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1. Introduction

Computational origami is a scientific discipline to study mathematical and computa-
tional aspects of origami. It includes the mathematical study of paper folds, modeling of
origami by algebraic and symbolic methods, computer simulation of paper folding, and
proving the correctness of geometrical properties of constructed origami. In the frame-
work of computational origami we studied the construction of Morley’s triangles and
automated proofs of Morley’s theorem. Morley’s theorem states that the three points of
intersection of the adjacent trisectors of the angles of any triangle form an equilateral
triangle. Morley’s theorem can be generalized by taking into account the intersections of
the trisectors of the exterior angles as well. For a given angle α (0 < α < π), we have one
pair of interior angle trisectors producing the pair of angles (α/3, 2α/3), and the other
two pairs of exterior angle trisectors producing the pairs of angles ((π+2α)/3, (2π+α)/3)
and ((2π+ 2α)/3, (4π+α)/3). Therefore, we have 33 possible triangles formed by the in-
tersections of the adjacent angle trisectors. The generalized Morley’s theorem states that
out of the 27 triangles constructible by the intersections of the adjacent angle trisectors,
18 triangles are equilateral. Proofs of (generalized) Morley’s theorem were published by
several researchers since Morley gave his result in 1898. Bogomolny gives a comprehensive
account on Morley’s theorem in his web page (Bogomolny, 1996).

In this paper, we present a computational origami construction of Morley’s triangles
and prove automatically the correctness of the generalized Morley’s theorem in a stream-
lined fashion as observed and coined as proving-computing-solving style by Buchberger
(2004). The process is realized by the computational origami system called Eos(E-origami
system) Ida et al. (2006). The automated proof of the generalized Morley’s theorem was
first published by Wu (1986) using Wu-Ritt method. A concise explanation of his proof
is given in Wang (2004). The computational origami construction and the streamlined
automated proof are new in our study. Seemingly different kinds of knowledge in mathe-
matical sciences, i.e. origami and automated theorem proving, are integrated in a common
framework and, moreover, processed coherently. Origami represented as a set of equalities
is systematically transformed into a polynomial set. The generated set of polynomials is
input to Gröbner bases computation algorithms, and the proof is completed.

The rest of the paper is organized as follows. After briefly explaining the principles of
origami construction in section 2, in section 3 we show a stepwise origami construction of
a Morley’s triangle. In section 4 we give the automated proof of the generalized Morley’s
theorem. We presents the experimental results of computing Gröbner bases in section 5.
In section 6 we summarize our results and indicate directions for future research.

This paper is the revised version of the paper Ida et al. (2005) presented at the
Fourth Symposium on Mathematical Knowledge Management 2005, and incorporates the
progress of the research since then. The extended abstract of this paper was presented at
Application of Computer Algebra, 2008, Session on Gröbner Bases and their Applications.

2. Principles of Origami Construction

2.1. Origami Foldability

An origami 1 is folded along a line on the origami called fold line. The fold line is spec-
ified by the origamist. In subsection 2.2 we recall the six basic origami axioms proposed

1 Origami is a Japanese word meaning a sheet of folding (ori) paper (gami) or methodology of folding

a paper.
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by Huzita (1989) to fold an origami. Each of his axioms prescribes a rule for constructing
a fold line, which can be determined by either points, lines and/or combinations of them.
It is known that Huzita’s origami axiom set is more powerful than the straightedge and
compass method in Euclidean plane geometry (Geretschläger, 2002). Namely, origami can
construct some geometrical objects that are impossible to construct by the straightedge
and compass method. One of them is a trisector of an arbitrary angle. The impossibil-
ity of the construction by the straightedge and compass was shown by Wantzel (1837).
It is one of the three famous impossibilities (See, for example, the textbook by Jones
et al. (1994)). Hence, Morley’s triangles can not be constructed by the straightedge and
compass method.

Now let us see how to construct a geometrical object with an origami. First, we have
some notational convention in this paper. We denote points by single capital letters A, B,
. . . possibly subscripted. Expression XY can be either the line passing through points X
and Y or the segment between points X and Y . The distinction can be made easily by the
context. We define an origami 2 �ABCD together with the set Π of constructible points
{A,B,C,D} and the set Γ of constructible lines {AB,BC,CD,DA}. The constructible
points and lines of origami are defined by Alperin (2000). We then start the origami
construction from the initial origami�ABCD. We make a fold on the origami by applying
one of the axioms given below, possibly followed by unfolding. A fold of the origami gives
rise to a set of new points of intersection of the fold line and the lines in Γ, resulting in
new Π and Γ.

