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LAGRANGIAN RELAXATION AND PEGGING TEST FOR LINEAR
ORDERING PROBLEMS

NORIYOSHI SUKEGAWA, YOSHITSUGU YAMAMOTO, AND LIYUAN ZHANG

Abstract. We develop an algorithm for the linear ordering problem (LOP), which has a
large number of applications such as triangulation of input-output matrices, minimizing
total weighted completion time in one-machine scheduling, and aggregation of individual
preferences. The algorithm is based on the Lagrangian relaxation of the binary integer
linear programming formulation. Since the number of the constraints that should be
relaxed is proportional to the cubed number of items and too large to handle, we propose
a modified subgradient method that ignores a part of the constraints and gradually adds
constraints whose Lagrangian multiplier vector is likely to be positive at the optimal
solution. We also propose an improvement of the ordinary pegging test by using the
problem structure. The information obtained from the improved pegging test is used in
an attempt to get a good incumbent in an early stage of computation.

1. Introduction

The problem we consider in this paper is to find a linear ordering of n items when their
pairwise comparison data is given. The data is given by an n×n matrix C := [cij ] such that
its (i, j)th element carries the amount of profit made when item i is ranked prior to item
j. Choosing an appropriate matrix C lets the problem embrace ranking aggregation prob-
lem, which is called Kemeny’s problem, minimum violations ranking problem, and Slater’s
problem. See the survey paper by Charon and Hudry [8] and Reinelt [23]. The problem
is formulated as a linear integer programming problem. The polytope being the convex
hull of binary vectors each corresponding to a linear ordering was named linear ordering
polytope and investigated by Grötschel et al. [16]. They introduced some facet-defining
valid inequalities of the polytope, and proposed a linear-programming-relaxation-based al-
gorithm for the problem in [15]. For subsequent research on the linear ordering polytope,
see [4, 10, 18, 21]. Their approach was further extended by Mitchell and Borchers [19, 20],
who proposed a cutting plane algorithm based on a primal-dual interior point method, and
solved problems with as many as 250 items. Since the problem is an NP -hard problem,
see e.g., Section 2 of [8], there have been proposed several heuristic methods, e.g., La-
grangian heuristic method in [3], scatter search method in [5], linear ordering construction
heuristics in [9], Goddard’s method in [13], variable neighborhood local search method
in [14]. Charon and Hudry [7] made an experiment of a branch-and-bound method with
Lagrangian relaxation and some heuristics.

The binary integer programming formulation of the linear ordering problem has an
O(n3) of inequality constraints. This feature makes the problem hard to solve. In this
paper, we propose a Lagrangian relaxation algorithm that considers a small fraction of the
inequality constraits and a pegging test that takes advantage of the problem structure.
The algorithm is a combination of well-known and widely-used techniques of mathematical
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2 SUKEGAWA, YAMAMOTO, AND ZHANG

optimization, however, it would be well worth reporting how they function together and
how they make the algorithm efficient in an integrated manner.

Throughout this paper we will use the following symbols:

N := {1, 2, . . . , n} N2 := { (i, j) | i, j ∈ N }
N2

!= := { (i, j) | i, j ∈ N, i #= j } N3
!= := { (i, j, k) | i, j, k ∈ N, i #= j, j #= k, k #= i }

N2
< := { (i, j) | i, j ∈ N, i < j } N3

< := { (i, j, k) | i, j, k ∈ N, i < j < k }.

2. Linear Ordering Problem

2.1. Ranking aggregation. Suppose we have several different rankings of n items, and
want to aggregate them to a single ranking or a linear ordering. If each ranking comes from
the ratings of items, summing up the ratings that item i receives to its overall rating and
sorting them for a final linear ordering is a possible and widely used method. Our starting
point in this section is not the ratings of items but their rankings. One of the well-known
method for aggregation of rankings is the Borda method which was first proposed in the
18th century. As Kemeny proposed in [17], a natural solution would be a linear ordering
that is “close” to all given rankings. Let σ1, . . . ,σκ, . . . ,σK be given rankings of items N .
Let for α ∈ [0, 1]

c(1)
ij := α

∣∣{κ | σκ(i) < σκ(j)
}∣∣ − (1 − α)

∣∣{κ | σκ(i) > σκ(j)
}∣∣(2.1)

c(2)
ij :=

K∑

κ=1

α [σκ(j) − σκ(i)]+ − (1 − α) [σκ(i) − σκ(j)]+ ,(2.2)

where | · | denotes the cardinality of the corresponding set, and [t]+ = max{t, 0}. The
coefficient c(1)

ij is a weighted difference of the number of rankings that put i above j and

those that put i below j, and c(2)
ij is the weighted sum of differences between the rankings

of i and j. The parameter α should be determined according to which of “aye” and “nay”
is more important. When α = 1/2, c(2)

ij = (1/2)
∑K

κ=1 (σκ(j) − σκ(i)).

Let π denote an aggregated linear ordering. The values c(ν)
ij for ν = 1, 2 shows how the

linear ordering π and given rankings agree about the order of i and j when π(i) < π(j).
Hence the overall degree of agreement would be given by

∑

(i,j):π(i)<π(j)

c(ν)
ij .

