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ABSTRACT 

1-Naphthyl isocyanide was polymerized with Ni(II) catalyst in a cholesteric matrix at 

the liquid crystal (LC) temperature range. The resultant polymers showed optical 

activity. In this reaction, the structural chirality of cholesteric LC effectively functions 

to impart one-handed helicity on the corresponding polymers as an optically active 

atropisomer.  
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1. Introduction 

Synthetic chiral polymers[1], such as polyaniline bearing camphor sulfonic acid [2], 

polysilanes [3], and polythiophene [4] with chiroptical activity, have been synthesized 

for the development of novel functions and biomimetic technology. Induction of optical 

activity for a polymer in solution by the external environment has been demonstrated, 

such as chirality transfer from a chiroptical solvent to poly(n-hexylisocyanate) of an 

optically inactive polymer [5].  

Polyisocyanides have been investigated in the chiral polymer research; due to their 

unique main chain helical structure [6]. Polyisocyanides form a stable 41 helical 

conformation in solution, and the introduction of an appropriate chiral side chain 

maintains the one-handed helical structure. Atropisomerism in polymers has been 

demonstrated for polyisocyanides [7]. Chiroptically active polyisocyanides having a 

side chain, such as polyisocyanides with an alanine-based substituent [8], 

polyisocyanopeptides [9], and poly(zwitterionic isocyanides) with birefringence [10], 

and liquid crystalline polyisocianide [11], have been studied. Helical sense-selective 

polymerization initiated by aryl-rhodium complexes has been developed [12], and the 

synthesis and doping effect of tetrathiafulvalene-substituted polyisocyanide has been 

performed [13]. The helical structure has been directly observed using atomic force 
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microscopy (AFM) for polyisocyanides prepared by helical sense-selective living block 

copolymerization, which provided evidence that polyisocyanides clearly form a helical 

structure [14]. Polymerizations of chiral isocyanides as monomers in isotropic solvents 

were performed. This produces right- and left-handed helical polyisocyanides whose 

helical sense can be controlled by the polymerization solvents and temperature. The 

resultant polymers show lyotropic liquid crystallinity [15]. 

 

Liquid crystal (LC) science and technology have been developed for materials 

science such as synthesis of new functional LC materials [16], and preparation of 

uniaxial alignment of the nanotubes by using lyotropic LC [17]. Chiral LC, especially 

cholesteric LC shows characteristic properties. The individual molecules of cholesteric 

LCs aggregate in a three-dimensional (3-D) one-handed helical structure for the 

formation of structural chirality.  

Cholesteric LCs can play a role of chiral matrix for chemical reactions under 

appropriate conditions. A cholesteric LC matrix was employed to obtain optically active 

polythiophene derivatives from optically inactive monomers [4]. The polythiophenes 

displayed chiroptical activity based on chiral aggregation derived from a cholesteric 

LC-like order. Furthermore, electrochemical driven control of chiroptical activity was 
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developed [18], and charge career (polarons) in helical form has been proposed for 

polymers prepared in cholesteric LC [19].  

In this study, optically active poly(1-naphtyl isocyanide) is synthesised in a 

cholesteric LC matrix with the aid of a NiCl2 catalyst. After removal of the cholesteric 

matrix, the resultant was dried in vacuum to give polymer in powder. The polymers thus 

obtained exhibit the Cotton effect in achiral solution at the corresponding wavelength of 

the * transition of the side chain and the n* transition of the main chain, which 

indicates that both the side chain and the main chain form stable one-handed helical 

structures. Thus, synthesis of the one-handed helicoidal polymer as an optically active 

atropisomer was performed with 3-D structural chiral matrix of cholesteric liquid crystal. 

The helicity is maintained by inter-lock function between side chains through 

-stacking. 

The chiroptical activity of the polymers in this study may originate from 

atropisomerism for the polyisocyanides produced by the cholesteric matrix. This can be 

referred to as a chiral field effective reaction in a cholesteric matrix.  

 

2. Experimental 

2.1 Syntheis of cholesteric liquid crystal medium 
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Cholesteric (Ch*) LC compounds having a three ring system with terminal alkyl groups 

that have (R) and (S) configurations (4-ethoxy-benzoic acid 

4'-[(R)-1-methyl-heptyloxy]biphenyl-4-yl ester and 4-ethoxy-benzoic acid 

4'-[(S)-1-methyl-heptyloxy]biphenyl-4-yl ester), abbreviated as (R)-Ch*LC and 

(S)-Ch*LC, were prepared as cholesteric matrices using a previously reported method 

[20] 

 

