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ABSTRACT

A lower bound for the variance of unbiased estimators which is due to

Kshirsagar is studied. The bound is free from regularity assumptions. It is

also shown that the bound is an improvement of Bhattacharyya bound in

regular case.

1. INTRODUCTION

Let X be a random variable according to the density function f(x, θ) (θ ∈
Θ ⊂ R

1) with respect to σ-finite measure µ. The support S(θ) of the density

functions is defined by S(θ) := {x : f(x, θ) > 0}.
Let g be a differentiable function on Θ, not identically constant. Let ĝ(X)

be an unbiased estimator of g(θ) with Eθ{ĝ(X)2} < ∞.
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The Bhattacharyya bound states that, under some regularity conditions Rk

(see Fend (1959)),

Varθ{ĝ(X)} ≥
(
g(1)(θ), . . . , g(k)(θ)

)
W−1(θ)

(
g(1)(θ), . . . , g(k)(θ)

)′
=: Bk(θ), say, (1.1)

where g(i)(θ) = dig(θ)
dθi and W (θ) := {wij(θ)}i,j=1,... ,k with

wij(θ) := Eθ

{
∂if(X,θ)

∂θi

∂jf(X,θ)
∂θj

f 2(X, θ)

}
(i, j = 1, . . . , k).

It is well known that B1(θ) is identical to the Cramér-Rao bound and Bk+1(θ) ≥
Bk(θ) (k ≥ 1) for θ ∈ Θ.

The Hammersley-Chapman-Robbins bound states that

Varθ{ĝ(X)} ≥ sup
φ

{g(φ) − g(θ)}2

Eθ

{
f(X,φ)−f(X,θ)

f(X,θ)

}2 =: H(θ), say, (1.2)

where the supremum is taken over the set of all φ ∈ Θ satisfying

g(φ) �= g(θ) and S(φ) ⊂ S(θ).

This bound does not need the assumptions of the common support and the

existence of the derivative of the density function. It is also well known that

H(θ) ≥ B1(θ) (see Chapman and Robbins (1951) and Sen and Ghosh (1976)).

Recently, Kshirsagar (2000) gave an extension of Hammersley-Chapman-

Robbins bound in the same manner as Bhattacharyya bound. Let

ψr :=
f(x, φr) − f(x, θ)

f(x, θ)
(r = 1, 2, . . . , k). (1.3)

The Kshirsagar bound states that

Varθ{ĝ(X)} ≥ sup
φ

wΣ−1w′ =: Kk(θ), say, (1.4)

where w = w(θ, φ1, . . . , φk) := (g(φ1) − g(θ), . . . , g(φk) − g(θ)),

Σ = Σ(θ, φ1, . . . , φk) = {σij}i,j=1,... ,k with σij = covθ(ψi, ψj) (i, j = 1, . . . , k)

and the supremum is taken over the set of all φi ∈ Θ (i = 1, . . . , k) satisfying

S(φk) ⊂ S(φk−1) ⊂ · · · ⊂ S(φ1) ⊂ S(θ)
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The purpose of the paper is to show another extension of Hammersley-

Chapman-Robbins bound in the same manner as Kshirsagar (2000) and some

relations with usual Bhattacharyya bound by using the bound.

2. ANOTHER LOWER BOUND OF THE VARIANCE FOR

UNBIASED ESTIMATORS

Let X be a random variable with the density function f(x, θ) (θ ∈ Θ)

with respect to a σ-finite measure µ, where Θ is a subset of R
1. Consider the

problem of unbiased estimation for a given real-valued nonconstant function

g(θ). At first, we have the following lemma.

Lemma 1. If g(θ) is k times continuously differentiable, then it holds

Gi = Gi(θ, δ) :=

(−1

δ

)i i∑
l=0

(
i

l

)
(−1)lg(θ + lδ) → g(i)(θ) (i = 1, . . . , k)

as δ → 0, where g(i) is the i-th derivative of g(θ) at θ (i = 1, . . . , k).

The proof is omitted since it is an easy consequence of L’Hospitals theorem.

The limit limδ→0 Gi is a generalized differential coefficient of i-th order of g

at θ. For example, take g(θ) = |θ|. Since it is not differentiable at θ = 0, we

cannot compute the 2nd differential coefficient of g(θ) at θ = 0. But, on the

other hand, G2 = {g(θ + 2δ)− 2g(θ + δ) + g(θ)} = 0 and hence limδ→0 G2 = 0.

