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Abstract

Two methods to select columns for assigning factors to work on supersaturated de-
signs are proposed. The focus of interest is the degree of non-orthogonality between
the selected columns. One method is the exhaustive enumeration of selections of p
columns from all k columns to find the exact optimality, while the other is intended
to find an approximate solution by applying techniques used in the corresponding
analysis, aiming for ease of use as well as a reduction in the large computing time
required for large k with the first method. Numerical illustrations for several typical
design matrices reveal that the resulting “approximately” optimal assignments of
factors to their columns are exactly optimal for any p. Ordering the columns in
E(s2)-optimal designs results in promising new findings including a large number of
E(s2)-optimal designs.
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1 Introduction

Supersaturated designs are, essentially, fractional factorial designs of which
can be assigned more factors than the standard fractional factorial design.
They are helpful for screening many factors to find active factors from many
candidates such as the primary stage of a scientific investigation, technology
development and product innovation. The designs are utilized under assump-
tion of the effect sparsity, i.e. a small number of factors are active while the
remaining factors are not. A distinctive aspect of supersaturated designs is
that the degree of non-orthogonality between two columns, e.g., the inner
products of the two columns in two-level designs, does not always vanish to
zero. Following pioneering studies by Satterthwaite (1959) and Booth and Cox
(1962), Lin (1993) has introduced a method using half fractions of Hadamard
matrix to construct supersaturated designs. This simple and practical method
has inspired a number of active researchers in the field of experimental design.

The first aim to construct supersaturated designs is to attempt to minimize the
degree of non-orthogonality under given numbers of runs and columns. One
promising approach to find a solution to this requirement is to construct a de-
sign any two of columns of which have a lower measure of non-orthogonality
at least on an average. In fact, many researchers have proposed designs with
optimality in E(s2), which is an average of the squared inner products be-
tween all paired columns. Most of the previous studies including Wu (1993),
Lin (1995), Nguyen (1996), Cheng (1997), Li and Wu (1997), Tang and Wu
(1997), Yamada and Lin (1997), Butler et al. (2001), Lejeune (2003), Bulu-
toglu and Cheng (2004), and Nguyen and Cheng (2008) have been devoted
to the construction methodologies for two-level supersaturated designs with
better orthogonality in term of E(s2). For other types of supersaturated de-
signs, Yamada and Lin (1999) and Yamada et al. (1999) have introduced a
class of three-level supersaturated designs, then, which has been extended
to mixed-level by Yamada and Matsui (2002) and Yamada and Lin (2002).
Some construction methods for optimal mixed-level supersaturated designs
have been discussed in Chen and Liu (2008) and Nguyen and Liu (2008) as a
recent work.

In many practical cases, the technical knowledge in the experimented field
implies that the possibilities of active factor are not uniform over the candidate
factors. One typical case is that some of the candidate factors are assumed to
be more important than the remaining factors. In order to utilize the technical
knowledge, the factor with high possibility of activeness should be assigned the
columns whose degree of non-orthogonality with the other columns are low,
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while the remaining factors are assigned the remaining columns whose degree
of non-orthogonality with the other columns are not low. Since the previous
studies have attempted to minimize the average of degree of non-orthogonality
over all paired columns, it is not possible to assign factors to columns with
considering the possibility of activeness.

In order to solve this problem, this paper discusses the optimality for order-
ing of columns in a supersaturated design, where this ordering is to arrange
columns in the left hand side and dependent columns in the right hand side of
a supersaturated design. The ordered designs have a property that the degree
of non-orthogonality is low by selecting the columns from the left hand side
to any column. This property assures that the degree of non-orthogonality is
low for the important factors by assigning factors from the left column based
on the possibility.

Section 2, discusses two approaches to optimal selection of the columns from an
existing design. One is the exhaustive enumeration of selections of p columns
from k columns to obtain the exact optimality, while the other is intended to
find an approximate solution by ordinating the columns of a design matrix,
as in corresponding analysis, for ease of use as well as to avoid a combinatoric
explosion in computation.

Numerical illustrations are provided in Section 3 to demonstrate the tactics re-
quired in ordination and additional discussion concerning the optimal designs
including all 8×k E(s2)-optimal designs for k ≤ 35 aligned in only one design
matrix with ordinated columns. This example shows that an arrangement of
35 columns realize an overall optimal design, namely, from the 18th to 35th
column leads to overall optimal and that, by reverse arrangement, from the
4th to 17th column does so as well.

2 Selection of columns

2.1 Definitions and preliminaries

Let D be the n×k design matrix of a t-level supersaturated design with n runs
and k columns, i.e.,

D =
(

dij

)
=

(
d1 . . . dk

)
, dij ∈ T = {1, 2 . . . , t}, (1)

i ∈ N = {1, 2 . . . , n}, j ∈ K = {1, 2 . . . , k}.
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where n− 1 < k(t− 1). We treat a balanced design with equal occurrence of
{1, 2, . . . t} in di,j.

Then the χ2 value is defined as

χ2
ij =

t∑

a=1

t∑

b=1

(
#{ r ∈ N | dri = a, drj = b } − n/t2

)2

n/t2
, (2)

which is proportional to the measure proposed by Booth and Cox (1962) in
the case of t = 2. When t = 2, i.e., for two-level designs, the measures

s2
ij =

(
(2di − 31n)

>
(2dj − 31n)

)2
= nχ2

ij, (3)

and

E(s2) =
(

k
2

)−1 ∑

1≤i<j≤k

s2
ij = n χ2(K), (4)

are commonly used for representing non-orthogonality between the two and
all the k columns, respectively, where 1n is the n-dimensional column vector
of all ones. Hereafter, for convenience, U = ( uij ) denotes the k×k matrix of
χ2 values of which all the diagonal elements are zeroes provided as

U =
(

χ2
ij

)
− diag

(
χ2

11, . . . , χ
2
kk

)
. (5)

It is clear that U
>

= U , where the superscript
>

denotes transposition.

Several papers including Yamada and Lin (1999) use the criterion

χ2(K) =
(

k
2

)−1 ∑

1≤i<j≤k

χ2
ij =

1

k(k−1)
1
>
kU1k (6)

to evaluate total non-orthogonality among columns of D, where K is defined
in (1)

For any S = {s1, s2, . . . , sp} ∈ K(p), where

K(p) =
{

S ∈ 2K
∣∣∣ #S = p ≤ k

}
, (7)
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let DS and US denote the n×p submatrix ( ds1 · · · dsp ) of D and the p×p
submatrix ( usisj

) of U , respectively. Then, in the same way as (6), we define
the measure of non-orthogonality for the selected columns DS from D as

χ2(S) =
(

p
2

)−1 ∑

1≤i<j≤p

χ2
sisj

=
1

p(p−1)
1
>
pUS1p . (8)

The set

K∗(p) = {S ∈ K(p) | ∀R ∈ K(p), χ2(R) ≥ χ2(S)} (9)

is hereafter called the “optimal set”. In other words, χ2(S) attains its minimum
value for any S ∈ K∗(p).