2.2 Monomer synthesis 

Basically synthesis of the monomer was performed according to the method reported in 

the literature [21]. A solution of tert-butanol 24 mL, (CH3)3COK (1.8 g, 16 mmol) in 

three necked round bottom flask was stirred for 2 days at 45 ºC under argon flow. This 

solution was added to another solution of 1-naphthylformamide (1 g, 8.2 mmol) in 

tert-butanol (4 mL) very slowly. After 24h, POCl3 (0.54 g, 35 mmol) was added to the 

mixture and stirred for 40 min at 1020 ºC. Further, the reaction mixture was stirred for 

1 h at room temperature. The mixture was poured into a large volume of aqueous 

NaHCO3 (10 wt%, 50 mL) solution, the organic layer was extracted with ether. The 

ether solution was dried with MgSO4. After filtration, the crude product was dissolved 

in n-hexane (20 mL) and cooled. The precipitation was removed by filtration. The 
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filtrate was purified by column chromatography (silica gel, CH2Cl2) followed by 

evaporation to afford desired monomer (pale yellow liquid, 0.42g, 2.7 mmol, Y = 33 %). 

All of the procedures were carried out in the hood except recrystallization (draft 

chamber). The unfavorable odor of the equipment used in this preparation due to the 

isocyanides can be suppressed by washing with 15 % methanolic sulfuric acid [21]. 1H 

NMR and 13C NMR measurements confirm the chemical structure of the monomer, as 

shown in Figure 1 (13C NMR) and Figure 2 (1H NMR). 

 

2.3 Polymerization 

Polymerization was performed in the cholesteric LC matrix (Scheme 1). The resultant 

polymers are abbreviated as PNI[(R)-Ch*LC] (prepared in (R)-Ch*LC) and 

PNI[(S)-Ch*LC] (prepared in (S)-Ch*LC). The spring form in Scheme 1 is an ideal 

architecture.  

PNI[(R)-Ch*LC]. (R)-CLC (0.5 g, 1.00 mmol) was placed in  = 1cm a small 

Schlenk flask with stirring bar. The flask was heated at 140 ˚C to show isotropic phase 

of the CLC solution. Then, the temperature was gradually decreased to 97 ºC and stirred 

at an exact speed of 75 rpm. Then, 1-naphthyl isocyanide (17.6 mg, 0.115 mmol) as a 

monomer was added to the cholesteric liquid crystal solvent. Visual inspection 
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confirmed the solution showed cholesteric phase with rainbow color. NiCl2 (0.96 mg, 

7.5 × 103 mmol) as a catalyst was added to the cholesteric liquid crystal mixture to 

initiate polymerization. The reaction mixture was stirred at a rate of 75 rpm at 97 ˚C. 

After 24h, a small amount of acetone (ca. 2 mL) was added to the mixture, and 60 mL 

of acetone was added to the solution and stirred for 4h. The supernatant solution was 

removed with pipette. And 70 mL of acetone was added to the solution and stirred. This 

procedure was repeated. The polymer was collected and dried under vacuum to yield 

3.7 mg (2.4 × 102 mmol) of yellow powder. Y = 21 %.  

   PNI[(S)-Ch*LC]. PNI[(S)-CLC] was synthesized by the similar method to 

PNI[(R)-CLC]. Quantity used: (S)-CLC (0.5 g, 1.00 mmol), 2-naphthyl isocyanide (17.6 

mg, 0.115 mmol). Y = 54 %, 9.5 mg (6.2 × 102 mmol), yellow powder. Note that the 

difference of polymerization yield between PNI[(R)-Ch*LC] and PNI[(S)-Ch*LC] is 

not derived from monomer reactivity in the LC solvents because the monomer can be 

polymerized in both (R)-Ch*LC and (R)-Ch*LC with the same condition except 

chirality. This micro-scale polymerization experiment may result in low polymerization 

yield for the polymer PNI[(R)-Ch*LC] with a technical reason in the practical 

experiment.  
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3. Measurements 

Infrared (IR) spectra were obtained with a JASCO FT/IR 550 spectrometer. Number 

average molecular weight (Mn), weight average molecular weight (Mw), and molecular 

weight distribution (MWD) of the polymers were estimated with gel permeation 

chromatography (GPC) (PLgel 5 m MIXED-D columns, Agilent technologies) eluted 

with tetrahydrofuran (THF) by polystyrene standard calibration. Circular dichroism 

(CD) spectra were recorded on a JASCO J-720 spectrometer. Ultra visible (UV-vis) 

spectra were recorded on a Jasco U-3500 spectrophotometer. CD and UV-vis spectra of 

the polymers were obtained at room temperature in chloroform solution calculated from 

molecular weight of monomer repeat unit, or cast film of the polymers from chloroform 

solution. Dynamic light scattering (DLS) measurements for the polymer was carried out 

with Otsuka electronics FDLS-3000 ( = 532 nm). 

