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Abstract

The complementarity problem over a symmetric cone (that we call the Symmetric Cone Com-
plementarity Problem, or the SCCP) has received much attention of researchers in the last decade.
Many of studies done on the SCCP can be categorized into the three research themes, interior point
methods for the SCCP, merit or smoothing function methods for the SCCP, and various properties
of the SCCP. In this paper, we will provide a brief survey on the recent developments on these three
themes.

1 Introduction

The complementarity problem over a symmetric cone (that we call the Symmetric Cone Complementarity
Problem, or the SCCP) has received much attention of researchers in the last decade. In this chapter,
we will provide a brief survey on the recent developments related to the problem.

Let V be a finite dimensional real vector space with an inner product denoted by 〈·, ·〉 and K be a
symmetric cone in V which is a closed convex cone with nonempty interior and self-dual, i.e., satisfies

K = K∗ := {x ∈ V | 〈x, y〉 ≥ 0 for all y ∈ K}. (1)

A detailed definition of the symmetric cone will be given in Section 2.

A typical SCCP is the following standard SCCP of the form
∣∣∣∣

Find (x, y) ∈ K ×K
s.t. y − ψ(x) = 0, x ◦ y = 0 (2)

where ψ : Ω → V, Ω is an open domain containing K and ψ is differentiable on Ω. When the function
ψ is affine, we call the problem the standard linear SCCP. Many studies have focused on more general
problem, the implicit SCCP, of the form

∣∣∣∣
Find (x, y, z) ∈ K ×K ×)m

s.t. F (x, y, z) = 0, 〈x, y〉 = 0 (3)
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where F : Ω× )m → V × )m, Ω in an open domain containing K × K × )m and F is differentiable on
Ω. When the function F is affine, we call the problem the implicit linear SCCP given by

∣∣∣∣
Find (x, y, z) ∈ K ×K ×)m

s.t. Px + Qy + Rz − a = 0, 〈x, y〉 = 0 (4)

where a is a vector in V × )m, P : V → V × )m, Q : V → V × )m and R : )m → V × )m are linear
operators. Another important special case of the implicit SCCP is so called the vertical SCCP of the
form ∣∣∣∣

Find x ∈ V
s.t. F (x) ∈ K, G(x) ∈ K, 〈F (x), G(x)〉 = 0 (5)

where F : V → V and G : V → V are differentiable. The vertical SCCP includes the standard SCCP as
a special case.

We often assume that the functions associated with the above problems to be monotone. For the implicit
SCCP (3), if the function F satisfies

(x, y, z), (x′, y′, z′) ∈ K ×K ×)m,
F (x, y, z) = F (x′, y′, z′)

}
=⇒ 〈x− x′, y − y′〉 ≥ 0 (6)

it is said to be monotone and we call the problem the monotone implicit SCCP. The monotone property
(6) implies

x, x′ ∈ K =⇒ 〈F (x)− F (x′), G(x)−G(x′)〉 ≥ 0. (7)

for the functions F and G of the vertical SCCP (5),

x, x′ ∈ K =⇒ 〈x− x′,ψ(x)− ψ(x′)〉 ≥ 0. (8)

for ψ of the standard SCCP (2), and

Px + Qy + Rz = 0 =⇒ 〈x, y〉 ≥ 0 (9)

for P , Q and R of the implicit linear SCCP (4).

Note that the monotone implicit linear SCCP (4) is a generalization of linear optimization problems over
symmetric cones. Consider a primal-dual pair of linear optimization problems over a symmetric cone
defined by

(P ) min 〈c, x〉, s.t. Ax = b, x ∈ K,

(D) max bT z, s.t. AT z + y = c, y ∈ K

where A : V → )m is a linear operator, b ∈ )m and c ∈ V. Let αP and αD denote the primal and dual
optimal objective values, respectively, i.e.,

αP := inf{〈c, x〉 | Ax = b, x ∈ K},
αD := sup{bT z | AT z + y = c, y ∈ K}.

It is known that the following duality theorem holds for the problems (P) and (D) (see Theorems 3.2.6
and 3.2.8 of [105]).