2.2 Combinatoric method for exact optimality

The following algorithm lexicographically finds the most precedent element S∗

in the optimal set K∗(p) by performing an exhaustive enumeration of all the
(k
p) elements of K(p):

Algorithm 1 (Lexicographical search for S∗).

Input: k, p, U .

Output: S∗, m∗ = χ2(S∗).

1: (Initialize) Initiate the search with S∗ ← {1, . . . , p}, m∗ ← χ2(S∗),
S ← S∗, a ← 0, and b ← 0.

2: (Make the next selection in lexicographical order) If b < k−a then set
b ← sp, a ← 1 and increment sp ← sp+1. Otherwise, b ← sp−a, a ← a+1
and replace sp−a+i ← b+i for each i=1, . . . , a.

3: (Check for optimality of S) Compute m ← χ2(S). If m < m∗ then
replace S∗← S and m∗ ← m.

4: (Check for termination) If s1 = k−p+1 then return m and S∗ to exit.
Otherwise, go back to Step 2.

See Nijenhuis and Wilf (1978), for other methods and topics related to the
enumeration of K(p).

Each supersaturated design would be distributed for public use with a list of
the representative members of K∗(p) for each p ∈ K, obtained by computing
χ2(S) in 2k − 1 times.
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If no list of optimal selections is provided, one would have to find one of the
members of K∗(p) for provided p, when necessary, which may be tedious as
well as highly time consuming. Typically, for large k with p close to k/2, the
required number (k

p) of evaluations of the χ2 values is roughly evaluated as

(
k
p

)
≈

(
k

k/2

)
≈

√
2

π

2k

√
k

(10)

which is sometimes too large to process even when using high-end computers.

2.3 Ordering of columns for approximate optimality

Consider a permutation Q = (q1, . . . , qk) of K and its action upon the positions
of columns in D, i.e.,

DQ =
(

dq1 , . . . , dqk

)
(11)

which provides a naturally ordered sequence of the selections:

S1 = {q1} ⊂ S2 = {q1, q2} ⊂ · · · ⊂ Sk = {q1, . . . , qk}. (12)

There may be several ways to define the “overall” non-orthogonality of

DS1 , DS2 , . . . , DSk
, (13)

or overall badness of the sequence of the top-leftmost submatrices of UQ

US1 , US2 , . . . , USk
. (14)

A permutation or ordering Q is called “optimal”, if it minimizes the overall
non-orthogonality; and an optimal ordering Q is called “strictly optimal”, if
Sp ∈ K∗(p) for any p ∈ K.

Use of DQ in place of D with an optimal Q, preferably one that is strictly
optimal, may make it unnecessary to provided a list for selection with D or
to find an optimum selection on the fly.

However, although optimal permutation in view of any well-defined overall
badness can be obtained by enumerating all the k! permutations of K, the
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Fig. 1. Distribution of large elements in optimally permuted U .

involved computation increases in size much faster than the 2k required in the
previous subsection.

One might consider that the optimal permutation Q tends to provide a con-
figuration of rows and columns to UQ as shown in (a) of Figure 1, where the
dots represent the relatively large χ2 values in UQ. On the contrary, the large
values have been typically distributed as shown in (b) of Figure 1, in all the
cases the authors have examined, since various types of symmetry are involved
in any existing experimental design. The idea discussed here is to find an ap-
proximately optimum permutation that provides a shape resembling that in
(b) through simultaneous ordering of rows and columns in U .

Let x = (x1, x2, . . . , xk)
> ∈ Rk (i ∈ K) be a vector of coordinates provided to

the rows and columns of U where the matrix U is a set of k2 observations

{(xi, xj, uij) | i, j ∈ K} (15)

for two random variates X, Y and the weight to (xi, xj), respectively. Then,
the correlation coefficient ρ between X and Y may be used as a criterion for
likeness to the shape in Figure 1 (b) if ρ < 0.

Provided

X̄ = Ȳ =
1

`
1
>
kF x = 0, (16)

it holds that

σ2
X = σ2

Y =
1

`
x
>
F x, σXY =

1

`
x
>
Ux, (17)

where

F = diag(U1k), ` = 1
>
kF = k(k − 1) χ2(K). (18)
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The necessary condition for ρ to attain its minimum value at x, subject to
σ2

X = σ2
Y = 1, is given by the Lagrange multiplier λ as

∂

∂xi

[
1

`
x
>
Ux− λ

(
1

`
x
>
F x− 1

)]
= 0 (i ∈ K), (19)

which yields the eigenvalue problem

Ux = λF x, (20)

or, by letting F = H2, y = Hx and W= H−1UH−1,

W y = λ y. (21)

The eigenvector x∗ associated with the smallest negative eigenvalue λ∗ is the
solution required for approximately optimum ordering, since it holds from (20)
that

ρ =
1

`
x
>
Ux =

λ

`
x
>
F x = λ. (22)

The ascending order of the elements in x∗ yields the permutation Q with
which the columns of D are rearranged.

Remark 1. The equations (20) and (21) have the largest eigenvalue 1 and
its associated eigenvector 1k and H1k, respectively, from the definition of F
in (18). Since W is symmetric, it holds for any eigenvector x 6= 1k that

X̄ =
1

`
1
>
kF x =

1

`
(H1k)

>
(Hx) = 0, (23)

which means that the condition (16) is always satisfied.

Remark 2. For almost all the proposed supersaturated designs in the litera-
ture, including those in the bibliography of this article, there exists a positive
constant f such that F = f I, where I is the identity matrix.

Remark 3. The characteristic equation |W − λ I| = 0 in λ has multiple
roots, owing to the multiple symmetry incorporated in D. If the smallest root
λ∗ is not simple, typically being a double root, the associated eigenvector x∗
is not unique.

Any vector in the eigenspace is equivalent, but, in view of the usage, it may
be preferable to place the elements of x∗ so that they are spaced apart evenly.
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Remark 4. For solving the smallest eigenvalue problem (21) for a k × k
symmetric matrix W , the computational cost requires only O(k3) arithmetic
operations.

2.4 Heuristic refinement

Since the resulting permutation Q provides only approximate optimality, al-
though it is strictly optimal for many existing supersaturated designs, several
types of refinement may be applicable.

The method that may be considered should be most effective for better Q is
to generate all the permutations of K that differ from Q only in the last few
elements. It certainly works often but its drawback is the amount of compu-
tations of O(k2j!) required for replacing the last j elements with the better
ones.

