decrease in the 

original redox wave at E1/2 = +0.156 V with appearance of new redox couples at E1/2 = 

-0.08 V and -0.34 V vs. Fc
+
/Fc.  After the addition of 10 mol/[Ni(SCS)Br] of DBU, only 

one redox couple at E1/2 = -0.34 V is observed.  When MSA was added to the 

DBU-treated solution, the redox potential of Ni(II)/Ni(III) was recovered completely.  As 

shown in Scheme 2, the shift of E1/2(Ni(II)/Ni(III)) of [Ni(SCS)Br] by addition of DBU is 

thought to be brought by the two-step deprotonation on the SCS pincer ligand.   

As described above, the deprotonation/protonation reactions take place reversibly, 

suggesting that the main framework of [Ni(SCS)Br] is stable.  The obtained results 

indicate that E1/2(Ni(II)/Ni(III)) of the Ni complex can be changed by a such a large degree of 

approximately 500 mV by addition of a base and an acid.  There have been no precedents 

for controlling the redox potential of secondary thioamide-coordinated Ni complexes the 

acid-base reaction to our knowledge. 

  The acid-base reaction of [Ni(SCS)Br] was also followed by UV-vis spectroscopy.  Fig. 

4 shows changes of UV-vis spectrum of [Ni(SCS)Br] on addition of DBU.  The 

absorption bands at λmax = 448 and 503 nm decrease with an increase in the amount of 

DBU, whereas the absorption bands at λmax = 346 and 402 nm increase and an isosbestic 

point is observed at 415 nm.  The UV-peaks at 448, 503, 346, and 402 nm are most 

probably assigned to a metal-to-ligand charge transfer (MLCT) band in view of there 
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moderately large ε values.  If the UV-vis peaks can be assigned to the MLCT band, the 

deprotonation by DBU will decrease the electron-accepting ability of the pincer ligand, in 

agreement with the UV-vis shift to a shorter wavelength.  When 2 mol/[Ni(SCS)Br] of 

MSA was added to the solution, the spectrum is recovered completely.  From the above 

shown CV and UV-vis results, pKa(1) for the first dissociation step of the N-H proton in 

the SCS ligand is thought to be comparable or somewhat smaller than that of NEt3·H
+ 

(18.8), and pKa(2) for the second dissociation step is thought to be positioned between 

those of NEt3·H
+
 (18.8) and DBU·H

+
 (24.3); however, more accurate pKa values have not 

been estimated. 

In summary, electrochemical behavior of the Ni-pincer complex containing secondary 

thioamide units, [Ni(SCS)Br], has been elucidated. The two –C(=S)-NH- groups in 

[Ni(SCS)Br] are thought to undergo reversible deprotonation/protonation reactions on 

addition of a base and an acid.  By the deprotonation of the N-H group, the Ni(II)/Ni(III) 

redox potential of the Ni center shifted to a lower potential by 240 – 500 mV from that of 

original [Ni(SCS)Br].  These interesting electrochemical properties of the Ni complex 

are expected to contribute to design of catalytic systems using Ni complexes [8]. 
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Figure Captions 

 

Figure 1.  Cyclic voltammogram of [Ni(SCS)Br] (1.0 mM) in DMF containing 0.1 M 

[(n-Bu)4N][PF6] under N2 at sweep rate of 100 mV s
-1
.  The irreversible reduction peaks at 

Epc = -1.20 and -1.97 V are assigned to SCS-ligand
+/0
 and SCS-ligand

0/- 
reductions, 

respectively. 

 

Figure 2.  Effects of NEt3 on cyclic voltammogram of [Ni(SCS)Br] (1 mM) in DMF 

containing [(n-Bu)4N][PF6] (0.1 M) under N2 at sweep rate of 100 mV s
-1
.  The amount of 

NEt3, (a) 0, (b) 2.5, (c) 5.0, (d) 7.5, and (e) 10.0 mol per 1 mol of [Ni(SCS)Br]. 

 

Figure 3.  Effects of DBU on cyclic voltammogram of [Ni(SCS)Br] (1 mM) in DMF 

containing [(n-Bu)4N][PF6] (0.1 M) under N2 at sweep rate of 100 mV s
-1
.  The amount of 

DBU, (a) 0, (b) 2.5, (c) 5.0, (d) 7.5, and (e) 10.0 mol per 1 mol of [Ni(SCS)Br]. 

 

Figure 4. Changes in the absorption spectrum of [Ni(SCS)Br] (spectrum (a)) caused by 

addition of DBU ((b) 0.5, (c) 1.0, (d) 1.5, and (e) 2.0 mol/[Ni(SCS)Br]) in MeCN under N2.  

The inset shows expanded charts.  [Ni(SCS)Br] = 2.0 x 10
-4 
M.   
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