Let S(θ) be the support of f(x, θ). Assume that we can take θ + iδ ∈ Θ

(i = 1, . . . , k) such that S(θ) ⊃ S(θ + iδ) (i = 1, . . . , k). Define

Ψi = Ψi(x, θ, δ) :=

(−1

δ

)i i∑
l=0

(
i

l

)
(−1)l f(x, θ + lδ)

f(x, θ)
(i = 1, . . . , k). (2.1)

Let

V = V (θ, δ) = {vij(θ, δ)} (2.2)

where

vij(θ, δ) = Eθ (ΨiΨj) (i, j = 1, . . . , k).
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Then we have an extension of the Hammersley-Chapman-Robbins bound as

follows.

Theorem 1. Let ĝ(X) be an unbiased estimator of g(θ). Then it holds

Varθ{ĝ(X)} ≥ sup
δ∈∆

gV −1g′ =: Dk(θ), say (2.3)

where g = g(θ, δ) := (G1, . . . , Gk) and ∆ = {δ : S(θ) ⊃ S(θ + iδ) (i =

1, . . . , k), |V (θ, δ)| �= 0}. If ∆ = ∅, set the right-hand side 0 by the usual

convention.

Proof. Without loss of generality, we may assume ∆ �= ∅. Fix δ ∈ ∆. Since

S(θ) ⊃ S(θ + iδ) (i = 1, . . . , k), for i = 1, . . . , k,

Eθ{Ψi(X, θ, δ)} =

(−1

δ

)i i∑
l=0

(
i

l

)
(−1)lEθ

{
f(X, θ + lδ)

f(X, θ)

}

=

(−1

δ

)i i∑
l=0

(
i

l

)
(−1)l

∫
S(θ)

f(x, θ + lδ)dµ

=

(−1

δ

)i i∑
l=0

(
i

l

)
(−1)l

=

(−1

δ

)i

(1 − 1)i = 0.

Hence, since ĝ(X) is an unbiased estimator of g(θ), we have

Covθ(ĝ(X), Ψi(X, θ, ∆)) = Eθ{ĝ(X)Ψi(X, θ, ∆)}

=

(−1

δ

)i i∑
l=0

(
i

l

)
(−1)l

∫
S(θ)

ĝ(x)f(x, θ + lθ)dµ

=

(−1

δ

)i i∑
l=0

(
i

l

)
(−1)lg(θ + lδ)

= Gi.

Considering the covariance matrix U of the random vector

(ĝ(X), Ψ1(X, θ, δ), . . . , Ψk(X, θ, δ)), we can show that U is a symmetric matrix
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given by

U =




Varθ{ĝ(X)} G1 · · · Gk

G1 V11(θ, δ) · · · V1k(θ, δ)
...

...
. . .

...
Gk Vk1(θ, δ) · · · Vkk(θ, δ).




Since U is nonnegative definite and |V | > 0, it follows that

|U | = |V |
∣∣Varθ{ĝ(X)} − gV −1g′∣∣

And then, we have

Varθ{ĝ(X)} ≥ gV −1g′ (2.4)

Taking the supremum with respect to δ, we obtain the desired inequality. �

Remark. For k = 1, the bound (2.3) is identical to (1.2) and (1.4).

A relation between the bounds (1.4) and (2.3) is given as follows.

Theorem 2. If S(θ + iδ) ⊂ S(θ) for some δ �= 0 (i = 1, . . . , k), it holds

w(θ, θ + δ, . . . , θ + kδ){Σ(θ, θ + δ, . . . , θ + kδ)}−1w(θ, θ + δ, . . . , θ + kδ)′

=g(θ, δ){V (θ, δ)}−1g(θ, δ)′.

Proof. Putting φi = θ + iδ (i = 1, . . . , k, δ �= 0) in (1.3), we will show

g(θ, δ)V −1g(θ, δ)′ = wΣ−1w′. We see from the definition of Gi that, for i =

1, . . . , k,

Gi =

(−1

δ

)i i∑
l=0

(
i

l

)
(−1)lg(θ + lδ) =

(−1

δ

)i i∑
l=1

(
i

l

)
(−1)l{g(θ + lδ)− g(θ)}.

Then, since

g =(G1, . . . , Gk)

=

((−1

δ

)1 1∑
l=1

(
1

l

)
(−1)l{g(θ + lδ) − g(θ)}, . . . ,

(−1

δ

)k k∑
l=1

(
k

l

)
(−1)l{g(θ + lδ) − g(θ)}

)
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=(g(θ + δ) − g(θ), . . . , g(θ + kδ) − g(θ))

·




(−1
δ

)1 (
1
1

)
(−1)1

(−1
δ

)2 (
2
1

)
(−1)1 · · ·

(−1
δ

)k (
k
1

)
(−1)1

0
(−1

δ

)2 (
2
2

)
(−1)2 · · ·

(−1
δ

)k (
k
2

)
(−1)2

...
. . .

...