A simpler and more promising refinement can be summarized in the algorithm
shown below, which is based on the most probable fact that the first α elements
of Q provide the optimal selection, or at least close to optimal for a positive
integer α. The empirically-derived suitable value of α is slightly greater than
k/2 when k is a few dozen or less. However, it seems preferable to reduce the
ratio α/k as k increases. In any case, a certain amount of trial and error would
be necessary before the desired effect is achieved.

Algorithm 2 (A promising refinement).

Input: k, α, Q = (q1, . . . , qk), U .

Output: Q∗.

(1) (Preparation 1) Divide Q into the possibly optimal selection L and the
remaining part R, by letting L ← {q1, . . . , qα} and R ← {qα+1, . . . , qk}.
Set Q∗ ← ( ), the empty vector.

(2) (Refinement of the right-hand part) Find q∗ ← arg min
q∈R

χ2(L∪{q}), then

update L ← L ∪ {q∗}, R ← R \ {q∗} and append q∗ to Q∗ ← (Q∗ q∗). If
several q’s in R provide the minimum χ2, the left-most element with the
smallest index should be q∗. Repeat this step unless R = φ.

(3) (Preparation 2) Reset L ← {q1, . . . , qα} again.
(4) (Refinement of the left-hand part) Find q∗ ← arg min

q∈L
χ2(L \ {q}), then

update L ← L \ {q∗} and prepend q∗ to Q∗ ← (q∗ Q∗). If several q’s in L
provide the minimum χ2, the right-most element with the largest index
should be q∗. Repeat this step unless L = φ.
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1 2 3 4 5 6 7 8 9 10111213141516171819202122
1 1 1 1 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 2 2
2 1 1 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 2 2 1
3 1 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 2 2 1 1
4 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 2 2 1 1 1
5 2 1 2 1 1 2 2 1 1 2 2 1 2 1 2 2 2 2 1 1 1 1
6 2 1 1 2 2 1 1 2 2 1 2 1 2 2 2 2 1 1 1 1 1 2
7 1 2 2 1 1 2 2 1 2 1 2 2 2 2 1 1 1 1 1 2 1 2
8 2 2 1 1 2 2 1 2 1 2 2 2 2 1 1 1 1 1 2 1 2 1
9 1 2 2 1 2 1 2 2 2 2 1 1 1 1 1 2 1 2 1 1 2 2

10 2 2 1 2 1 2 2 2 2 1 1 1 1 1 2 1 2 1 1 2 2 1
11 2 1 2 2 2 2 1 1 1 1 1 2 1 2 1 1 2 2 1 1 2 2
12 2 2 2 2 1 1 1 1 1 2 1 2 1 1 2 2 1 1 2 2 1 2

Table 1
A supersaturated design (t=2, n=12, k=22), Lin (1993).

Steps (3) and (4) may be unnecessary for practical use, since another design,
typically an orthogonal one, would be applicable for p ≤ α. However, even in
that case, this additional refinement should still be preferable for the sake of
integrity.

With Q or its refined version Q∗, each supersaturated design D should be
permuted as DQ or DQ∗ before publication, without a long list of priority-
based selections.

3 Numerical illustration

3.1 Ordering columns with additional refinement

Table 1 shows a supersaturated design proposed by Lin (1993) for t = 2,
n = 12 and k = 22 and which is written as D here. The matrix U of χ2-values
for this design is shown in Table 2 in which all the non-zero elements are 4/3.

The results of exhaustive enumeration of K(p) for each p from 22 down to 2 are
summarized in Tables 3 and 4, where S∗ denotes the most precedent element
of K∗(p) in lexicographic order. For larger-scale designs, e.g., with k > 40, it
is almost impossible to find an exactly optimal selection of columns for each
p ∈ K.

It is worth noting that,

(1) Although the number #K(p) = (k
p) of straightforward selections rapidly

increases as p decreases toward k/2, the number #K∗(p) of optimal se-
lections remains small.

(2) In cases where p is close to k/2, the probability #K∗(p)/#K(p) that a
member of K∗(p) will appear in random sampling p from k without re-
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1 2 3 4 5 6 7 8 9 10111213141516171819202122
1 0 0 0 4 0 4 4 0 4 0 0 0 0 4 4 0 0 4 4 4 0 0
2 0 0 0 0 4 0 4 4 0 0 0 4 4 4 4 0 4 4 0 0 0 0
3 0 0 0 4 0 0 0 4 0 0 4 4 0 4 0 0 0 4 4 0 4 4
4 4 0 4 0 4 0 4 0 0 4 4 0 4 4 0 4 0 0 0 0 0 0
5 0 4 0 4 0 4 4 4 0 0 0 0 0 0 0 4 0 0 0 4 4 4
6 4 0 0 0 4 0 0 4 0 0 0 0 4 0 4 4 0 0 4 0 4 4
7 4 4 0 4 4 0 0 0 0 0 4 4 4 0 0 0 4 0 4 0 0 0
8 0 4 4 0 4 4 0 0 4 4 0 0 0 4 0 0 0 0 0 4 0 4
9 4 0 0 0 0 0 0 4 0 4 4 4 4 0 0 0 4 0 4 4 0 0

10 0 0 0 4 0 0 0 4 4 0 0 4 0 4 0 4 4 0 4 0 4 0
11 0 0 4 4 0 0 4 0 4 0 0 0 4 4 0 0 0 4 0 4 4 0
12 0 4 4 0 0 0 4 0 4 4 0 0 0 0 4 4 0 0 4 0 4 0
13 0 4 0 4 0 4 4 0 4 0 4 0 0 0 0 0 4 0 0 0 4 4
14 4 4 4 4 0 0 0 4 0 4 4 0 0 0 4 0 0 0 0 0 0 4
15 4 4 0 0 0 4 0 0 0 0 0 4 0 4 0 0 4 4 0 4 4 0
16 0 0 0 4 4 4 0 0 0 4 0 4 0 0 0 0 4 4 0 4 4 0
17 0 4 0 0 0 0 4 0 4 4 0 0 4 0 4 4 0 4 0 0 0 4
18 4 4 4 0 0 0 0 0 0 0 4 0 0 0 4 4 4 0 0 4 0 4
19 4 0 4 0 0 4 4 0 4 4 0 4 0 0 0 0 0 0 0 4 0 4
20 4 0 0 0 4 0 0 4 4 0 4 0 0 0 4 4 0 4 4 0 0 0
21 0 0 4 0 4 4 0 0 0 4 4 4 4 0 4 4 0 0 0 0 0 0
22 0 0 4 0 4 4 0 4 0 0 0 0 4 4 0 0 4 4 4 0 0 0

Table 2
The matrix 3U from which p rows and columns are chosen.

placement is less than 1/10,000, even for k = 22, which tends to decrease
as k increases. For larger k, it would be too small to apply probabilistic
algorithms for finding with a high degree of certainty an optimal selection
for each p.