 

4. Results and discussion 

4.1 GPC 

The number-average molecular weight (Mn) and weight-average molecular weight (Mw) 

were estimated using gel permeation chromatography (GPC).  
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The polymers are partially soluble in THF and chloroform. The insoluble fraction in 

THF is considered to consist of high molecular weight chains. Furthermore, thermal 

induced scission reaction of the main chain might occur at the high polymerization 

temperature range, yielding the low molecular weight fractions. However, the 

insolubility of the polymers in acetone indicates that the molecular weight values are 

satisfactory (the THF soluble fractions are insoluble in acetone). DLS measurements 

evaluated that the average aggregation size of PNI[(R)-CLC] is 406 nm in 

N-methylpyrrolidone (NMP) solution (the signal is a normal distribution). The 

molecular weight measurements can be performed for the aggregation particles less than 

0.1 m (fractions passed through 0.1 m membrane filter).  

PNI[(R)-Ch*LC]. Mn = 1,000; Mw = 2,100; MWD (molecular weight distribution, 

Mw/Mn) = 2.1 (THF soluble part).  

PNI[(S)-Ch*LC].Samples for GPC were prepared by filtration in tetrahydrofuran 

(THF) solution using a 0.1 m membrane filter to exclude insoluble material. GPC vs. 

polystyrene standard, Mn = 1,500; Mw = 2,600; MWD = 2.1 (THF soluble part).  

 

4.2. IR 
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Figure 3 shows IR spectra of the cholesteric LC solvent ((S)-Ch*LC), the precursor of 

the monomer, the monomer, and the polymer (PNI[(S)-Ch*LC]). The vibration ascribed 

to CH out-of-plane stretching was observed in the high frequency region (3000 cm1) 

for the cholesteric LC solvent. In the monomer spectrum, signals at 3224 cm1 (N-H) 

and 1655 cm1 (C=O, amide), and 1550 cm1 (N-H) due to amide group and 1730 cm1 

(C=O, ester) are no observed [22]. The monomer had a sharp signal at 2120 cm1 ascribed 

to CN stretching, while the corresponding polymer show no absorption band related 

with the CN stretching. This result indicated that opening of the isocyanide CN bond 

in the monomer was catalyzed by NiCl2 to give a polymer with C=N bonds. The 

polymers display no C=O stretching vibration at 1730 cm1 due to the cholesteric LC 

matrix. On the other hand, the IR spectra of the polymers show C-H out-of-plane 

vibration of naphthalene ring at 760 cm1. A set of these results indicates that the 

polymers were successfully synthesized in the cholesteric matrix.  

 

4.3 Optical activity 

Figure S1 (Supplementary content) displays optical absorption spectrum of the 

monomer in chloroform solution. An absorption band at 289 nm is observed due to 

* transition of the naphthalene rings. The monomer shows no absorption in the 
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circular dichroism (CD). Figure 4 shows the CD and optical absorption spectra of the 

polymers (PNI[(S)-Ch*LC] and PNI[(R)-Ch*LC) (c = 5 x 105 mol/L in chloroform 

solution, calculated by monomer repeat unit, molar extinction coefficient for the 

polymers was determined. Both polymers display an optical absorption signal at 440 nm 

due to the n* transition of the main chain. Although polyisocyanides are not 

universally helical [7b], in this case the CD results suggest helical form of the main 

chain. The polymers prepared in the cholesteric matrix with S-configuration and 

R-configuration display a complementary mirror image Cotton effect. The CD signal of 

the polymer (PNI[(R)-Ch*LC]) prepared in (R)-Ch*LC displays negative first and 

negative second Cotton effects. On the other hand, the polymer (PNI[(S)-Ch*LC]) 

prepared in (S)-Ch*LC exhibits an opposite change in the Cotton effect. The result 

further demonstrates that helical direction of the cholesteric medium can control helical 

direction and optical activity of the resultant polymer. 

Note that CD signals at around 300 nm correspond to * transition of the side 

chain naphthyl group. The CD results for the polymers suggest that the side chains form 

an inter-molecular chiral -stacking and main chain helicoidal structure.  

 

4.4 Plausible mechanism 
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From these results, the conformation of the polymers is concluded to be produced by the 

transcription of chirality from the cholesteric matrix during the polymerization reaction. 

The main chains are arranged in a predominantly one-handed helical manner, induced 

by the cholesteric matrix as a helical vector (directors) matrix. Subsequent inter-chain 

interaction in the -electron system of the side chain locks the excess helical sense 

(-stacking inter-lock function), thereby preserving the formation even after dissolution. 