Theorem 1.1 (Duality theorem of the conic optimization). If the dual problem (D) is strongly feasible
(i.e., there exists a (y, z) ∈ )m × V such that AT z + y = c and y ∈ intK) and the primal problem (P)
is feasible, then the primal problem (P) has an optimal solution. Similarly, if the primal problem (P) is
strongly feasible (i.e., there exists an x ∈ V such that Ax = b and x ∈ intK) and the dual problem (D)
is feasible, then the dual problem (D) has an optimal solution. In either case, αP = αD.
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For any primal feasible solution x of (P) and any dual feasible solution (y, z) of (D), we see that

〈c, x〉 − bT z = 〈AT z + y, x〉 − (Ax)T z = 〈y, x〉 ≥ 0

where the last inequality follows from x ∈ K, y ∈ K and the self-duality (1) of K. Therefore, if we define

P :=
(

O
A

)
, Q :=

(
I
O

)
, R :=

(
AT

O

)
, a :=

(
c
b

)
,

then P , Q and R satisfy
Px + Qy + Rz = 0 =⇒ 〈x, y〉 = 0

which implies that Px+Qy+Rz is monotone and the corresponding monotone implicit linear SCCP (4)
is the problem to find an optimal solution of the primal-dual optimization problems over the symmetric
cone.

In this chapter, a brief survey of the recent developments on the SCCP will be provided focusing on the
following three aspects:

- Interior point methods for the SCCP.

- Merit or smoothing function methods for the SCCP.

- Properties of the SCCP.

After giving a brief introduction to Euclidean Jordan algebras in Section 2, we review some studies
placed in the above three categories, respectively, in Sections 3, 4 and 5. We will give some concluding
remarks in Section 6.

Before closing this section, we explain some symbols which are used in this chapter. For a given set
S ⊆ V, intS and convS denote the interior and the convex hull of S, respectively.

2 Euclidean Jordan algebra

In this section, we give a brief introduction to Euclidean Jordan algebras. See the chapter by Farid
Alizadeh in this handbook or the monograph by Faraut and Korányi [27] for a more comprehensive
introduction.

A Euclidean Jordan algebra is a triple (V, ◦, 〈·, ·〉) where (V, 〈·, ·〉) is a n-dimensional inner product space
over ) and (x, y) ,→ x ◦ y on V is a bilinear mapping which satisfies the following conditions for all
x, y ∈ V: 





(i) x ◦ y = y ◦ x,
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) where x2 = x ◦ x,
(iii) 〈x ◦ y, z〉 = 〈x, y ◦ z〉.

(10)

We call x ◦ y the Jordan product of x and y. Note that (x ◦ y) ◦ w -= x ◦ (y ◦ w) in general. We assume
that there exists an element e (called as the identity element) such that x ◦ e = e ◦ x = x for all x ∈ V.

The rank of (V, ◦, 〈·, ·〉) is defined as

r := max{deg(x) | x ∈ V}
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where deg(x) is the degree of x ∈ V given by

deg(x) := min
{
k | {e, x, x2, . . . , xk} are linearly dependent

}
.

The symmetric cone K is a self-dual (i.e., K satisfies (1)) closed convex cone with nonempty interior and
homogeneous (i.e., for all x, y ∈ intK, there exists a invertible linear map G which satisfies G(x) = y
and G(K) = K). By Theorem III 2.1 in [27], the symmetric cone K coincides with the set of squares
{x2 | x ∈ V} of some Euclidean Jordan algebra V.

For any x ∈ V, the Lyapunov transformation Lx : V → V is defined as Lxy = x ◦ y for all y ∈ V. It
follows from (i) and (iii) of (10) that the Lyapunov transformation is symmetric, i.e., 〈Lxy, z〉 = 〈y, Lxz〉
holds for all y, z ∈ V. Especially, Lxe = x and Lxx = x2 hold for all x ∈ V. Using the Lyapunov
transformation, the quadratic representation of x ∈ V is defined as

Qx = 2L2
x − Lx2 . (11)

For any x ∈ K, Lx is positive semidefinite and it holds that

〈x, y〉 = 0 ⇐⇒ x ◦ y = 0 (12)

for any x, y ∈ K (see Lemma 8.3.5 of [1]).

An element c ∈ V is an idempotent if c2 = c -= 0, which is also primitive if it cannot be written as a
sum of two idempotents. A complete system of orthogonal idempotents is a finite set {c1, c2, · · · , ck} of
idempotents where ci◦cj = 0 for all i -= j, and c1+c2+· · ·+ck = e. A Jordan frame is a complete system
of orthogonal primitive idempotents in V. The following theorem gives us a spectral decomposition for
the elements in a Euclidean Jordan algebra (see Theorem III.1.2 of [27]).

Theorem 2.1 (Spectral decomposition theorem). Let (V, ◦, 〈·, ·〉) be a Euclidean Jordan algebra with
rank r. Then for any x ∈ V, there exist a Jordan frame {c1, c2, . . . , cr} and real numbers λi(x) (i =
1, 2, . . . , r) such that

x =
r∑

i=1

λi(x)ci.

The numbers λi(x) (i = 1, 2, . . . , r) are called the eigenvalues of x, which are uniquely determined by x.