The minimum eigenvalue of W = U/12 is −0.4717, which is a double root of
the characteristic equation with the associated eigenvector

x = cos(θ) ( 0.0234 0.2942 0.2832 −0.1072 −0.1651 0.0622

0.2295 −0.2637 0.2118 0.2732 −0.0025 −0.3009

−0.1428 −0.2263 0.1609 0.1822 −0.2981 −0.2425

−0.2753 0.0873 −0.0826 0.2988 )
>

+ sin(θ) (−0.3006 0.0660 −0.1035 0.2818 −0.2523 0.2950

0.1956 −0.1462 0.2146 −0.1275 −0.3015 0.0196

−0.2656 0.1993 −0.2550 −0.2402 0.0453 0.1791

−0.1230 0.2886 0.2900 0.0405 )
>
.

(24)

Here, the arbitrary constant θ is chosen to be 3π/8, since it maximizes the
minimum interval between two adjacent elements in x among several values
of θ, and provides
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p minχ2 #K∗(p) #K(p) S∗

22 0.5714 1 1 {1, · · · , 22}
21 0.5714 22 22 {1, · · · , 21}
20 0.5684 132 231 {1, · · · , 20}
19 0.5614 264 1,540 {1, · · · , 19}
18 0.5490 165 7,315 {1, · · · , 13, 15, 16, 17, 20, 22}
17 0.5294 22 26,334 {1, · · · , 7, 9, 10, 11, 12, 14, 17, 18, 20, 21, 22}
16 0.5111 11 74,613 {1, · · · , 7, 9, 10, 12, 14, 17, 18, 20, 21, 22}
15 0.4952 22 170,544 {1, · · · , 5, 8, 10, 11, 12, 13, 15, 16, 17, 19, 22}
14 0.4689 11 319,770 {1, 2, 3, 4, 6, 7, 9, 10, 11, 15, 16, 20, 21, 22}
13 0.4444 44 497,420 {1,2,3,4,6,7,9,10,11,15,16,20,22}
12 0.4040 22 646,646 {1,2,3,5,6,7,9,10,11,15,16,22}
11 0.3636 22 705,432 {1,2,3,5,7,9,10,11,15,16,22}
10 0.3259 22 646,646 {1,2,3,5,9,10,11,15,16,22}
9 0.2963 44 497,420 {1,2,3,5,10,11,13,15,16}
8 0.2381 11 319,770 {1,2,3,10,11,15,16,22}
7 0.1905 22 170,544 {1,2,3,10,11,16,22}
6 0.0889 11 74,613 {1,2,10,11,16,22}
5 0 22 26,334 {1,2,10,11,22}
4 0 165 7,315 {1,2,3,10}
3 0 264 1,540 {1,2,3}
2 0 132 231 {1,2}

Table 3
Summary of the results by using the combinatoric method.

x = (−0.2687 0.1735 0.0127 0.2193 −0.2963 0.2964

0.2685 −0.2360 0.2793 −0.0132 −0.2795 −0.0971

−0.3000 0.0975 −0.1740 −0.1522 −0.0722 0.0727

−0.2190 0.3000 0.2363 0.1517 )
>

(25)

and

Q = ( 13 5 11 1 8 19 15 16 12 17 10 3

18 14 22 2 4 21 7 9 6 20 ). (26)

Refinement by using Algorithm 2 with α = 12 provides

Q∗ = ( 13 8 19 15 16 11 5 1 12 17 3 10

12



p possible value of χ2

its ratio of appearance
22 0.5714

100%
21 0.5714

100%
20 0.5684 0.5754

57% 43%
19 0.5614 0.5692 0.577 0.5848

17% 43% 34% 6%
18 0.549 0.5577 0.5664 0.5752 0.5839 0.5926 0.6013

2% 14% 31% 33% 17% 3% 0.2%
17 0.5294 0.5392 0.549 0.5588 0.5686 0.5784 0.5882 ≥0.598

0.08% 1% 8% 18% 29% 25% 15% 4%
16 0.5111 0.5222 0.5333 0.5444 0.5556 0.5667 0.5778 ≥0.5889

0.01% 0.4% 2% 8% 16% 26% 23% 25%
15 0.4952 0.5079 0.5206 0.5333 0.546 0.5587 0.5714 ≥0.5841

0.01% 0.4% 2% 5% 12% 19% 23% 39%
14 0.4689 0.4835 0.4982 0.5128 0.5275 0.5421 0.5568 ≥0.5714

0.003% 0.09% 0.7% 2% 6% 12% 19% 61%
13 0.4444 0.4615 0.4786 0.4957 0.5128 0.5299 0.547 ≥0.5641

0.009% 0.09% 0.4% 1% 5% 9% 16% 68%
12 0.404 0.4242 0.4444 0.4646 0.4848 0.5051 0.5253 ≥0.5455

0.003% 0.03% 0.1% 0.6% 2% 5% 10% 82%
11 0.3636 0.3879 0.4121 0.4364 0.4606 0.4848 0.5091 ≥0.5333

0.003% 0.02% 0.09% 0.4% 2% 4% 9% 85%
10 0.3259 0.3556 0.3852 0.4148 0.4444 0.4741 0.5037 ≥0.5333

0.003% 0.03% 0.1% 0.6% 2% 5% 10% 82%
9 0.2963 0.3333 0.3704 0.4074 0.4444 0.4815 0.5185 ≥0.5556

0.009% 0.09% 0.4% 1% 5% 9% 16% 68%
8 0.2381 0.2857 0.3333 0.381 0.4286 0.4762 0.5238 ≥0.5714

0.003% 0.09% 0.7% 2% 6% 12% 19% 61%
7 0.1905 0.254 0.3175 0.381 0.4444 0.5079 0.5714 ≥0.6349

0.01% 0.4% 2% 5% 12% 19% 23% 39%
6 0.0889 0.1778 0.2667 0.3556 0.4444 0.5333 0.6222 ≥0.7111

0.01% 0.4% 2% 8% 16% 26% 23% 25%
5 0 0.1333 0.2667 0.4 0.5333 0.6667 0.8 ≥0.9333

0.08% 1% 8% 18% 29% 25% 15% 4%
4 0 0.2222 0.4444 0.6667 0.8889 1.1111 1.3333

2% 14% 31% 33% 17% 3% 0.2%
3 0 0.4444 0.8889 1.3333

17% 43% 34% 6%
2 0 1.3333

57% 43%

Table 4
All the possible values of χ2 and their ratios of appearance.