The Cotton effect observed in the CD spectra is not due to the cholesteric matrix, 

because the optical absorption and CD signals of the cholesteric compounds are at short 

wavelengths [22].  

In addition, reaction temperature dependence on optical activity of the resultant 

polymer can be expected because cholesteric pitch length depends on temperature. 

Therefore, precise control of the reaction temperature for the polymerization in LC 

could allow control of optical activity of the polymers.  

Figure 5 shows a plausible polymerization mechanism for the isocyanide monomer 

in a cholesteric matrix. Polymerization gives rise to phase separation between the 

resultant polymer and the cholesteric matrix during the reaction. The cholesteric LC 

matrix acts as a “one-handed chiral organized matrix” consisting of chiral directors, 

which effectively imparts chiral conformation to the polymer during the polymerization 
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reaction. The main chain grows with a twist in one sense during the polymerization 

process for formation of a predominantly one-handed helical isocyanide. 

Simultaneously, -stacking occurs between the pendant naphthalene groups. It should 

be noted that the polymerization mechanism in a cholesteric matrix differs from that for 

polymerization using a chiral catalyst, because the external asymmetric physical 

(mechanical) environment functions to impart a chiral conformation on the polymer. 

During the polymerization reaction, no chiral matrix molecules react chemically with 

the monomer, which indicates that the cholesteric solvent behaves as a matrix only.  

Polymerization of tert-butyl isocyanide in cholesteric LC was also carried out as a 

comparative experiment, however no insoluble fractions in methanol were obtained. 

This result implies the -stacking between monomer repeat units is an important factor 

for obtaining the chiral polymers in the cholesteric medium because the alkyl group 

(tert-butyl) of the side chain forms no-stacking. The predominantly 

one-handedchiral-stacking of the side chains and spring like helical structure of the 

main chain are locked during the polymerization. The insolubility of PNI[(R)-Ch*LC] 

and PNI[(S)-Ch*LC] in methanol can be derived from not only the production of the 

main chain but also the formation of the -stacking between the monomer repeat units. 

Therefore, the helical sense selectivity for the PNI[(R)-Ch*LC] and PNI[(S)-Ch*LC] is 
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due to the cooperative function of the formation of helical structure of the main chain 

and the chiral -stacking. 

  

5. Conclusion 

Chiroptically active poly(1-naphthyl isocyanide)s were prepared in a cholesteric matrix 

at the LC temperature range. The structural chirality of cholesteric LC effectively 

functions to impart predominantly one-handed helicity on the corresponding polymers. 

The chiroptical activity of the polymers originates from the structural chirality of 

cholesteric architecture. This is an example of atropisomer production via a physical 

chiral transfer reaction that employs the structural chirality of a cholesteric LC matrix.  
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Figure 1. 13C NMR of 1-naphtyl isocyanide. Inset shows high magnetic region of 

distortion enhance polarized transfer (DEPT) and normal 13C NMR spectra. Arrows 

show signals of carbons having no protons revealed with DEPT. 
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Figure 2. 1H NMR of 1-naphtyl isocyanide. 
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Figure 3. IR absorption spectra of (S)-Ch*LC (a), the precursor (b), monomer (c), and 

PNI[(S)-Ch*LC] (d).  

 

 

 

 

50010001500200025003000

Wavenumber / cm-1

A
bs

or
ba

nc
e 

/ 
ar

b.
 u

ni
ts

1630 cm-1 (C=N, main chain )

1730cm-1 (C=O, ester )CH2, CH3, alkyl group

3224 cm-1 (N-H)

1655 cm-1 (C=O, amide )

1550 cm-1 
(N-H, amide )

760 cm-1 
(C-H, naphtyl )

2120 cm-1 
NC, isocyanide )

C2H5O
O

O

S
*O
C6H13

N C H

H O

N C

(c) 

(a) 

(b) 

(d) 

N C
n



21 
 

300 400 500 600 700 800

0.1

0.2

0.3


x 

10
-4

 /
  

M
-1

cm
-1

 / nm

-2

-1

0

1

2

3

4

5

6

[
x

 1
0-4

 /
 d

eg
M

-1
cm

-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. (a) CD and (b) optical absorption spectra of the PNI[(S)-Ch*LC] (solid lines) 

and PNI[(R)-Ch*LC] (dashed lines) polymers in chloroform solution.  
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Figure 5. Plausible structure of poly(1-naphtyl isocyanide). Background shows 

polarizing optical microscopic image of the cholesteric matrix, employed for the 

polymerization. 
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Scheme 1. Polymerization in cholesteric liquid crystal medium. 
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Figure S1. Optical absorption spectrum of 1-phenyl isocyanide (monomer) in 

chloroform solution.  

 

 

 

 

 

 

 

 