2.2. Huzita’s axioms

In Huzita (1989), Huzita proposed the following axiom set {(O1), . . . , (O6)} for origami
geometry. Let Π and Γ be the set of constructible points and of constructible lines,
respectively.
(O1) Given two points in Π, we can make a fold along the fold line that passes through

them.
(O2) Given two points in Π, we can make a fold to bring one of the points onto the other.
(O3) Given two lines in Γ, we can make a fold to superpose the two lines.
(O4) Given a point P in Π and a line m in Γ, we can make a fold along the fold line that

is perpendicular to m and passes through P .
(O5) Given two points P and Q in Π and a line m in Γ, either we can construct the fold

line that passes through Q and make a fold along this fold line to superpose P and
m, or we can decide that the construction of such a fold line is impossible.

(O6) Given two points P and Q in Π and two lines m and n in Γ, either we can construct
a fold line and make a fold along this fold line to superpose P and m, and Q and
n, simultaneously, or we can decide that the construction of such a fold line is
impossible.

Later, an additional axiom was proposed by Hatori (2005):
(O7) Given a point P in Π and two lines m and n in Γ, either we can construct the fold

line that is perpendicular to n and make a fold along this fold line to superpose P
and m, or we can decide that the construction of such a fold line is impossible.

2 We abuse the word origami to mean the methodology, the sheet of paper, and the geometrical object

that is being constructed by means of paper folds, as we do in Japanese.
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He further showed that (O6) is sufficient to make all the folds by (O1) – (O5) and
(O7). Indeed, (O1) – (O5) and (O7) are the degenerate cases of (O6). This does not
mean, however, that (O6) is enough in practice. As we see shortly in the application of
(O6), (O6) will deliver at most three fold lines. We would need to specify an additional
parameter to select the desired fold line.

Mathematical models of the set of constructible points by the folds by the applications
of axiom sets are studied later and independently by Alperin (2000).

2.3. Implementation of Huzita’s axioms

As we are interested in computational aspects of origami, and further in turning
origami into modern engineering technology and a pedagogical methodology for geometry,
we are naturally led to consider the implementation of origami based on the Huzita’s
axioms. The implementation of (O1) – (O7) can be systematically derived as described
by Ida et al. (2007). For instance, (O5) is about the statement

∀P,Q ∈ Π ∀m ∈ Γ ∃ a fold line l such that

(Q is on line l) ∧ (reflection of P with respect to l is on line m) (1)

The formula (1) is true if there exists such a fold line l. To see the existence we solve the
algebraic constraint for l.

The solver for Huzita’s axioms is implemented as function HFold in Eos. As Eos is
implemented in Mathematica we use the Mathematica notation for functional represen-
tation. As shown below, function HFold needs, as arguments, several constructible lines
and points to compute the fold line(s) and to determine the origami face to be moved.
(O1) HFold[X, Along→ PQ]
(O2) HFold[P,Q]
(O3) HFold[RS,UV ]
(O4) HFold[X, AlongPerpendicular→ {P,RS}]
(O5) HFold[P,RS, Through → Q]
(O6) HFold[P,RS,Q,UV ]
(O7) HFold[P,RS, AlongPerpendicular → UV ]

Note that the types of the arguments and the argument keywords can discriminate
the operations to be performed unambiguously for each axiom. HFold[X, Along → PQ]
in (O1) makes a fold along the line extending the segment PQ. The words Along,
AlongPerpendicular and Through to the left of → are the keywords of the parame-
ter specification. Point X specifies the side of the fold line, from which we determine
the faces that should be moved. In all the cases we have omitted optional parameters
which tell HFold which faces of the origami should be moved (with keyword Move) and
which directions (with keyword Mountain or Valley). For instance, in (O2), Move→ P ,
Direction → Valley is implicit. The figures that we will show in the next section are
generated by the calls of HFold.
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Fig. 1. Origami construction of a Morley’s triangle: Steps 1 – 7, steps 2 – 4 are omitted

3. Origami Construction of a Morley’s Triangle

3.1. Preparation

The origami construction of a Morley’s triangle will be shown in Figs. 1 – 9. In the
initial origami �ABCD, we put an arbitrary point E (which we assume constructible),
and construct a Morley’s triangle inside the triangle ∆ABE (cf. Fig. 1, step 5).