18 14 7 6 9 22 2 4 21 20 ), (27)

and furnishes the optimal mean χ2’s for every p ∈ [2, 22]. More precisely, the
set composed of the first p elements of Q∗ provides the optimal selection of
columns from D, i.e.,

{13, 8} ∈ K∗(2), {13, 8, 19} ∈ K∗(3), {13, 8, 19, 15} ∈ K∗(4),
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13 5 11 1 8 191516121710 3 181422 2 4 21 7 9 6 20
13 0 0 4 0 0 0 0 0 0 4 0 0 0 0 4 4 4 4 4 4 4 0
5 0 0 0 0 4 0 0 4 0 0 0 0 0 0 4 4 4 4 4 0 4 4

11 4 0 0 0 0 0 0 0 0 0 0 4 4 4 0 0 4 4 4 4 0 4
1 0 0 0 0 0 4 4 0 0 0 0 0 4 4 0 0 4 0 4 4 4 4
8 0 4 0 0 0 0 0 0 0 0 4 4 0 4 4 4 0 0 0 4 4 4

19 0 0 0 4 0 0 0 0 4 0 4 4 0 0 4 0 0 0 4 4 4 4
15 0 0 0 4 0 0 0 0 4 4 0 0 4 4 0 4 0 4 0 0 4 4
16 0 4 0 0 0 0 0 0 4 4 4 0 4 0 0 0 4 4 0 0 4 4
12 0 0 0 0 0 4 4 4 0 0 4 4 0 0 0 4 0 4 4 4 0 0
17 4 0 0 0 0 0 4 4 0 0 4 0 4 0 4 4 0 0 4 4 0 0
10 0 0 0 0 4 4 0 4 4 4 0 0 0 4 0 0 4 4 0 4 0 0
3 0 0 4 0 4 4 0 0 4 0 0 0 4 4 4 0 4 4 0 0 0 0

18 0 0 4 4 0 0 4 4 0 4 0 4 0 0 4 4 0 0 0 0 0 4
14 0 0 4 4 4 0 4 0 0 0 4 4 0 0 4 4 4 0 0 0 0 0
22 4 4 0 0 4 4 0 0 0 4 0 4 4 4 0 0 0 0 0 0 4 0
2 4 4 0 0 4 0 4 0 4 4 0 0 4 4 0 0 0 0 4 0 0 0
4 4 4 4 4 0 0 0 4 0 0 4 4 0 4 0 0 0 0 4 0 0 0

21 4 4 4 0 0 0 4 4 4 0 4 4 0 0 0 0 0 0 0 0 4 0
7 4 4 4 4 0 4 0 0 4 4 0 0 0 0 0 4 4 0 0 0 0 0
9 4 0 4 4 4 4 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 4
6 4 4 0 4 4 4 4 4 0 0 0 0 0 0 4 0 0 4 0 0 0 0

20 0 4 4 4 4 4 4 4 0 0 0 0 4 0 0 0 0 0 0 4 0 0
Table 5
Diagonalized matrix 3UQ by statistical ordering.

13 8 19151611 5 1 1217 3 101814 7 6 9 22 2 4 2120
1 1 1 2 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1 1 2 2
2 2 1 2 1 2 1 1 1 1 1 1 2 2 2 1 2 2 1 1 2 2 2
3 2 2 2 2 1 1 2 1 2 2 2 1 2 1 1 1 2 1 1 1 1 2
4 1 2 2 1 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 1 1
5 2 1 1 2 2 2 1 2 1 2 2 2 2 1 2 2 1 1 1 1 1 1
6 2 2 1 2 2 2 2 2 1 1 1 1 1 2 1 1 2 2 1 2 1 1
7 2 1 1 1 1 2 1 1 2 1 2 1 1 2 2 2 2 2 2 1 1 2
8 2 2 2 1 1 2 2 2 2 1 1 2 1 1 1 2 1 1 2 1 2 1
9 1 2 1 1 2 1 2 1 1 1 2 2 2 1 2 1 2 2 2 1 2 1

10 1 2 1 2 1 1 1 2 1 2 1 1 1 1 2 2 2 1 2 2 2 2
11 1 1 1 1 1 1 2 2 2 2 2 1 2 2 1 2 1 2 1 2 2 1
12 1 1 2 2 2 1 1 2 2 1 2 2 1 1 1 1 1 2 2 2 1 2

Table 6
The design DQ∗ with permuted columns.

· · · . {13, 8, 19, 15, 16, . . . , 20} ∈ K∗(22). (28)

Experimental factors should be assigned to the columns 13, 8, 19, 15, . . . , 20
of the original design matrix D in this order, or, simply to the columns of the
permuted design matrix DQ∗ shown in Table 6 from the left. The corresponding
strictly optimal χ2 matrix UQ∗ with permuted rows and columns of U is shown
in Table 7.
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13 8 19151611 5 1 1217 3 101814 7 6 9 22 2 4 2120
13 0 0 0 0 0 4 0 0 0 4 0 0 0 0 4 4 4 4 4 4 4 0
8 0 0 0 0 0 0 4 0 0 0 4 4 0 4 0 4 4 4 4 0 0 4

19 0 0 0 0 0 0 0 4 4 0 4 4 0 0 4 4 4 4 0 0 0 4
15 0 0 0 0 0 0 0 4 4 4 0 0 4 4 0 4 0 0 4 0 4 4
16 0 0 0 0 0 0 4 0 4 4 0 4 4 0 0 4 0 0 0 4 4 4
11 4 0 0 0 0 0 0 0 0 0 4 0 4 4 4 0 4 0 0 4 4 4
5 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4 0 4 4 4 4 4
1 0 0 4 4 0 0 0 0 0 0 0 0 4 4 4 4 4 0 0 4 0 4

12 0 0 4 4 4 0 0 0 0 0 4 4 0 0 4 0 4 0 4 0 4 0
17 4 0 0 4 4 0 0 0 0 0 0 4 4 0 4 0 4 4 4 0 0 0
3 0 4 4 0 0 4 0 0 4 0 0 0 4 4 0 0 0 4 0 4 4 0

10 0 4 4 0 4 0 0 0 4 4 0 0 0 4 0 0 4 0 0 4 4 0
18 0 0 0 4 4 4 0 4 0 4 4 0 0 0 0 0 0 4 4 0 0 4
14 0 4 0 4 0 4 0 4 0 0 4 4 0 0 0 0 0 4 4 4 0 0
7 4 0 4 0 0 4 4 4 4 4 0 0 0 0 0 0 0 0 4 4 0 0
6 4 4 4 4 4 0 4 4 0 0 0 0 0 0 0 0 0 4 0 0 4 0
9 4 4 4 0 0 4 0 4 4 4 0 4 0 0 0 0 0 0 0 0 0 4

22 4 4 4 0 0 0 4 0 0 4 4 0 4 4 0 4 0 0 0 0 0 0
2 4 4 0 4 0 0 4 0 4 4 0 0 4 4 4 0 0 0 0 0 0 0
4 4 0 0 0 4 4 4 4 0 0 4 4 0 4 4 0 0 0 0 0 0 0

21 4 0 0 4 4 4 4 0 4 0 4 4 0 0 0 4 0 0 0 0 0 0
20 0 4 4 4 4 4 4 4 0 0 0 0 4 0 0 0 4 0 0 0 0 0

Table 7
The ordered matrix 3UQ∗ with strict optimality.