A linear ordering that maximizes this function should be accepted as the “closest” aggre-
gated linear ordering, hence our problem is formulated as

(LOP )

∣∣∣∣∣∣

maximize
∑

(i,j):π(i)<π(j)

c(ν)
ij

subject to π is a linear ordering,

which we will refer to as the Linear Ordering Problem.

2.2. Minimum violations ranking. Ali et al. [1] and Pedings et al. [22] proposed min-
imum violations ranking. Suppose we are given a matrix D := [dij ](i,j)∈N2 such that dij is
the points by which team i beats team j in their matchup, where we take the convention
that dii = 0. They call this matrix a point differential matrix and introduce the following
definition.
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Definition 2.1. A matrix D is in hillside form if

dki ≤ dkj (ascending order across rows)
dik ≥ djk (descending order down columns)

for all i, j, k ∈ N3
!= such that i < j.

They proposed to find such a hidden hillside form by a simultaneous reordering of
rows and columns of the given point differential matrix D, and showed that the problem
is formulated1 as (LOP ) in the previous section with the following objective function
coefficient for α = 1/2

(2.3) c(3)
ij := α|{ k ∈ N \ {i, j} | dki ≤ dkj }| + (1 − α)|{ k ∈ N \ {i, j} | dik ≥ djk }|.

Another choice of the objective function coefficient would be

(2.4) c(4)
ij :=

∑

k∈N\{i,j}

α(dkj − dki) + (1 − α)(dik − djk).

3. Formulation of Linear Ordering Problem

3.1. Quadratic Assignment Formulation. Let yki be the binary variable such that

yki =

{
1 if kth ranking is given to item i

0 otherwise.

Then these variables satisfy
∑

k∈N

yki = 1 for all i ∈ N,(3.1)

∑

i∈N

yki = 1 for all k ∈ N.(3.2)

The cost concerning the ordered pair (i, j) is

cij
(
y1iy2j + y1iy3j + · · · + y1iynj + y2iy3j + y2iy4j + · · · + y2iynj + · · · + y(n−1)iynj

)

= cij
(
y1i(y2j + y3j + · · · + ynj) + y2i(y3j + y4j + · · · + ynj) + · · · + y(n−1)iynj

)

= cij

n−1∑

k=1

yki(
n∑

l=k+1

ylj)

and the total agreement is given by

∑

(i,j)∈N2
!=

cij

n−1∑

k=1

yki(
n∑

l=k+1

ylj).

The quadratic assignment formulation is to maximize the total agreement under the as-
signment constraints (3.1) and (3.2) together with the binary variable constraints. This
is a well-known NP -hard problem and already a challenging problem when n = 25. See
Çela [6].

1To be very precise, Pedings et al. formulated the problem as a minimization of violations of the hillside
structure.
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3.2. Integer Linear Programming Formulation. The coefficient cij provides the de-
gree of agreement of a linear ordering π such that π(i) < π(j). For a given linear ordering
π let binary variables xij for (i, j) ∈ N2

!= be defined as

xij =

{
1 if π(i) < π(j)
0 otherwise,

then the linear ordering problem is formulated as

(LOP )

∣∣∣∣∣∣∣∣∣∣∣

maximize
∑

(i,j)∈N2
!=

cijxij

subject to xij ∈ {0, 1} for all (i, j) ∈ N2
!= (binary)

xij + xji = 0 for all (i, j) ∈ N2
!= (antisymmetry)

xij + xjk + xki ≤ 2 for all (i, j, k) ∈ N3
!= (transitivity).

The point is that the problem has n(n − 1) binary variables, n(n − 1)/2 equality con-
straints and n(n − 1)(n − 2)/3 inequality constraints, all of which grow very rapidly as n
grows.

3.3. Variable reduction. Substituting 1 − xij for xji for all i, j ∈ N with i < j halves
the decision variables and yields the following equivalent problem (P ):

(P )

∣∣∣∣∣∣∣∣∣∣

maximize
∑

(i,j)∈N2
<

c̄ijxij +
∑

(i,j)∈N2
<

cji

subject to xij ∈ {0, 1} for all (i, j) ∈ N2
<

xij + xjk − xik ≤ 1 for all (i, j, k) ∈ N3
< (type 1)

−xij − xjk + xik ≤ 0 for all (i, j, k) ∈ N3
< (type 2),

where

c̄ij := cij − cji.

We will call the inequality constraint of the first half the tranisitivity constraint of type 1,
and one of the latter half type 2, and we will denote the optimal objective function value
of (P ) by ω(P ).

4. Relaxation

4.1. Relaxation of inequality constraints. A possible relaxation is to temporarily
discard some of the inequality constraints. Namely let U and V be subsets of N3

< and
solve

(P (U, V ))

∣∣∣∣∣∣∣∣∣∣

maximize
∑

(i,j)∈N2
<

c̄ijxij

subject to xij ∈ {0, 1} for all (i, j) ∈ N2
<

xij + xjk − xik ≤ 1 for all (i, j, k) ∈ U
−xij − xjk + xik ≤ 0 for all (i, j, k) ∈ V .