Note that the Jordan frame in the above theorem depends on x, but we omit the dependence in order
to simplify the notation. If two elements x and y share the same Jordan frames in the decompositions
in Theorem 2.1 then they operator commute, i.e., they satisfy LxLy = LyLx. An eigenvalue λi(x) is
continuous with respect to x. The trace of x is defined as tr (x) =

∑r
i=1 λi and the determinant of x is

defined as det (x) =
∏r

i=1 λi. We also see that x ∈ K (respectively, x ∈ intK) if and only if λi(x) ≥ 0
(respectively, λi(x) > 0) for all i = 1, 2, . . . , r. For any x ∈ V having the spectral decomposition
x =

∑r
i=1 λi(x)ci, we denote

x1/2 =
√

x :=
r∑

i=1

√
λi(x)ci if λi(x) ≥ 0 for all i = 1, 2, . . . , r,

x−1 :=
r∑

i=1

λi(x)−1ci if λi(x) -= 0 for all i = 1, 2, . . . , r.

Now we introduce another decomposition, the Peirce decomposition, on the space V (see Theorem IV.2.1
of [27]).
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Theorem 2.2 (Peirce decomposition theorem). Let {c1, . . . , cr} be a Jordan frame. Define

Vi := {θci | θ ∈ )},

Vij :=
{

x ∈ V | ci ◦ x =
1
2
x = cj ◦ x

}
(i < j).

Then for any x ∈ V, there exists xi ∈ ), ci ∈ Vi and xij ∈ Vij (i < j),

x =
r∑

i=1

xici +
∑

i<j

xij .

Fix a Jordan frame {c1, c2, . . . , cl} and define

V(l) := {x ∈ V | x ◦ (c1 + c2 + · · ·+ cl) = x}

for 1 ≤ l ≤ r. Corresponding to V(l), we consider the (orthogonal) projection P (l) : V → V(l). For a
given linear transformation L : V → V, we denote L{c1,c2,...,cl} the composite transformation P (l) • L :
V → V(l). We call L{c1,c2,...,cl} the principal subtransformation of L corresponding to {c1, c2, . . . , cl} and
the determinant of L{c1,c2,...,cl} a principal minor of L.

Typical examples of Euclidean Jordan algebras are

(i) Euclidean Jordan algebra of n-dimensional vectors where

V = )n, K = )n
+ := {x ∈ )n | x ≥ 0},

(ii) Euclidean Jordan algebra of n-dimensional symmetric matrices where

V = Sn := {X ∈ )n×n | X = XT }, K = Sn
+ := {X ∈ Sn | X 1 O}

and X 1 O denotes that X is a positive semidefinite matrix, and

(iii) Euclidean Jordan algebra of quadratic forms where

V = )n, K = Ln := {(x1, x2) ∈ ) × )n−1 | ‖x2‖ ≤ x1}

and ‖ · ‖ denotes the Euclidean norm.

In this chapter, we call the SCCP the nonlinear complementarity problem (NCP) when V and K are
given in (i), the semidefinite complementarity problem (SDCP) when V and K are given in (ii) and the
second order cone complementarity problem (SOCCP) when V and K are given in (iii), respectively.

3 Interior-point methods for the SCCP

The first interior point algorithm for solving the SCCP has been provided in Chapter 7 of Nesterov
and Nemirovski’s seminal book [88] while the connection to the Euclidean Jordan algebra has not been
pointed out clearly. The algorithm is an interior point algorithm based on a self-concordant barrier only
in the variables x, which is closely related to symmetric cones [43]. The polynomial complexity bound
and a way to find an appropriate initial point have been discussed.

5



After about four years from the publication of [88], in 1997, a first interior point algorithm in the setting
of a Euclidean Jordan algebra has been given by Faybusovich [28] which employs the barrier function in
x and y of the form

µ〈x, y〉 − log det (x)− log det (y).

Independently of Faybusovich’s work, an interior point algorithm for solving the n-dimensional monotone
implicit linear SDCP (4) (called as the monotone implicit SDLCP) has been provided by Kojima, Shindoh
and Hara [53]. In the paper, after showing that the convex quadratic semidefinite optimization problem
can be cast both into a monotone SDLCP and into a semidefinite optimization problem (called as the
SDP), the authors have mentioned that

This fact itself never denies the significance of the monotone SDLCP because the direct
SDLCP formulation is of a smaller size than the SDP formulation but raises questions like how
general the monotone SDLCP is and whether it is essentially different from the semidefinite
optimization problem. In their recent paper [54], Kojima, Shida and Shindoh showed that
the monotone SDLCP is reducible to a SDP involving an additional m-dimensional variable
vector and an (m + 1)× (m + 1) variable symmetric matrix, where m = n(n + 1)/2.