3.2 Two trivial cases

Special treatments may sometimes be required in ordering columns of super-
saturated designs with simple or decomposable structures.

The design shown in Tables 8 is composed from an Hadamard matrix for t = 2,
n = 10 and k = 18 (Lin, 1993) and has a strictly optimal UQ provided in Table
9 after the permutation of columns with

Q = (1, 2, 3, 4, 6, 7, 9, 11, 14, 16, 12, 15, 18, 10, 13, 17, 5, 8). (29)

The eigenvalues of the equation (20) are −0.36 (9-tuple root), 0.28 (8-tuple)
and 1. The set {ei − ej | (i, j) ∈ P } of vectors are an orthogonal base of
eigenspace corresponding to −0.36, where ei is the unit vector of which the
i-th element is 1 and

P = {(1, 8), (2, 5), (3, 17), (4, 13), (6, 10),

(7, 18), (9, 15), (11, 12), (14, 16)}. (30)

In other words, the optimal ordering in this case simply finds the pairs in
P of columns to be placed symmetrically as in (29), which is archived by
choosing a vector with distinct elements from the eigenspace, for example,
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1 2 3 4 5 6 7 8 9 101112131415161718
1 1 2 2 1 1 1 1 2 1 2 1 2 2 2 2 1 1 2
2 2 2 1 1 1 1 2 1 2 1 2 2 2 2 1 1 2 1
3 1 1 1 2 1 2 1 2 2 2 2 1 1 2 1 1 2 2
4 1 1 2 1 2 1 2 2 2 2 1 1 2 1 1 2 2 1
5 1 2 1 2 1 2 2 2 2 1 1 2 1 1 2 2 1 1
6 2 1 2 1 2 2 2 2 1 1 2 1 1 2 2 1 1 1
7 2 1 2 2 2 2 1 1 2 1 1 2 2 1 1 1 1 2
8 2 2 2 2 1 1 2 1 1 2 2 1 1 1 1 2 1 2
9 1 2 1 1 2 2 1 1 1 1 2 1 2 1 2 2 2 2

10 2 1 1 2 2 1 1 1 1 2 1 2 1 2 2 2 2 1
Table 8
A supersaturated design (t=2, n=10, k=18), Lin (1993).

1 2 3 4 6 7 9 111416121518101317 5 8
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9
2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1
3 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1
4 1 1 1 0 1 1 1 1 1 1 1 1 1 1 9 1 1 1
6 1 1 1 1 0 1 1 1 1 1 1 1 1 9 1 1 1 1
7 1 1 1 1 1 0 1 1 1 1 1 1 9 1 1 1 1 1
9 1 1 1 1 1 1 0 1 1 1 1 9 1 1 1 1 1 1

11 1 1 1 1 1 1 1 0 1 1 9 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 0 9 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 9 0 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 9 1 1 0 1 1 1 1 1 1 1
15 1 1 1 1 1 1 9 1 1 1 1 0 1 1 1 1 1 1
18 1 1 1 1 1 9 1 1 1 1 1 1 0 1 1 1 1 1
10 1 1 1 1 9 1 1 1 1 1 1 1 1 0 1 1 1 1
13 1 1 1 9 1 1 1 1 1 1 1 1 1 1 0 1 1 1
17 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
5 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 9
An optimally permuted matrix (5/2)UQ.

∑
(i,j)∈P (i− 15) (ei − ej).

Table 10 shows another supersaturated design by Lin (1993) with t = 2, n = 14
and k = 26.

In this case, the eigenvalues of the equation (20) are −0.51, −0.36 (6-tuple),
−0.16 (6-tuple), 0.12 (6-tuple), 0.32 (6-tuple) and 1. The corresponding eigen-
vector to −0.51, the simple smallest root, is

∑
i∈G1

ei −∑
i∈G2

ei, where

G1 = {1, 3, 4, 6, 8, 9, 10, 13, 17, 22, 23, 24, 25},
G2 = {2, 5, 7, 11, 12, 14, 15, 16, 18, 19, 20, 21, 26}. (31)

The above results imply that grouping the columns into G1 or G2 is essential.
In fact, Table 11 demonstrates that permutation of columns within a group
does not affect any χ2 value, where the ordinates provided by
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1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
1 1 2 1 1 1 1 2 2 2 2 1 2 2 2 1 2 2 1 1 1 2 1 2 1 1 2
2 2 1 1 1 1 1 2 2 2 1 2 2 2 1 2 2 1 2 1 2 1 2 1 1 2 1
3 2 2 2 1 2 1 1 1 1 2 2 1 2 1 2 2 2 1 1 2 1 1 1 2 1 2
4 2 2 2 2 1 1 1 1 1 2 1 2 1 2 2 2 1 2 2 1 1 1 2 1 2 1
5 1 1 1 2 2 2 1 1 2 1 2 2 1 2 2 2 2 1 1 1 2 1 1 2 2 1
6 1 1 1 2 2 2 2 1 1 2 1 2 2 1 2 1 2 2 2 1 1 2 1 1 1 2
7 1 1 2 1 2 1 1 2 1 1 2 1 1 1 1 2 2 2 2 1 2 2 2 1 2 2
8 1 2 1 1 1 2 1 2 1 2 2 2 1 2 1 1 1 1 2 2 1 2 1 2 2 2
9 1 1 2 1 1 2 2 1 1 1 1 1 2 2 2 1 1 2 1 2 2 1 2 2 2 2

10 2 2 1 2 1 2 2 2 1 1 2 1 1 1 2 1 2 1 2 2 2 1 2 1 1 1
11 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 2 1 1
12 2 1 2 1 2 2 2 1 2 2 1 1 1 2 1 2 1 1 2 2 2 2 1 1 1 1
13 2 2 1 2 2 1 2 1 2 1 2 1 1 2 1 1 1 2 1 1 1 2 2 2 1 2
14 2 1 2 2 1 2 1 2 2 2 1 1 2 1 1 1 2 1 1 1 1 2 2 2 2 1

Table 10
A supersaturated design (t=2, n=14, k=26), Lin (1993).