Clearly if the optimal solution of (P (U, V )) satisfies all the transitivity constraints, it
is an optimal solution of problem (P ).
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4.2. Lagrangian Relaxation. Problem (P (U, V )) is still a difficult problem to solve
unless no favorable structure can be assumed on U and V . One of the common tricks
to deal with the problem would be the Lagrangian relaxation. Namely, introducing a
nonnegative multiplier uijk for each constraint of type 1 and also a nonnegative multiplier
vijk for each constraint of type 2, we consider the following integer linear programming
with only a simple binary variable constraint:

(LR(u,v))

∣∣∣∣∣∣∣∣∣∣∣

maximize
∑

(i,j)∈N2
<

c̄ijxij +
∑

(i,j,k)∈U

uijk(1 − xij − xjk + xik)

+
∑

(i,j,k)∈V

vijk(0 + xij + xjk − xik)

subject to xij ∈ {0, 1} for all (i, j) ∈ N2
<.

Omitting U and V , we denote this problem simply by (LR(u,v)), where u and v denote
multiplier vectors (uijk)(i,j,k)∈U and (vijk)(i,j,k)∈V , respectively. Let r(u,v)ij denote the
coefficient of variable xij in the objective function. It is written as

r(u, v)ij = c̄ij −
∑

k:(i,j,k)∈U

uijk −
∑

k:(k,i,j)∈U

ukij +
∑

k:(i,k,j)∈U

uikj(4.1)

+
∑

k:(i,j,k)∈V

vijk +
∑

k:(k,i,j)∈V

vkij −
∑

k:(i,k,j)∈V

vikj .

Due to the simple constraint, an optimal solution x(u,v) = (x(u,v)ij)(i,j)∈N2
<

of problem
(LR(u,v)) can be obtained by

(4.2) x(u,v)ij =

{
1 if r(u,v)ij > 0
0 if r(u,v)ij ≤ 0.

Furthermore, the optimal objective function value, which we will denote by ω(LR(u,v)),
provides an upper bound of the optimal objective function value ω(P ) of problem (P ).

5. Optimality and Duality Gap

The following theorem is well known, see e.g., Geoffrion [12].

Theorem 5.1. Let (ū, v̄) := ((ūijk)(i,j,k)∈N3
<
, (v̄ijk)(i,j,k)∈N3

<
) be a Lagrangian multiplier

vector corresponding to all the transitivity constraints, and let x be an optimal solution of
the Lagrangian relaxation problem of (P ) with (ū, v̄). If x is feasible to problem (P ) and
satisfies the complementarity condition

ūijk(1 − xij − xjk + xik) = 0 for all (i, j, k) ∈ N3
<

v̄ijk(0 + xij + xjk − xik) = 0 for all (i, j, k) ∈ N3
<,

then it is an optimal solution of (P ).

Definition 5.2. We say that x satisfies the restricted complementarity condition with
(u, v) when

uijk(1 − xij − xjk + xik) = 0 for all (i, j, k) ∈ U

vijk(0 + xij + xjk − xik) = 0 for all (i, j, k) ∈ V ,

We readily see the following corollary.

Corollary 5.3. If an optimal solution x(u,v) of (LR(u,v)) is feasible to problem (P )
and satisfies the restricted complementarity condition with (u,v), then it is an optimal
solution of (P ).
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Proof. We readily see that the Lagrangian relaxation problem (LR(u,v)) is an ordinary
Lagrangian relaxation problem of problem (P ) with multipliers (ū, v̄) such that

ūijk =

{
uijk for (i, j, k) ∈ U

0 for (i, j, k) ∈ N3
< \ U

v̄ijk =

{
vijk for (i, j, k) ∈ V

0 for (i, j, k) ∈ N3
< \ V .

When x(u,v) meets the restricted complementarity condition with (u, v) in Definition 5.2,
it also satisfies the complementarity condition for all constraints with (ū, v̄). This together
with the feasibility of x(u,v) yields the desired result. !

A feasible solution of problem (P ) that has the largest objective function value among
the feasible solutions found thus far is called an incumbent solution, and its objective func-
tion value is called an incumbent value. The difference of ω(LR(u,v)) and the incumbent
value is called the duality gap.

6. Pegging Test

6.1. Ordinary pegging test. By the information obtained from the optimal solution
x(u,v) of the Lagrangian relaxation problem (LR(u,v)) we can see which variable takes
one and which takes zero at the optimal solution of problem (P ). Let us choose (s, t) ∈ N2

<
and suppose that problem (P ) has an optimal solution with xst = ξ for some ξ ∈ {0, 1}.
Then problem (P ) with an additional constraint xst = ξ is equivalent to problem (P ) in
the sense that optimal values of the two problems coincide. Suppose further we have an
incumbent value ωlow. Then clearly

ω(P |xst = ξ) = ω(P ) ≥ ωlow.

Since (P (U, V )) is a relaxation of problem (P ), and it is further relaxed to (LR(u,v)), we
obtain

ω(LR(u,v)|xst = ξ) ≥ ω(P (U, V )|xst = ξ) ≥ ω(P |xst = ξ),
hence

ω(LR(u,v)|xst = ξ) ≥ ωlow.

Lemma 6.1. Let ξ be either zero or one. If ω(LR(u,v)|xst = ξ) < ωlow, then xst = 1− ξ
for any optimal solution of problem (P ).