We will perform trisections of ]EAB (steps 6 – 13), of ]ABE (steps 14 – 19) and of
]BEA (steps 20 – 29). Then we see the triangle ∆LRS as shown in Fig. 9. The points
L, R, and S are the intersections of the two adjacent trisectors of the angles of ∆ABE.

In this paper we show two methods of the construction of angle trisectors; one by Abe’s
method described in Fushimi (1980) and the other by the multifold method of Alperin
and Lang (2009).

3.2. Abe’s method

To trisect the angle ]EAB, we need a perpendicular to AB at point A; the line AD
will do, and a line parallel to AB and equidistant from points D and A. The parallel
is obtained by applying (O2) to bring point A to D, and then unfold (steps 6 and 7 in
Fig. 1). The line FG is the desired parallel. The names of new points are automatically
generated by Eos, unless we specify them as parameters of HFold.

Step 8 is the crucial step of Abe’s method, which involves application of (O6). We make
a fold to bring point D and point A onto line AE and line FG, respectively. Finding
a fold line in (O6) amounts to solving a cubic equality that describes the geometrical
constraints among the involved points and lines. In the straightedge and compass method,
all constructible numbers are algebraic over the field of rational numbers Q and have
degree of power of two over Q. Thus construction of fold lines that are determined by
the roots of cubic equality is impossible using the straightedge and compass method.
However, Huzita’s axiom (O6) does solve the cubic equality. Since the system solves the
cubic equality, we have (at most) three possible fold lines that satisfy (O6) as shown in
Fig. 2.

At this step, we need to interact with Eos to specify which fold line we want to use.
In our example we will choose the one in case 3 in the figure. The fold line in case 1 is
used to trisect the angle (π−]EAB), and the fold line in case 2 is used to trisect angle
(2π − ]EAB).

At step 8 in Fig. 3, we make the fold along the fold line of case 3, and then we project
the points A and F by PointProject[A, F]. When we unfold the origami at step 9, we see
the new points H and I, the projections of points A and F , respectively, appear. Lines
AH and AI are the trisectors of ]EAB.
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Fig. 2. Three possible fold lines in the application of (O6): HFold[D, AE, A, FG]
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Fig. 3. Origami construction of a Morley’s triangle: Steps 8 – 13, steps 10 – 12 are omitted

As we already constructed the parallel to AB, trisecting the ]ABE is done easily by
applying (O6), to superpose point C and point B onto line BE and line FG, respectively.
We choose the fold line of case 1 (Fig. 4) from the possible fold lines, and make a fold
and an unfold (steps 14 and 15, respectively, in Fig. 5). The steps 16 – 19 are simply for
the folds to create the trisectors through the marked points.
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Fig. 4. Three possible fold lines in the application of (O6): HFold[C, BE, B, FG]

Finding the trisector of ]BEA is more involved (steps 20 – 29 in Figs. 6, 7, and 8). To
construct the parallel to BE, we first construct a perpendicular to BE at point E using
(O4), i.e. by the call of HFold[D, AlongPerpendicular→ {E, BE}]. The point M is the
intersection of the fold line and AD. To obtain the parallel, we make a fold using (O2),
to superpose points E and M (steps 20 – 23). The rest of the construction to obtain the
trisectors is similar to those of angles ]EAB and ]ABE.

The final origami is shown in Fig. 9. We see the triangle ∆LRS, which we will prove
to be equilateral in section 4.
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Fig. 5. Origami construction of a Morley’s triangle: Steps 14 – 19, steps 16 – 18 are omitted
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Fig. 6. Construction steps 20 – 23, steps 21,22 are omitted
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Fig. 7. Three possible fold lines in the application of (O6): HFold[M, AE, E, ON]

3.3. Multifold Method

Origamists agree that all the constructions pertaining to Huzita’s axioms can be per-
formed by hands. The foldability by hands in the case of axioms (O1) – (O4) is obvious.
Regarding to axioms (O5) – (O7), origamits have to slide a given point along a given
line to make the constructions possible. We accept the argument for this kind of sliding
a point by hands. Another fold method, called multifold method, which would extend the
notion of foldability by hands is proposed by Alperin and Lang (2009). It would allow
an origamist to make folds along multiple fold lines. Double folds can be performed by
hands without losing much of the precision.