1 3 4 6 8 9 10131722232425 2 5 7 11121415161819202126
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 9 9
3 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 9 1 1 1 1 1 1 1 1
4 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1 9 1 9
6 1 1 1 0 1 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 9 9 1 1 1 1
8 1 1 1 1 0 1 1 1 1 1 1 1 1 1 9 1 1 1 9 9 1 1 1 1 1 1
9 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1 9 1 1 9

10 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 9 1 1 1 1 9 1 1 9 1
13 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 9 1 9 1 1 1 9 1 1 1
17 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 9 1 1 9 1 9 1 1
22 1 1 1 1 1 1 1 1 1 0 1 1 1 9 1 1 1 1 1 9 1 1 1 1 9 1
23 1 1 1 1 1 1 1 1 1 1 0 1 1 1 9 1 1 9 1 1 1 1 1 9 1 1
24 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 9 1 1 1 1 9 1 9 1 1 1
25 1 1 1 1 1 1 1 1 1 1 1 1 0 9 9 9 1 1 1 1 1 1 1 1 1 1
2 1 1 1 9 1 1 1 1 1 9 1 1 9 0 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 9 1 1 1 1 1 9 1 9 1 0 1 1 1 1 1 1 1 1 1 1 1
7 1 9 1 1 1 1 1 1 1 1 1 9 9 1 1 0 1 1 1 1 1 1 1 1 1 1

11 1 9 1 1 1 1 9 9 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
12 9 9 1 1 1 1 1 1 1 1 9 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
14 1 1 1 1 9 1 1 9 9 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
15 1 1 1 1 9 9 1 1 1 9 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
16 1 1 9 9 1 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 0 1 1 1 1 1
18 1 1 1 9 1 1 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
19 1 1 1 1 1 9 1 9 1 1 1 9 1 1 1 1 1 1 1 1 1 1 0 1 1 1
20 1 1 9 1 1 1 1 1 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
21 9 1 1 1 1 1 9 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
26 9 1 9 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 11
An optimally permuted matrix (7/2)UQ.

−100 (
∑

i∈G1
ei −∑

i∈G2
ei) + j ej (j = 1, . . . , 26) (32)

yield a representative element of the strictly optimal permutations.
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1 2 3 4 5 6 7 8 9 10111213141516171819
1 2 2 1 2 2 2 2 2 2 1 2 1 2 1 1 1 1 1 1
2 1 1 2 2 2 2 2 1 1 1 2 1 1 2 1 2 1 1 2
3 1 1 1 1 1 1 2 2 1 1 2 2 2 2 2 2 2 1 1
4 2 2 2 1 1 2 1 2 1 1 2 1 1 2 2 1 2 2 2
5 2 2 1 2 2 1 2 1 2 2 1 1 2 2 2 1 2 2 2
6 2 1 1 1 1 2 1 1 2 2 2 1 2 1 2 2 1 1 2
7 1 1 1 2 2 2 1 1 1 1 1 2 1 1 2 1 2 2 1
8 2 2 1 1 1 2 2 1 2 1 1 2 1 2 1 2 1 2 1
9 2 1 1 2 1 1 1 2 1 2 1 2 1 2 1 1 1 1 2

10 1 2 2 1 2 2 2 2 1 2 1 2 2 1 2 2 1 2 2
11 1 1 2 1 2 1 1 1 2 2 2 2 2 2 1 1 1 2 1
12 1 1 2 2 1 1 1 2 2 1 1 1 2 1 1 2 2 2 2
13 1 2 2 1 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1
14 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 1 1

Table 12
An E(s2)-optimal design for n = 14 and k = 19, Bulutoglu and Cheng (2004).

3.3 Ordination of E(s2)-optimal designs

For E(s2) criterion, Bulutoglu and Cheng (2004) have provided a precise lower
bound E(n, k) to the E(s2)’s for n×k designs. A design that satisfies E(s2) =
E(n, k) is referred to as being E(s2)-optimal.

Table 12 shows an E(s2)-optimal design by Bulutoglu and Cheng (2004) for
n = 14 and k = 19 with E(s2) = 14 χ2(K) = 6.0585.

The statistical ordering provides UQ as shown in Table 13 which reveals that
columns 8, 14 and 16 are superior and the first column is inferior in mutual
orthogonality. Re-ordering of the other columns and some heuristic optimiza-
tion yield an optimal permutation Q∗ of columns shown in Table 14, which
may be useful in the ordination of E(s2)-optimal designs as follows:

(1) The structure of a design when considering dependency is visually shown
using UQ or UQ∗. This may help users of the design e.g., in allocating
promising factors to the columns with preferable properties.

(2) The first to eighteenth columns of Q∗ have

E(s2) = 14 χ2(K − {1}) = 5.67320 = E(14, 18),

which means that an optimal design for k = 18 is implanted in this
design. In other words, an E(s2)-optimal design with ordinated columns
may concurrently serve as one or more optimal or suboptimal designs
with lesser numbers of columns.

(3) It is worth pointing out that the preceding fact implies the possibility
that unknown E(s2)-optimal designs will be discovered by the ordination
of the columns.
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1 7 1316 8 14151018 5 1219 4 11 6 17 3 9 2
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 9
7 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9

13 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1
16 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 9 1 1 1
10 1 1 1 1 1 1 1 0 1 1 1 1 1 1 9 1 1 1 1
18 1 1 1 1 1 1 1 1 0 1 1 1 1 9 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 0 1 1 9 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1 1 0 9 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 9 0 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 9 1 1 0 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 9 1 1 1 1 0 1 1 1 1 1
6 1 1 1 1 1 1 1 9 1 1 1 1 1 1 0 9 1 1 1

17 1 1 1 1 1 1 9 1 1 1 1 1 1 1 9 0 1 1 1
3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
9 9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
2 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 13
An ordinated matrix (7/2) UQ.

8 1416 3 101513 7 1218 4 5 1119 2 9 17 6 1
8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9

10 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 9 1
15 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 9 1 1
13 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 9 1 1 1
7 1 1 1 1 1 1 1 0 1 1 1 1 1 1 9 1 1 1 1

12 1 1 1 1 1 1 1 1 0 1 1 1 1 9 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 0 1 1 9 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 0 9 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 9 0 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 9 1 1 0 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 9 1 1 1 1 0 1 1 1 1 1
2 1 1 1 1 1 1 1 9 1 1 1 1 1 1 0 1 1 1 9
9 1 1 1 1 1 1 9 1 1 1 1 1 1 1 1 0 1 1 9

17 1 1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 0 9 1
6 1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 1 9 0 1
1 1 1 1 9 1 1 1 1 1 1 1 1 1 1 9 9 1 1 0

Table 14
An optimally permuted matrix (7/2)UQ∗ .

This is not an isolated case. In fact, Table 15 shows an ordination of the 8×35

E(s2)-optimal design due to Cheng (1997), and provides other 8×p optimal
designs as the first p columns for p = 34, 33, . . . , 18 and also as the last p
columns for p = 17, 16, . . . , 8.