Proof. Straightforward from the above discussion. !
Suppose that we have an optimal solution x(u,v) of (LR(u,v)) and that x(u,v)st = 0.

By a simple calculation we see that

(6.1) ω(LR(u,v)|xst = 1) = ω(LR(u,v)) + r(u,v)st.

Note that x(u,v)st = 0 implies r(u,v)st ≤ 0. In the same way we see that

(6.2) ω(LR(u,v)|xst = 0) = ω(LR(u,v)) − r(u,v)st

when x(u, v)st = 1. Note also that r(u,v)st > 0 in this case.

Theorem 6.2. Let x(u,v) be an optimal solution of the Lagrangian relaxation problem
(LR(u,v)). if

ω(LR(u,v)) − ωlow < |r(u, v)st|
holds, then x∗

st = x(u,v)st for any optimal solution x∗ of (P ).

Proof. Substituting equation (6.1) or (6.2) for the condition in Lemma 6.1 will yield the
assertion. !

We say that the variable xst is pegged at x(u,v)st when the case holds in the theorem.
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6.2. Improved Pegging Test. As the computation goes, we will have several variables
pegged. Let P0 and P1 denote the index sets of the variables that have been pegged at
zero and one, respectively. Given a Lagrangian multiplier vector (u, v), the problem

(LR(u,v, P0, P1))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑

(i,j)∈N2
<

c̄ijxij +
∑

(i,j,k)∈U

uijk(1 − xij − xjk + xik)

+
∑

(i,j,k)∈V

vijk(0 + xij + xjk − xik)

subject to xij ∈ {0, 1} for all (i, j) ∈ N2
<

xij =
{

0
1

for all (i, j) ∈ P0

for all (i, j) ∈ P1.

is a relaxation problem of (P ).
Let A(P0, P1) be the set of arcs (i, j) such that either xij has been pegged at one or xji

has been pegged at zero, i.e.,

(6.3) A(P0, P1) := { (i, j) ∈ N2
!= | (j, i) ∈ P0 or (i, j) ∈ P1 }.

Definition 6.3. Given P0 and P1 and i, j ∈ N , we say that i is an ancestor of j and
also that j is a descendant of i when there is a directed path from i to j on the arc set
A(P0, P1).

Definition 6.4. Given (s, t) ∈ N2
< \ (P0 ∪ P1) let

S1 := {s} ∪ { i ∈ N | i is an ancestor of s }, T1 := {t} ∪ { j ∈ N | j is a descendant of t }
S0 := {s} ∪ { i ∈ N | i is a descendant of s }, T0 := {t} ∪ { j ∈ N | j is an ancestor of t }.

Take a variable xst that has not yet been pegged, i.e., (s, t) ∈ N2
< \ (P0∪P1), and fix xst

temporarily to one. Then every ancestor of s should be an ancestor of every descendant
of t by the transitivity. Namely, the variables must satisfy

(6.4) xij =

{
1 for all (i, j) ∈ (S1 × T1) ∩ N2

<

0 for all (i, j) ∈ (T1 × S1) ∩ N2
<

to meet the transitivity constraint. When xst is fixed temporarily to zero, we have similarly

(6.5) xij =

{
1 for all (i, j) ∈ (T0 × S0) ∩ N2

<

0 for all (i, j) ∈ (S0 × T0) ∩ N2
<.

Now given nonnegative multiplier vectors u and v we define

(LR(u, v, P0, P1)
|xst = 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑

(i,j)∈N2
<

c̄ijxij +
∑

(i,j,k)∈U

uijk(1 − xij − xjk + xik)

+
∑

(i,j,k)∈V

vijk(0 + xij + xjk − xik)

subject to xij ∈ {0, 1} for all (i, j) ∈ N2
<

xij =
{

0
1

for all (i, j) ∈ (T1 × S1) ∩ N2
< ∪ P0

for all (i, j) ∈ (S1 × T1) ∩ N2
< ∪ P1.

sophisticate This is a relaxation problem of (P ) with a temporary constraint xst = 1
added.

Lemma 6.5. If ((S1 × T1) ∩ N2
< ∩ P0) ∪ ((T1 × S1) ∩ N2

< ∩ P1) #= ∅, then x∗
st = 0 for any

optimal solution x∗ of problem (P ).
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Proof. If there is an element, say (i, j), in the set ((S1×T1)∩N2
<∩P0)∪((T1×S1)∩N2

<∩P1),
the variable xij must be zero and one at the same time, which implies that there is no
optimal solution of (P ) with xst = 1. !

When xst is temporarily fixed to zero, we have the following problem and lemma.

(LR(u,v, P0, P1)
|xst = 0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
∑

(i,j)∈N2
<

c̄ijxij +
∑

(i,j,k)∈U

uijk(1 − xij − xjk + xik)

+
∑

(i,j,k)∈V

vijk(0 + xij + xjk − xik)

subject to xij ∈ {0, 1} for all (i, j) ∈ N2
<

xij =
{

0
1

for all (i, j) ∈ (S0 × T0) ∩ N2
< ∪ P0

for all (i, j) ∈ (T0 × S0) ∩ N2
< ∪ P1.