However, more than ”2-fold” folding is difficult. Although whether a human origamist
can make multiple folds is debatable, in this paper we incorporate the multifold as another
basic fold operation extending Huzita’s axioms.
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Fig. 8. Origami construction of a Morley’s triangle: Steps 24 – 29, steps 26 – 28 are omitted
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Fig. 9. Morley’s Triangle: Final Step

3.3.1. Multifold by Eos

In Eos, the extension to the multifold is natural as HFold is implemented with the
generality that allows the incorporation of the multifold. Multifold is realized by the call
of the following:

HFold [ H, L ]
H is a list of points on origami which determine the faces to be moved. L is a formula in
the first-order predicate logic. The formula specifies the constraints that the geometrical
objects concerned have to satisfy. In the case of the multifold, L specifies the constraints
that the fold lines should satisfy. All Huzita’s axioms are implemented as an instance of
the general HFold function.

To trisect an angle, we perform a double-fold operation which is a simultaneous ap-
plication of two (O5). Given an angle ]EAB, we need to find lines m and n that are
trisectors passing through A. The reflection of B with respect to m is on n, and the
reflection of E with respect to n is on m. Therefore, m and n are the fold lines that bring
B onto n and E onto m simultaneously.

To trisect ]EAB on the origami in Fig. 1, we make the following call of HFold

HFold[{B, E},∃{m,n},{m∈Line,n∈Line}
(OnLine[Reflection[B, m], n] ∧ OnLine[A, m]∧
OnLine[Reflection[E, n], m] ∧ OnLine[A, n])]]

(2)

The atomic formula OnLine[P,m] states that the point P is on the line m. The term
Reflection[P,m] represents the reflection of P with respect to m. Thus, the formula
OnLine[Reflection[P, n],m] ∧ OnLine[Q,n] states that the reflection of P with respect
to n is on m and n passes through Q, which is the formula corresponding to (1) in
subsection 2.3.
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The result of the evaluation of (2) is shown in Fig. 10. There are three cases that
satisfy the formula, as in the case of Abe’s method. In case 2, m and n are trisectors of
]EAB, whereas in cases 1 and 3, m and n are trisectors of angles (2π − ]EAB) and
(π−]EAB), respectively. We choose case 2 since in the construction of Morley’s triangle
we want to trisect the internal angles of 4ABE. After unfolding, we obtain the desired
trisectors as shown in Fig. 11.

We use the multifold method to simplify the steps of trisecting angles. The construction
of the vertices L, R and S of the Morley’s triangle proceeds in the same way described
in Abe’s method.

3.3.2. Algebraic Interpretation
This subsection is devoted to the algebraic interpretation of Huzita’s axioms. This

algebraic interpretation is used to ”evaluate” the function calls of HFold as well as the
automated proof of the correctness of the construction. We take HFold in (2) as an
example.

To obtain m and n, the formula in (2) is transformed into a set of algebraic equalities.
An atomic formula is interpreted as a set of polynomial equalities, and a term is given as
a rational function. For an atomic formula φ, [[φ]] denotes the set of polynomial equalities
that are the algebraic meaning of φ. Let φ and ψ be two atomic formulas, we define
• [[φ ∧ ψ]] = [[φ]] ∪ [[ψ]]
• [[φ ∨ ψ]] = {p q = 0 | (p = 0) ∈ [[φ]], (q = 0) ∈ [[ψ]]}
• [[¬φ]] = {

∏
(p=0)∈[[φ]](p ξp − 1) = 0}, where ξp is a slack variable introduced by Rabi-

nowitch trick.
The method for the algebraic interpretation is detailed in (Ghourabi et al., 2007). The
set of (non-simplified) polynomial equalities (3) – (8) is the algebraic interpretation of
the formula in the HFold call of (2).