This design is composed of three steps:

(1) The statistical ordering provides a permutation Q of columns in the orig-
inal design, the columns of which are numbered in lexicographic order.
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311 922182632 1132531 2 6141524293321281716302334 5 8103512 4 7 192027
1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 1 2 1 1 1 2 2 2
2 1 2 2 1 1 2 2 1 2 1 2 1 2 2 2 1 2 2 1 2 1 1 2 1 2 1 2 2 2 2 1 2 1 1 2
3 2 2 1 2 1 1 2 1 2 2 1 2 1 2 2 2 1 2 2 1 1 1 1 2 2 2 1 2 2 2 2 1 1 2 1
4 2 1 2 1 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 2 1 2 2 1 2 2 1 2 1 2 2 2 1 1
5 1 2 2 2 2 1 1 2 1 2 2 2 2 1 2 1 1 1 2 2 1 2 1 1 2 2 2 1 1 2 2 1 2 1 2
6 2 1 2 2 1 2 1 2 1 1 1 2 2 2 1 2 1 2 1 2 2 2 2 1 1 2 1 2 1 2 1 2 2 2 1
7 2 2 1 1 2 2 2 2 2 1 1 2 2 1 1 1 2 1 2 1 2 2 1 2 1 1 2 2 1 1 2 2 1 2 2
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 15
An 8×35 E(s2)-optimal design with ordinated columns which gives an 8×p optimal
design for any p ≤ 35.

Then, Algorithm 2 with α = 17 provides the refinement Q∗ of Q.
(2) Looking at UQ∗ reveals that

(a) Two sets S1 and S2 of columns comprise two separate 8×7 orthogonal
designs.

(b) Among other columns, there is a set S3 comprising the largest block
of orthogonality, where #S3 = 6.

(c) The columns in S1 should be located as the last seven columns. More-
over, it appears to be favorable to let S2 be adjacent to S1 and place
S3 at the start.

(3) A weighted statistical ordering on U for finding “better” ordination,
where the weight for each element χ2

ij of U is set as

({
100, if i ∈ S1

1, otherwise

)
×

({
100, if j ∈ S1

1, otherwise

)

×
({

0.1, if i ∈ S2

1, otherwise

)
×

({
0.1, if j ∈ S2

1, otherwise

)

×
({

5, if i ∈ S3

1, otherwise

)
×

({
5, if j ∈ S3

1, otherwise

)
(33)

to locate S3, K\(S1 ∪ S2 ∪ S3), S2 and S1 in this order, finally results in
Q∗∗ to furnish the design provided in Table 15.

Table 16 shows the E(s2)-value of the set of columns {σ(1), . . . , σ(p)} for each
permutation σ ∈ {Q,Q∗, Q∗∗, Q∗∗}, where Q∗∗ is the reverse of Q∗∗.

The last example demonstrated here is the 10×126 E(s2)-optimal design by
Cheng (1997). It is assumed that the columns are also lexicographically num-
bered.

Application of the statistical ordering and Algorithm 2 to the design provides
the new ordination Q∗ of the columns:
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p 35 34 33 32 31 30 29 28 27 26 25 24 23 22
E(8, p) 7.53 7.53 7.52 7.48 7.43 7.36 7.25 7.11 7.11 7.09 7.04 6.96 6.83 6.65

Q∗∗ 7.53 7.53 7.52 7.48 7.43 7.36 7.25 7.11 7.11 7.09 7.04 6.96 6.83 6.65

Q
∗∗ 7.53 7.53 7.52 7.48 7.43 7.36 7.25 7.24 7.25 7.24 7.15 7.07 7.02 7.00

Q∗ 7.53 7.53 7.52 7.48 7.43 7.36 7.25 7.24 7.20 7.14 7.09 7.01 7.02 7.06

Q 7.53 7.53 7.52 7.48 7.47 7.43 7.41 7.37 7.29 7.19 7.15 7.07 7.02 7.00

p 21 20 19 18 17 16 15 14 13 12 11 10 9 8
E(8, p) 6.40 6.40 6.36 6.27 6.12 5.87 5.49 4.92 4.92 4.85 4.65 4.27 3.56 2.29

Q∗∗ 6.40 6.40 6.36 6.27
↘

6.24 6.13 6.10 5.80 5.95 5.58 5.24 4.98 4.89 4.00

Q∗∗ 6.78 6.74 6.55 6.38 6.12 5.87 5.49 4.92 4.92 4.85 4.65 4.27 3.56 2.29

Q∗ 7.09 7.16 7.30 7.42 7.76 7.47 7.16 6.68 6.36 6.06 5.53 4.98 4.44 3.43

Q 7.01 6.91 6.83 6.69 6.59 6.40 6.25 6.33 6.15 6.06 5.82 5.69 4.44 4.00

Table 16
E(s2)-values of the parts of the designs with permuted columns.

35, 27, 15, 116, 78, 16, 1, 39, 71, 104, 82, 126, 64, 97, 79, 34,
100, 63, 21, 41, 122, 117, 59, 56, 33, 7, 42, 67, 95, 29, 24, 77,
11, 85, 47, 114, 89, 55, 111, 96, 3, 84, 103, 115, 10, 101, 65, 58,
28, 91, 40, 54, 14, 113, 9, 93, 86, 53, 72, 26, 49, 121, 102, 107,
32, 119, 13, 69, 90, 6, 66, 74, 44, 92, 61, 51, 17, 25, 124, 76,
2, 37, 108, 125, 18, 98, 45, 73, 81, 106, 36, 4, 22, 48, 62, 60,

109, 87, 118, 43, 50, 94, 88, 12, 75, 20, 5, 23, 105, 52, 120, 112,
68, 70, 38, 110, 46, 123, 8, 19, 57, 99, 83, 31, 80, 30.

The first p columns {Q∗(1), . . . , Q∗(p)} of the resulting design matrix, for each
p ≥ 73, comprise a suboptimal design of which the E(s2)-value is less than
1.0025 E(10, p). If 1.005 E(10, p) is allowable as sub-optimality, then all the
partial designs for p ≥ 49 are suboptimal, including definitely optimal ones
for p = 125, 124, 102, 101, 100, 88, 87, 86, 82, 70, 57, 56, 52 and 51. In addition,
the partial designs for p = 44 and 28 are also E(s2)-optimal.

By applying the method discussed here to this “parent” optimal design, in an
exhaustive manner, 93 of “child” E(s2)-optimal designs with 125–10 columns
have been produced, excluding just 23 cases with

123, . . ., 115, 113, 108, 103, 95, 85, 77, 67, 59, 49, 41, 31, 23, 18, 13

columns.
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