Lemma 6.6. If ((T0 × S0) ∩ N2
< ∩ P0) ∪ ((S0 × T0) ∩ N2

< ∩ P1) #= ∅, then x∗
st = 1 for any

optimal solution x∗ of problem (P ).

Since the problem (LR(u,v, P0, P1)|xst = ξ) is a relaxation problem of (P ) with a
constraint xst = ξ added, we readily see the following lemma.

Lemma 6.7. Let ξ be either zero or one, and let xst be a variable that has not been pegged,
i.e., (s, t) ∈ N2

< \ (P0 ∪ P1). If ω(LR(u,v, P0, P1)|xst = ξ) < ωlow, then xst = 1 − ξ for
any optimal solution of problem (P ).

We have seen in (6.1) and (6.2) that
ω(LR(u,v)) − ω(LR(u,v)|xst = 1 − x(u,v)st) = |r(u, v)st|

holds. Namely, the objective function value deteriorates by |r(u,v)st| when the additional
constraint xst = 1 − x(u,v)st is added to (LR(u,v)). In the similar manner we see that

ω(LR(u, v)) − ω(LR(u, v, P0, P1)|xst = 1 − x(u,v)st) =
∑

(i,j)∈D

|r(u,v)ij |,

where
D = (((S1 × T1) ∩ N2

< ∪ P1) ∩ {(i, j) | x(u,v)ij = 0})
∪ (((T1 × S1) ∩ N2

< ∪ P0) ∩ {(i, j) | x(u,v)ij = 1})
when x(u,v)st = 0, and

D = (((T0 × S0) ∩ N2
< ∪ P1) ∩ {(i, j) | x(u,v)ij = 0})

∪ (((S0 × T0) ∩ N2
< ∪ P0) ∩ {(i, j) | x(u,v)ij = 1})

when x(u,v)st = 1.

(6.6)

The first subset of D corresponds to the variables that should be one but takes zero at
x(u,v), and the second subset to those that should be zero but takes one at x(u,v).

6.3. Transitive Closure. As was seen in the previous section, it would be useful and save
computation time to peg as many variables as possible. This can be done by computing
the transitive closure of the directed graph consisting of node set N and arc set A(P0, P1)
of (6.3). The transitive closure of (N, A(P0, P1)) is a directed graph (N, Ā) such that
(i, j) ∈ Ā if and only if there is a directed path from i to j in A(P0, P1). Once we have
made the transitive closure, the sets used in the improved pegging test are readily obtained
by

S1 := {s} ∪ { i ∈ N | (i, s) ∈ Ā }, T1 := {t} ∪ { j ∈ N | (t, j) ∈ Ā }
S0 := {s} ∪ { i ∈ N | (s, i) ∈ Ā }, T0 := {t} ∪ { j ∈ N | (j, t) ∈ Ā }.
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We apply the well-known algorithm for computing the transitive closure proposed by
Warshall in 1962, see e.g., Section 19.3 of Sedgewick [24].

7. Subgradient Method for Lagrangian Dual Problem

For the sake of simplicity we abbreviate ω(LR(u,v, P0, P1)) to ω(u,v) in this section.
Lagrangian dual problem, denoted by (LD), is a problem for finding the smallest upper
bound of ω(P ). Namely, it searches for a nonnegative multiplier vector (u, v) that mini-
mizes ω(u, v):

(LD)
∣∣∣∣

minimize ω(u,v)
subject to u, v ≥ 0.

The function ω(u,v) is piecewise linear convex and not differentiable on the intersection of
pieces. One of the most widely used methods for this problem is the subgradient method.

Definition 7.1. (gu, gv) is said to be a subgradient of ω at (ū, v̄) ≥ 0 when

ω(ū, v̄) + 〈gu,u − ū〉 + 〈gv, v − v̄〉 ≤ ω(u,v)

holds for any (u, v) ≥ 0, where 〈·, ·〉 means the inner product.

The following lemma is well known.

Lemma 7.2. Let x(u,v) denote an optimal solution of the Lagrangian relaxation problem
(LR(u,v, P0, P1)). Then (gu, gv) such that

gu
ijk := 1 − x(u,v)ij − x(u,v)jk + x(u,v)ik for (i, j, k) ∈ U

gv
ijk := 0 + x(u,v)ij + x(u,v)jk − x(u,v)ik for (i, j, k) ∈ V

is a subgradient of ω at (u,v).

We use the following rule to update the multiplier vector (u,v) to the next iterate
(u+, v+).

u+
ijk := max

{
0, uijk − µ

ω(u,v) − ωlow

‖(gu, gv)‖2
gu
ijk

}
for (i, j, k) ∈ U(7.1)

v+
ijk := max

{
0, vijk − µ

ω(u,v) − ωlow

‖(gu, gv)‖2
gv
ijk

}
for (i, j, k) ∈ V ,(7.2)

where µ is a step size control parameter initially set to 2 and ‖ · ‖ is the Euclidean norm.
It is known that if ωlow in the update formulas is replaced by the optimal value ω(P ), the
sequence generated will converge to an optimal solution of the Lagrangian dual problem
(LD), see e.g., [12]. However the value ω(u, v) does not necessarily decrease when the
multiplier vector is updated. We count the number of consecutive failures to decrease the
value, and when it amounts to 5, we halve the step size control parameter µ.