{b4(0.a32 + 0.b32 − 2b3(1.a3 + c3)) + a4(−1.a32 + 1.b32 − 2a3(0.b3 + c3))+

c4(a32 + b32) = 0, (3)

0.a3 + 0.b3 + c3 = 0, (4)

b3(0.9a42 − 0.9b42 − 2b4(0.7a4 + c4)) + a3(−0.7a42 + 0.7b42 − 2a4(0.9b4 + c4))+

c3(a42 + b42) = 0, (5)

0.a4 + 0.b4 + c4 = 0, (6)

(−1 + b4)b4 = 0, (−1 + a4)(−1 + b4) = 0,−1 + (1 + a42)κ3 = 0, (7)

(−1 + b3)b3 = 0, (−1 + a3)(−1 + b3) = 0,−1 + (1 + a32)κ4 = 0} (8)

Note that we work in a Cartesian coordinate system where A(0,0), B(1,0), E(0.7,0.9),
which we see in Fig. 1. A line a x+ b y + c = 0 is represented by (a, b, c), together with
the constraint (−1 + b)b = 0 ∧ (−1 + a)(−1 + b) = 0 ∧ a2 + 1 6= 0.

Now, we examine the equalities (3) and (4) that are the algebraic interpretation of
the sub-formula OnLine[Reflection[B,m],n] ∧ OnLine[A,m]. Let R be the reflection of
B on n with respect to m. The coordinates of R are

(
−1.a32 + 1.b32 − 2a3(0.b3 + c3)

a32 + b32
,

0.a32 + 0.b32 − 2b3(1.a3 + c3)
a32 + b32

).
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The algebraic interpretation of OnLine[R,n] is

b4(0.a32 + 0.b32 − 2b3(1.a3 + c3))
a32 + b32

+
a4(−1.a32 + 1.b32 − 2a3(0.b3 + c3))

a32 + b32
+ c4 = 0 (9)

To obtain the polynomial equality (3), we canceled the denominators by multiplying the
both sides of (9) by a32 + b32. The relation a32 + b32 6= 0 is ensured by (8). Equality
(4) states that A is on line m. In the same way, the equalities (5) and (6) are derived
from OnLine[Reflection[E, n],m]∧OnLine[A, n]. By solving the above set of polynomial
equalities for the coefficients of m and n, we obtain the fold lines m and n.
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Fig. 10. Multifold trisection of ]EAB
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Fig. 11. Multifold followed by unfold

4. Proof of Morley’s Theorem

4.1. Algebraic formulation of Morley’s theorem

The essence of the construction is finding fold lines, i.e. solving the geometrical con-
straints for the fold lines. The geometrical constraints that have been accumulated during
the construction will be used for proving too. We would like to remark that construction
and proving can be interleaving. In this section, we explain the correctness proof for the
construction by Abe’s method for the generalized Morley’s theorem. What has to be
proven is that

(i) ∆LRS (cf. Fig. 9) is an equilateral triangle.
(ii) The fold lines constructed at steps 13, 19 and 29 are trisectors.
The automated proofs of (ii) can be made immediately after the construction steps 13,

19 and 29. We omitted those proofs here since the proof technique is the same as what
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we will expound in due course. Moreover, in Ida and Buchberger (2003), it is shown that
Abe’s method constructs trisectors using Gröbner bases method.

So we proceed to prove (i). We will show that after the construction, the following
holds:

d(L,R)2 = d(R,S)2 ∧ d(L,R)2 = d(S,L)2, (10)
where d(X,Y ) denotes the distance between points X and Y . Let K be the geometrical
constraints accumulated during the construction, and C be the formula (10). K and C
form the premise and conclusion of the proposition (11) that we want to prove:

K ⇒ C. (11)

However, the specification of the premise requires careful analysis. The construction
that we have shown is one particular instance of the construction, and the geometrical
constraints that are accumulated during the construction are general ones that admit all
the possible constructions, namely the constructions of all 27 triangles. To see this point
let us recall that during the construction, Eos allowed us to choose a fold line when other
two fold lines are possible (steps 8, 14, and 24). This choice is necessary to proceed with
the construction and visualize the ensuing origami. However, the choice is not reflected on
the geometrical constraints accumulated during the construction. Therefore, the solution
of the obtained polynomials contains all possible fold lines, and thus all 27 possible
triangles.