0 0 · · ·
(−1

δ

)k (
k
k

)
(−1)k




=w




(−1
δ

)1 (
1
1

)
(−1)1

(−1
δ

)2 (
2
1

)
(−1)1 · · ·

(−1
δ

)k (
k
1

)
(−1)1

0
(−1

δ

)2 (
2
2

)
(−1)2 · · ·

(−1
δ

)k (
k
2

)
(−1)2

...
. . .

...

0 0 · · ·
(−1

δ

)k (
k
k

)
(−1)k


 ,

it holds

gV −1g′ = wFV −1F ′w′

= w((F ′)−1V F−1)−1w′,

where F = {fij}i,j=1,... ,k is a nonsingular matrix with

fij =

{(−1
δ

)j (
j
i

)
(−1)i (i ≤ j),

0 (i > j).

Thus, to prove the theorem, it suffices to show that (F ′)−1V F−1 = Σ, i.e.,

V = F ′ΣF . By the definition of F , the (i, j) element of F ′ΣF is equal to

(−1

δ

)i+j i∑
m=1

j∑
n=1

(−1)m+n

(
i

m

)(
j

n

)
σmn. (2.5)

Since σmn = Eθ{f(X, θ + mδ)f(X, θ + nδ)/f2(X, θ)} − 1, it follows σm0 =

σ0n = 0 for all m and n. Thus (2.5) is equal to

(−1

δ

)i+j i∑
m=0

j∑
n=0

(−1)m+n

(
i

m

)(
j

n

) [
Eθ

{
f(X, θ + mδ)f(X, θ + nδ)

f 2(X, θ)

}
− 1

]

=

(−1

δ

)i+j i∑
m=0

j∑
n=0

(−1)m+n

(
i

m

)(
j

n

)
Eθ

{
f(X, θ + mδ)f(X, θ + nδ)

f 2(X, θ)

}

=Eθ(ΨiΨj),

by using
∑j

n=0(−1)n
(

j
n

)
= (1 − 1)j = 0. This is the (i, j) element of V . Thus

we complete the proof. �
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Assume the regularity conditions Rk which the Bhattacharyya bound (1.1)

holds, that is, S(θ) is independent of θ and f(x, θ) is sufficiently smooth that

k-th derivatives with respect to θ of the left-hand sides of∫
S(θ)

f(x, θ)dµ = 1

and ∫
S(θ)

ĝ(x)f(x, θ)dµ = g(θ)

can be obtained by differentiating k times under the integral signs. Then we

have the following corollary.

Corollary. Under the regularity conditions Rk, it holds

Bk(θ) ≤ Dk(θ) ≤ Kk(θ) (k ≥ 1).

Proof. At first we will show the left inequality. We have from Lemma 1 that,

for i = 1, . . . , k,

Gi → g(i)(θ),

Ψi =

(−1

δ

)i i∑
l=0

(
i

l

)
(−1)l f(x, θ + lδ)

f(x, θ)
→ ∂if(x, θ)/∂θi

f(x, θ)

as δ → 0. Then we have

lim
δ→0

vij(θ, δ) = lim
δ→0

Eθ(ΨiΨj) = Eθ

(
lim
δ→0

ΨiΨj

)
=Eθ

{
∂if(X, θ)/∂θi

f(X, θ)

∂jf(X, θ)/∂θj

f(X, θ)

}
.

So, taking the limit of the right-hand side of (2.4),

lim
δ→0

gV −1g′ = lim
δ→0

(G1, . . . , Gk)V
−1(G1, . . . , Gk)

′

=(g(1)(θ), . . . , g(k)(θ))W−1(θ)(g(1)(θ), . . . , g(k)(θ))′,

where W = W (θ) = {wij(θ)} with

wij(θ) := Eθ

[
∂i

∂θi f(X, θ)

f(X, θ)
·

∂j

∂θj f(X, θ)

f(X, θ)

]
(i, j = 1, . . . , k).
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Hence

lim
δ→0

gV −1g′

=(g(1)(θ), . . . , g(k)(θ))W−1(θ)(g(1)(θ), . . . , g(k)(θ))′

≤ sup
δ∈∆

gV −1g′,

the bound (2.3) is as great as the Bhattacharyya bound at least.

For the right inequality, we may apply the Theorem 2. Thus we complete

the proof. �

3. EXAMPLES

In this section, we show some examples.

Example 1. Unbiased estimation of the standard deviation of a normal dis-

tribution. Let X1, X2 be independent, identically distributed random variables

according to the normal distribution with mean 0 and variance θ2 (θ > 0).

Then the joint density of (X1, X2) is

f(x, y, θ) = (2πθ2)−1 exp{−(x2 + y2)/(2θ2)}.