When µ falls below 0.005, we increment the constraint index sets U and V and reset µ
to its initial value 2. See Section 9 for the details.

8. Heuristics for Good Incumbents

For a given n × n binary matrix X := [xij ](i,j)∈N2 let wi :=
∑

j∈N xij −
∑

j∈N xji,
row-column difference, for each i ∈ N . Ali et al. [1] showed the following lemma and used
it in their linear ordering problem formulation.

Lemma 8.1. Let X := [xij ](i,j)∈N2 be an n×n binary matrix with zero diagonal elements.
Then {w1, w2, . . . , wn} ranges over {n− 1, n− 3, . . . ,−(n− 3),−(n− 1)} if and only if X
represents a linear ordering.
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When the matrix X satisfies the antisymmetry, i.e., xji = 1 − xij , the row-column
difference wi could be replaced by the row sum ri :=

∑
j∈N xij , which is called the Copeland

score.

Corollary 8.2. Suppose that n×n binary matrix X := [xij ](i,j)∈N2 satisfies the antisym-
metry and has zero diagonal elements. Then the row sum ri :=

∑
j∈N xij ranges over

{n − 1, n − 2, . . . , 1, 0} if and only if X represents a linear ordering.

Proof. Since xji = 1 − xij , we see that wi = 2ri − n + 1 holds. Substituting this for wi in
Lemma 8.1 completes the proof. !

For a solution x(u,v) of (LR(u,v, P0, P1)), let X̄ := [x̄ij ](i,j)∈N2 be the matrix such
that

(8.1) x̄ij :=






x(u,v)ij for i < j

0 for i = j

1 − x(u,v)ji for i > j.

The row sum ri :=
∑

j∈N x̄ij of X̄ is given by

(8.2) ri =
∑

j:j>i

x(u,v)ij −
∑

j:j<i

x(u,v)ji + i − 1.

It is reasonable to think that item with a larger value of ri should be ranked higher.
However, ri may not accurately reflect the information about which variables are pegged,
and it could happen that ri < rj even when xij has been pegged at one or xji at zero.
The descending ordering of the values of ri may violate the order that we have known is
met by every optimal solution. On the other hand, the transitive closure B̄ of the arc set

B := { (i, j) | (j, i) ∈ P0 or (i, j) ∈ P1 }.
reflects P0 and P1 precisely. Namely, the row-column difference w̄i of its adjacency matrix
satisfies

w̄i > w̄j if (j, i) ∈ P0 or (i, j) ∈ P1.

However, lots of row-column differences may fall into a tie before the pegged variables
build up.

For a pegged variable xij , let δij be the difference of the positions of item i and j in
the optimal linear ordering π̂, i.e., δij := |π̂−1(i)− π̂−1(j)|. Clearly for k = 1, 2, . . . , n− 1,
there are (n − k) pairs such that δij = k. We consider the variables pegged by the first
application of the pegging test. Figure 1 is a scatter plot of

|{ (i, j) ∈ N2
< | δij = k, xij is pegged by the first application of the pegging test }|

n − k

versus k for k = 1, 2, . . . n − 1 for the data DsumC of n = 347 items. We observed that
all pairs with δij ≥ 120 and 99% of pairs with δij ≥ 42 were pegged by only the first
application of the pegging test. This confirms that w̄i is credible as the sorting key.

Then we propose to sort the items according to the two keys: w̄i as the primary key
and ri as the secondary key, which will serve as a tie breaker. The sorting can be done by
first sorting according to the secondary key, and then according to the primary key by a
stable sorting algorithm, e.g., bubble sort. See for example [24].

As heuristics for a good incumbent we first arrange the items as above, and then apply
a local search for a further improvement. We observed from some preliminary experiment
that 2-opt or 3-opt heuristics is not worth their computational cost, which agrees with the
observation reported in Belloni and Lucena [3]. Then we use the following simple heuristic
method. Given a linear ordering π, we take an item, say i = π−1(k), at the kth position,
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Figure 1. Percentage of pegged variables with δij = k vs k

and search for a position in the range of [max{1, k − β},min{n, k + β}] such that moving
item i to the position improves the objective function value, where β is a fixed positive
number. Then we accept it as a temporary incumbent and take the next item π−1(k + 1)
for a possible further improvement.

9. Feasibility Check and Increment of U and V

When µ becomes less than 0.005, we decide that there is no chance of improving the
upper bound unless we expand U or V . We add the transitivity constraints violated by
the latest optimal solution x(u,v) of (LR(u,v, P0, P1)). To avoid checking an enormous
number of transitivity constraints one by one, we first make the arc set

A(x(u,v)) : = { (i, j) ∈ N2
!= | x(u,v)ij = 1 or x(u, v)ji = 0 }

= { (i, j) ∈ N2
!= | x̄ij = 1 },

where x̄ij is defined by (8.1). Then we compute row sum ri of (8.2), sort the items
according to it, and then look for a pair of items such that

rj < ri and (j, i) ∈ A(x(u,v)),

which we call an upward arc. Tracing the arcs of A(x(u,v)) starting from an upward arc,
we look for another item, say k, such that the three arcs (j, i), (i, k) and (k, j) form a
directed cycle. Clearly this triple violates the transitivity constraint. Furthermore, we see
the following lemma.