We know that 9 triangles out of the constructed 27 triangles are not equilateral.
Figure A.1 shows all the triangles. Wu (1986) articulated the situation. We have to
single out the 18 equilateral triangles, by imposing the following condition on the angles.
Let α, β and γ be angles ]LAB, ]ABL, and ]BER, respectively.

α+ β + γ = ±π/3 (mod 2π)

which implies the following:
tan2(α+ β + γ) = 3

We let t1 = tanα, t2 = tanβ, t3 = tan γ and by straightforward trigonometric manipula-
tions we obtain the following condition in polynomial equality:

X : (t1 + t2 + t3 − t1t2t3)2 − 3(1− t1t2 − t2t3 − t3t1)2 = 0

We revise the proposition (11) of the generalized Morley’s theorem to the following
formula:

L : K ∧ X ⇒ C (12)
Let EL be the set of polynomial equalities representing formula L, PL be the set of

the polynomials {p | p = 0 ∈ EL}, and Ideal(S) be the ideal generated by set S of
polynomials. Formula L is true if

1 ∈ Ideal(P¬L). (13)

The ideal membership problem 1 ∈ Ideal(S) can be solved constructively by computing
the Gröbner bases of S. Namely, the statement (13) is true iff the reduced Gröbner basis
of P¬L is {1}. Hence, L is true if the reduced Gröbner basis of P¬L is {1}. P¬L is obtained
in the following way. We first note that ¬L is logically equivalent to K ∧ X ∧ ¬C. Then
each constraint is transformed to the algebraic equalities as discussed in subsection 3.3.2.
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4.2. Proof by Eos

We are now ready to prove the generalized Morley’s theorem. The premise K of the
theorem are the geometrical constraints accumulated during the construction. We first
give to Eos the auxiliary condition X by calling function AssertProp:
AssertProp[ ∃{t1,t2,t3},{t1∈Alg,t2∈Alg,t3∈Alg}

t1 == ToTangent[L, A, B]
∧

t2 == ToTangent[A, B, L]
∧

t3 == ToTangent[B, E, R]
∧

(t1 + t2 + t3− t1 t2 t3)2 == 3(1− t1 t2− t1 t3− t2 t3)2]
where ToTangent[X,Y, Z] gives tan]XY Z as a rational function of its point coordinates.
Now, K ∧ X forms the revised premise of the Morley’s theorem.

We then add the conclusion by calling the function Goal:
Goal[Distance[L, R]2 == Distance[R, S]2

∧
Distance[L, R]2 == Distance[L, S]2]

where Goal[formula] adds the negation of the conclusion to the premise to obtain
K ∧ X ∧ ¬C.

In order to translate K ∧X ∧ ¬C into algebraic form, we fix the coordinate system to
be Cartesian with points A, B, C, D and L as follows:
cmap = Mapping[{{A, Point[0, 0]}, {B, Point[1, 0]}, {C, Point[1, 1]}, {D, Point[0, 1]},

{L, Point[u1, u2]}}]
Without loss of generality, we set the size of the initial origami to be 1 × 1. The point
L is taken to be arbitrary. One may wonder why point E, instead of L, was not taken
to be arbitrary. This is because of the efficiency of the Gröbner bases computation.
Wang (2008) observed that by letting L to be arbitrary but fixed, the size of the search
space during the Gröbner bases computation is greatly reduced. When L is taken to be
arbitrary, the two trisectors are determined, whereas if E is taken in that way, there will
be no restrictions on the choice of trisectors.

Finally, we check whether the reduced Gröbner basis of the algebraic interpretation
of X ∧ K ∧ ¬C is {1} by calling Prove.
Prove[Mapping → cmap

CoefficientDomain → RationalFunctions,
MonomialOrder → DegreeReverseLexicographic]

Function Prove performs the following operations:
1 Selecting the relevant constraints for proving the generalized Morley’s theorem: Based

on the predicates specified in the argument of function Goal, the program selects the
geometrical properties that are necessary for the proof. In the case of the generalized
Morley’s theorem, the geometrical properties related to points L, R and S are selected.
Recall that points L, R and S form the Morley’s triangle in Fig. 9.

2 Generating the algebraic interpretation of K∧X ∧¬C: The geometrical constraints are
transformed into the set S of polynomials.