The convex cone K considered in [54] is quite general, i.e., K is just nonempty closed and convex.
Therefore, the raised questions in [53] are also the questions to the monotone implicit linear SCCP (4).

In fact, many results on the primal-dual interior point algorithms for solving the SDP can be easily
extended to solve the monotone implicit linear SDCP (4) (i.e., monotone implicit SDLCP), and then
the extended results can be further extended to solve the monotone implicit linear SCCP (4) using the
fundamental results established by Alizadeh and Schmieta [1, 107] for the primal and dual symmetric
cone linear optimization problems.

This may be a reason why there are far fewer papers on interior point algorithms for solving the monotone
implicit linear SCCP (4) than those for solving the primal and dual symmetric cone linear optimization
problems.

Let us consider a more general problem, the monotone implicit SCCP (3) satisfying (6). In view of the
property (12), the problem (3) is equivalent to find a (x, y, z) ∈ K ×K ×)m, i.e., it satisfies

x ◦ y = 0, F (x, y, z) = 0. (13)

Any interior point algorithm for solving the problem generates a sequence {(xk, yk, zk)} ⊂ K×K×)m

satisfying xk ∈ intK and yk ∈ intK (k = 1, 2, . . .). Let (x0, y0, z0) ∈ intK× intK×)m be an arbitrary
initial point. It is not too often that the initial point (x0, y0, z0) is a feasible interior point of (3) such
that F (x0, y0, z0) = 0. So in practice, we have to assume that F (x0, y0, z0) -= 0. Obviously, the system

x ◦ y = x0 ◦ y0, F (x, y, z) = F (x0, y0, z0) (14)

has a trivial solution (x0, y0, z0) while the target system is given by (13). Let H : intK× intK×)m →
V × V ×)m be the so-called interior point map which is defined as

H(x, y, z) := (x ◦ y, F (x, y, z)) . (15)

Then the systems (14) and (13) can be represented using H as

H(x, y, z) = (x0 ◦ y0, F (x0, y0, z0)) (16)

and
H(x, y, z) = (0, 0) , (17)
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respectively. Introducing a parameter µ ∈ (0, 1], consider the system

H(x, y, z) = µ (x0 ◦ y0, F (x0, y0, z0)) . (18)

The system has a trivial solution when µ = 1. If the system (18) has the unique solution (x(µ), y(µ), z(µ))
for each µ ∈ (0, 1] and (x(µ), y(µ), z(µ)) is continuous at µ ∈ (0, 1), then we may numerically trace the
path {(x(µ), y(µ)), z(µ)} from the initial point (x0, y0, z0) to a solution of the monotone implicit SCCP
(3). This is a basic idea of the (infeasible) interior point algorithm for the SCCP.

Most of studies related to the interior point algorithms for the SCCP have dealt with one of the following
subjects:

- The interior point map and its properties.

- Algorithms and their convergence properties.

In what follows, we observe some recent results on the above subjects.

3.1 Interior point map and its properties

It is important to observe the properties of the interior point map H of (15) to find whether the
system (18) has the unique solution (x(µ), y(µ), z(µ)) for each µ ∈ (0, 1]. If it holds then the set
{(x(µ), y(µ), z(µ)) | µ ∈ (0, 1]} will give us an (infeasible) interior point trajectory of the SCCP.

For the monotone SDCP, Shida, Shindoh and Kojima [108] investigated the existence and continuity of
the (infeasible) interior point trajectory in a general setting of the problem. On the other hand, Monteiro
[83] showed a vast set of conclusions concerning the interior point map for the monotone SDCP. Based
on the paper [83], the following results have been shown in [127] for the monotone implicit SCCP (3)
satisfying (6).

Let U be a subset of intK × intK defined by

U := {(x, y) ∈ intK × intK : x ◦ y ∈ intK}.

The following assumption has been imposed in [127].

Assumption 3.1. (i) F : K ×K ×)m → V ×)m is monotone on its domain, i.e., F satisfies (6).

(ii) F : K ×K ×)m → V ×)m is z-bounded on its domain, i.e., for any sequence {(xk, yk, zk)} in the
domain of F , if {((xk, yk)} and {F (xk, yk, zk)} are bounded then the sequence {zk} is also bounded.

(iii) F : K × K × )m → V × )m is z-injective on its domain, i.e., if (x, y, z) and (x, y, z′) lie in the
domain of F and satisfy F (x, y, z) = F (x, y, z′), then z = z′ holds.