Since s2 = (X2
1 + X2

2 )/2 is a complete sufficient statistic for θ, ĝ(X1, X2) =

2s/
√

π is the uniformly minimum variance unbiased (UMVU) estimator of θ

with the variance {(4/π)−1}θ2 ≈ 0.2732θ2. By a straightforward computation,

it follows that B1(θ) = 0.25θ2 and B2(θ) = 17θ2/64 ≈ 0.2656θ2. In Kshirsagar

(2000), the value of Kk(θ) is calculated by taking φi = θ + iδ (i = 1, . . . , k).

In this case, since gV −1g′ in (2.3) is equal to wΣ−1w′ in (1.2) from Theorem

2, we obtain the same numerical values in Table 1 in Kshirsagar (2000) (see

also Sen and Ghosh (1976)). For example, we have H(θ) = K1(θ) = D1(θ) ≈
0.2698θ2 > B2(θ).

Example 2. Unbiased estimation of the scale of uniform distribution. Let X

be a random variable with the uniform distribution over (0, θ). (i) If g(θ) = θ,

since X is a complete sufficient statistic for θ, then ĝ(X) = 2X is the UMVU
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estimator of g(θ) with the variance θ2/3 ≈ 0.333θ2. We have for the bound

(1.2)

{g(θ + δ) − g(θ)}2

Eθ

{
f(X,θ+δ)−f(X,θ)

f(X,θ)

}2 = −δ(θ + δ) (−θ < δ < 0),

H(θ) = K1(θ) = sup
δ

{g(θ + δ) − g(θ)}2

Eθ

{
f(X,θ+δ)−f(X,θ)

f(X,θ)

}2 =
θ2

4
= 0.25θ2.

Putting φi = θ + δi (i = 1, 2, δ1 �= δ2) in (1.3), we have, for k = 2,

wΣ−1w′ =
1

θ
δ1(θ + δ2)(θ + δ1 − δ2) (−θ < δ2 < δ1 < 0),

K2(θ) = sup
φ

wΣ−1w′ =
8

27
θ3 ≈ 0.296θ3.

Moreover, we have for the bound (2.3)

gV −1g′ =
−2δ(θ + δ)2

θ
(−θ/2 < δ < 0),

sup
δ

gV −1g′ =
8

27
θ3 ≈ 0.296θ3,

thus K2(θ) = D2(θ) > H(θ) for all θ ∈ Θ in this case. (ii) If g(θ) = θ2, then

ĝ(X) = 3X2 is the UMVU estimator with the variance 0.8θ4. We have for the

bound (1.2)

{g(θ + δ) − g(θ)}2

Eθ

{
f(X,θ+δ)−f(X,θ)

f(X,θ)

}2 = −(2θ + δ)2(θ + δ)δ (−θ < δ < 0),

H(θ) = K1(θ) = sup
δ

{g(θ + δ) − g(θ)}2

Eθ

{
f(X,θ+δ)−f(X,θ)

f(X,θ)

}2

=
−θ4

4096

(
9 +

√
17

)2 (
1 +

√
17

) (
−7 +

√
17

)
≈ 0.620θ4.

Putting φi = θ + δi (i = 1, 2, δ1 �= δ2) in (1.3), we have, for k = 2,

wΣ−1w′

=
1

θ
δ1(θ − δ2)(−δ3

1 − δ2
1 − δ2

1δ2 + δ1δ
2
2 + δ1δ2θ + δ1θ

2 + θ3 + δ3
2 + δ2

2θ + θ2δ2)

(−θ < δ2 < δ1 < 0),
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K2(θ) = sup
−θ<δ2<δ1<0

wΣ−1w′ =
−θ4

13107200000

(
23 +

√
17 +

√
7906 + 366

√
17

)

·
(
−1240 + 24

√
17 +

√
7906 + 366

√
17 +

√
17

√
7906 + 366

√
17

)

·
(

277

√
7906 + 366

√
17 + 51

√
17

√
7906 + 366

√
17

+ 57958 + 3210
√

17

)
≈0.723θ4.

Moreover, we have for the bound (2.3)

gV −1g′ =
−2δ(θ + δ)2(9δ2 + 8θδ + 4δ2)

θ
(−θ/2 < δ < 0),

sup
δ

gV −1g′

=
−2θ4

1660753125

[{
19801 + 270

√
5745

}2/3

− 299

−59
{

19801 + 270
√

5745
}1/3

]

· [76
{

19801 + 270
√

5745
}1/3

+
{

19801 + 270
√

5745
}2/3

− 299]2

·
[
6401

{
19801 + 270

√
5745

}1/3

+ 90
{

19801 + 270
√

5745
}1/3 √

5745

+1301
{

19801 + 270
√

5745
}2/3

+ 43001 + 180
√

5745

]

·
{

19801 + 270
√

5745
5/3

}−1

≈0.721θ4,

thus K2(θ) > D2(θ) > H(θ) for all θ ∈ Θ in this case.
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