Lemma 9.1. The arc set A(x(u,v)) contains no upward arcs if and only if x(u,v) is a
linear ordering.

Proof. Suppose that x(u,v) is not a linear ordering. Then it violates one of the transitivity
constraints. When xij + xjk − xik ≤ 1 is violated, A(x(u,v)) contains a directed cycle
{(i, j), (j, k), (k, i)} of length three, and at least one of its arcs form an upward arc. We
also see that there is a directed cycle {(i, k), (k, j), (j, i)} when −xij − xjk + xik ≤ 0 is
violated.

When x(u,v) is a linear ordering, its row sum ri of X̄ ranges over {n−1, n−2, . . . , 1, 0}
as in Corollary 8.2. Rearrange the columns and rows simultaneously in the descending
order of ri. Note that the diagonal elements are zero. Clearly the first row consists of
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a single zero followed by n − 1 ones, i.e., (0, 1, 1, . . . , 1︸ ︷︷ ︸
n−1

). As the induction hypothesis we

assume that the hth row is h zeros followed by n − h ones for h = 1, 2, . . . , k. The case of
k = 3 is shown below, where diagonal elements are underlined.

X̄ =





0 1 1 1 . . . 1
0 0 1 1 . . . 1
0 0 0 1 . . . 1
0 0 0 0
...

...
...

0 0 0





The k +1st row must have k +1 zeros and n−k−1 ones, and the first k elements are zero
by the antisymmetry and the k + 1st element, which is a diagonal element, is also zero.
Therefore it is k +1 zeros followed by n−k−1 ones, i.e., (0, 0, . . . , 0, 0︸ ︷︷ ︸

k+1

, 1, 1, . . . , 1︸ ︷︷ ︸
n−k−1

). We see

that the matrix X̄ is upper triangular, meaning that A(x(u,v)) has no upward arcs. !

10. Algorithm

The algorithm is composed of the inner and outer cycles. The inner cycle consisting of
Step 2 to 7 generates a sequence of Lagrangian multiplier vectors (u,v), and a sequence
of incumbent solutions and values ωlow. Some variables are pegged there. The outer cycle
expands the constraint index sets U and V .
Step 1 (Initialization)

(a) Arrange the items according to the row-column difference
∑

j∈N cij−
∑

j∈N cji

of cost coefficients and let the linear ordering obtained be the first incumbent
solution and let ωlow be its objective function value.

(b) For each consecutive triple (i, j, k) in the incumbent linear ordering, add the
transitivity constraints of type 1 and 2 to U and V , respectively.

(c) l ← 0, µ ← 2.0, (u,v) ← (0,0).
(d) P0, P1 ← ∅.
(e) ωup ← +∞.

Step 2 (Solving (LR(u,v, P0, P1)))
(a) Compute r(u,v)ij by (4.1).
(b) Set x(u,v)ij according to (4.2).
(c) ωup ← min{ωup,ω(LR(u,v, P0, P1))}.
(d) If ωup is not improved, l ← l + 1. Otherwise, l ← 0.

Step 3 (Termination)
(a) If x(u,v) satisfies the optimality condition in Corollary 5.3 with (u, v), then

terminate.
(b) If ωup −ωlow < ε, then terminate, where ε is a predetermined tolerance to the

duality gap.
Step 4 (Heuristics)

(a) Apply the heuristic method in Section 8 to x(u,v) for a better solution x̃.
(b) ωlow ← max{ωlow, objective function value of x̃}.

Step 5 (Pegging Test)
(a) When ωup − ωlow < η, then apply the improved pegging test (or the pegging

test when P0 = P1 = ∅).
(b) Let P0 and P1 be the index sets of variables pegged at zero and one, respec-

tively.
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Step 6 (Update of µ)
(a) If µ ≤ 0.005, then µ ← 2.0 and go to Step 8.
(b) If l reaches 5, µ ← µ/2.

Step 7 (Update of (u, v))
(a) Update (u, v) according to (7.1) and (7.2).
(b) Go to Step 2.

Step 8 (Update of U, V )
(a) Find the transitivity constraints violated by x(u,v) and add them to U and

V .
(b) uijk, vijk ← 0 for newly added indices (i, j, k).
(c) Go to Step 2.

11. Computational Results

We coded the algorithm in Java, and run it on a PC with an Intel i3, 3.33 GHz processor
and 2 GB of memory. The problem DsumC that we solved is a minimum violations ranking
problem provided by K. Pedings, College of Charleston. The cost matrix C is based on
the point differential matrix of 347 teams in NCAA college basketball for the 2008–2009
season. The problem has 60,031 binary variables and 13,807,130 transitivity constraints.
Note that since the cost matrix is an integer matrix, objective function takes an integer
value. See Pedings et al. [22] for the details.

Table 1 to 3 show the results in which
• iteration shows the number of updates of the Lagrangian multiplier vector (u, v),
• lower bound shows the incumbent value ωlow,
• upper bound shows the upper bound ωup,
• duality gap is the difference ωup − ωlow,
• |U | + |V | shows the number of transitivity constraints in U ∪ V ,
• %1 shows the percentage of |U |+|V | to the total number of transitivity constraints,
• |P0| + |P1| shows the number of pegged variables,
• %2 shows the percentage of the pegged variables,
• time(sec) shows the computation time in second.