3 Ordering the variables: Based on the order of construction steps, the program computes
the ordered list V of variables in S.

4 Computing Gröbner basis of S: The Gröbner basis computation is carried out in the
domain of polynomials whose variables are in V \ {u1, u2} and whose coefficients are
in Q(u1, u2) of rational functions.
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5. Experiments

Geometrical constraints in origami may grow exponentially in the worst case due to the
very nature of folding. Furthermore, each Huzita’s axiom generates at least 5 equalities;
constructed points may be moved by reflections; and constraints are generated for finding
intersections. Taking all those factors into account, one can see easily that the numbers of
the generated polynomials and of the introduced variables grow rapidly. This significantly
affects the time required to compute Gröbner bases.

Therefore, we usually need several trial runs to compute Gröbner bases by various
monomial orders, variable orders, and computing algorithms. Although the Gröbner bases
computation is guaranteed to terminate theoretically, it is also probable that computing
programs may abort due to lack of memory.

In the case of the construction of a Morley’s triangle, the number of generated poly-
nomials by Abe’s method was 292 having 190 variables, and by the multifold method
was 135 having 94 variables. We investigated the problem of finding a proper variables
order based on the order of creation of variables, and by the type of generated polyno-
mial equalities in which they are involved. In our experiments, we ordered the variables
according to the construction step in which they were generated. Therefore, we have
the variables used for points coordinates and line coefficients � variables introduced for
forming auxiliary conditions and the conclusion.

With the above remarks in mind, we will summarize the result of our experiments. We
used Mathematica7 to compute Gröbner bases on a machine equipped with Intel Core 2
Duo 2.67 GHz processer, and 2.00 GB of memory. Mathematica provides two algorithms
for the computation, Buchberger (Buchberger, 1985) and GroebnerWalk (Collart et al.,
1997) algorithms. We tried with lexicographic, degree lexicographic, and degree reverse
lexicographic monomial orders. We obtained the results shown in Table 1. No entry in
the table signifies the failure of the computation due to lack of memory. The timings are
in seconds, where we obtained {1} as the result, indicating that the theorem was proved.

Table 1. Computation times by Mathematica7 - Construction by Abe’s method

Lexicographic
Degree

Lexicographic
Degree Reverse Lexicographic

Buchberger 867

GroebnerWalk 881 857 877

In the case of using multifold method for origami construction, we computed Gröbner
bases using the same hardware and obtained the results shown in Table 2. They show
a significant improvement to prove the theorem using the multifold method, due to the
reduced number of generated variables (and polynomials). We also note that changing
the algorithms or monomial orders had small effect on the time required for computing
the bases except for the case where we used Buchberger algorithm.

Experiments results can be found at http://www2.score.cs.tsukuba.ac.jp/eos/apps.

13



Table 2. Computation times by Mathematica7 - Construction by multifold method

Lexicographic
Degree

Lexicographic
Degree Reverse Lexicographic

Buchberger 29.2 6.6 8.8

GroebnerWalk 9.0 9.1 8.9

6. Conclusion

We have shown the origami construction of a Morley’s triangle and the automated
proof of the generalized Morley’s theorem using Gröbner bases method. Using the com-
putational origami system Eos, we not only perform the origami construction with rigor
and ease exceeding those by paper fold by hands, but also prove the correctness of the
construction automatically. We have observed that solving (i.e. origami construction)
and proving are interleaving and interactive. The computing time for the origami con-
struction using Eos is not a problem. Rather we benefit very much from the capabilities
of symbolic algebra and advanced graphics of Mathematica. However, the automated
theorem proving part of our work required large amount of time and efforts to bring the
results into the present form. We needed many trials to choose the right monomial orders.
Without the detailed analyses of the generated polynomials and the optimizations of ge-
ometrical constraints, Gröbner bases computations would not be successfully completed.
We therefore see that the development of computing environment such as web services
to facilitate the trials of Gröbner bases computations is a challenging research to pursue.
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A. Triangles Generated by All Trisectors

The triangles drawn in the bold lines are given triangles, and those in the thinner
lines (red in color) are the triangles formed by the intersections of adjacent trisectors.
Although the sizes of the given triangles are varied, they are similar. Eighteen of the
constructed triangles are equilateral.
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Fig. A.1. The 27 possible triangles
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