These statistics are given for every 500th iteration.
Table 1 gives the result of the algorithm without pegging tests. After 2212 iterations,

the duality gap reduced to less than one, and the incumbent at hand turned out to be
an optimal solution. Note that the transitivity constraints being considered account for
0.08%, just a fraction of a percent of the total.

Since the pegging test places a burden on the computation, we did it every 500th
iteration. Table 2 gives the result of the algorithm with the ordinary pegging test. It
terminated after 2141 iterations in 11.40 seconds, slightly shorter than the computation
time when no pegging test was done. Note that about 92% of the variables were eventually
pegged.

Table 3 shows the result of the algorithm with the improved pegging test. We applied
the ordinary pegging test at the 500th iteration and then the improved pegging test from
the 1000th iteration at intervals of 500 iterations. The algorithm found an optimal solution
at the 316th iteration, and proved its optimality at the 2193th iteration when the duality
gap fell below one. It took the longest computation time due to the burden of the improved
pegging test, however, about 95% of the variables were eventually pegged. If we failed to
prove the optimality of the incumbent solution by an abortion of computation, this would
still provide much information about an optimal solution. We observed that U and V
were updated for the first time in the 51th itertion, which led to a sharp decline of the
upper bound.
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Table 4 shows the result for the problem DavgC provided by Pedings based on the same
data as DsumC. The difference is that the cost matrix consists of fractional cost coefficients.
We stopped the computation after 5772 iterations when the duality gap reduced to less
than one. The final incumbent may not be optimal, however, more than 95% of variables
were pegged.

Table 1. Result for DsumC : no pegging test

lower upper duality time
iteration bound bound gap |U | + |V | %1 |P0| + |P1| %2 (sec)

1 276183.00 276629.00 446.00 345 0.00 0 0.00 0.01
500 276219.00 276221.38 2.38 10410 0.08 0 0.00 2.35

1000 276219.00 276220.63 1.63 10693 0.08 0 0.00 4.91
1500 276219.00 276220.23 1.23 10865 0.08 0 0.00 7.60
2000 276219.00 276220.04 1.04 11016 0.08 0 0.00 10.32
2212 276219.00 276219.99 0.99 11060 0.08 0 0.00 11.48

Table 2. Result for DsumC : ordinary pegging test

lower upper duality time
iteration bound bound gap |U | + |V | %1 |P0| + |P1| %2 (sec)

1 276183.00 276629.00 446.00 345 0.00 0 0.00 0.01
500 276219.00 276221.38 2.38 10410 0.08 50836 84.68 2.39

1000 276219.00 276220.63 1.63 10693 0.08 54421 90.65 5.08
1500 276219.00 276220.27 1.27 10916 0.08 55076 91.75 7.87
2000 276219.00 276220.04 1.04 11015 0.08 55386 92.26 10.66
2141 276219.00 276219.99 0.99 11073 0.08 55386 92.26 11.40

Table 3. Result for DsumC : improved pegging test

lower upper duality time
iteration bound bound gap |U | + |V | %1 |P0| + |P1| %2 (sec)

1 276183.00 276629.00 446.00 345 0.00 0 0.00 0.02
500 276219.00 276221.38 2.38 10410 0.08 50836 84.68 2.48

1000 276219.00 276220.63 1.63 10693 0.08 55953 93.21 8.66
1500 276219.00 276220.30 1.30 10882 0.08 56760 94.55 13.16
2000 276219.00 276220.08 1.08 11046 0.08 57156 95.21 17.36
2193 276219.00 276219.99 0.99 11091 0.08 57156 95.21 18.45

The problems we solved are so limited that more well-organized experiments should be
carried out before any conclusion is made.
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Table 4. Result for DavgC

lower upper duality time
iteration bound bound gap |U | + |V | %1 |P0| + |P1| %2 (sec)

1 276269.00 276727.00 458.00 345 0.00 0 0.00 0.02
500 276303.00 276306.05 3.05 11248 0.08 47290 78.78 2.28

1000 276303.00 276305.31 2.31 11548 0.08 53840 89.69 9.27
1500 276303.00 276304.95 1.95 11780 0.09 55361 92.22 14.31
2000 276303.00 276304.77 1.77 11948 0.09 55919 93.15 18.83
2500 276303.00 276304.62 1.62 12025 0.09 55930 93.17 23.22
3000 276303.00 276304.45 1.45 12062 0.09 56384 93.92 27.64
3500 276303.00 276304.35 1.35 12089 0.09 56570 94.23 31.88
4000 276303.00 276304.24 1.24 12138 0.09 56747 94.53 35.94
4500 276303.00 276304.15 1.15 12154 0.09 56896 94.78 39.96
5000 276303.00 276304.09 1.09 12171 0.09 56996 94.94 44.06
5500 276303.00 276304.02 1.02 12187 0.09 57122 95.15 47.88
5772 276303.00 276303.99 0.99 12191 0.09 57122 95.15 49.24
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