Under the assumption above, the homeomorphism of the interior point map H has been shown (see
Theorem 3.10 of [127]).

Theorem 3.2 (Homeomorphism of the interior point map). Suppose that a continuous map F : K×K×
)m → V×)m satisfies Assumption 3.1. Then the map H defined by (15) maps U×)m homeomorphically
onto K × F (U ×)m).
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The theorem above ensures that if the monotone implicit SCCP (3) has an interior feasible point
(x̄, ȳ, z̄) ∈ intK × intK ×)m which satisfies

x̄ ◦ ȳ ∈ intK and F (x̄, ȳ, z̄) = 0

and if we have a bounded path {p(µ) | µ ∈ [0, 1]} ⊆ K × F (U ∩ )m) such that

p(0) = 0 and p(µ) ∈ intK × F (U ×)m)

then there exists a unique path {(x(µ), y(µ), z(µ)) | µ ∈ (0, 1]} ⊆ intK × intK ×)m for which

H(x(µ), y(µ), z(µ)) = p(µ) for all µ ∈ (0, 1]

holds and whose any accumulation point is a solution of the monotone implicit SCCP (3). Thus the path
{(x(µ), y(µ), z(µ)) | µ ∈ (0, 1]} is an (infeasible) interior point trajectory (see Corollary 4.4 of [127]). In
addition, a condition on F so that we can take

p(µ) = µ (x0 ◦ y0, F (x0, y0, z0))

as in (18) has been provided in [127]. Note that if x0 ◦ y0 = e, we sometimes call the (infeasible) interior
point trajectory the (infeasible) central trajectory or (infeasible) central path.

3.2 Algorithms and their convergence properties

In what follows, we will describe outlines of several interior point algorithms which are based on tracing
the (infeasible) interior point trajectory {(x(µ), y(µ), z(µ)) | µ ∈ (0, 1]}.

3.2.1 Infeasible interior point algorithm

Potra [101] proposed an infeasible interior point algorithm for solving the monotone implicit linear SCCP
(4). The algorithm is a generalization of the corrector-predictor approach proposed in [41, 100]. The
outline of the algorithm is as follows.

Let (µ0, x0, y0, z0) be a starting point satisfying µ0 = 1 and x0 ◦ y0 = e. At each iteration (x, y, z), the
target system is given by

H(x, y, z) = µk (x0 ◦ y0, 0) = µk (e, 0) (19)

where µk ∈ (0, µ0]. Applying Newton’s method to the system (19) at (x, y, z) leads us to the linear
system

y ◦∆x + ∆y ◦ x = γµke− x ◦ y,
P∆x + Q∆y + R∆z = (1− γ)(a− Px−Qy −Rz) (20)

where γ ∈ [0, 1] is a parameter for regulating the feasibility and the complementarity.

Let us choose a p ∈ intK belonging to the commutative class of scalings for (x, y),

C(x, y) = {p ∈ intK | Qpx and Qp−1y operator commute} (21)

where Qp is the quadratic representation of p defined by (11) and consider the scaled quantities

x̃ = Qpx, ỹ = Qp−1y, P̃ = PQp−1 , Q̃ = QQp.
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Since x̃ ◦ ỹ = µke if and only if x ◦ y = µke, the target system (19) can be written under the form

x̃ ◦ ỹ = µke, P̃ x̃ + Q̃ỹ + Rz = a

and the Newton system at (x̃, ỹ, z) is given by

ỹ ◦ ∆̃x + ∆̃y ◦ x̃ = γµke− x̃ ◦ ỹ,

P̃ ∆̃x + Q̃∆̃y + R∆z = (1− γ)(a− Px−Qy −Rz).

Since we have chosen p to be in the the commutative class of scalings C(x, y), the resulting x̃ and ỹ
share the same Jordan frame, the above system has a unique solution (∆̃x, ∆̃y, ∆z) and we obtain a
commutative class of the search directions (∆x,∆y, ∆z) by

(∆x,∆y, ∆z) := (Q−1
p ∆̃x,Q−1

p−1∆̃y, ∆z)

which satisfies (20). The commutative class of the search directions is a subclass of Monteiro and Zhang
family (see [84, 86]) and well used in many interior point algorithms for solving optimization problems
over the symmetric cones.

The algorithm employs the following neighborhood of the infeasible central path

N (β) = {(µ, x, y, z) ∈ (0, µ0]× intK × intK ×)m | σ(x, y, z) ⊂ [βµ, (1/β)µ]} (22)

where a β ∈ (0, 1) is a given parameter, and σ(x, y, z) denotes the set of all eigenvalues of Qx1/2y with
Qx1/2 being the quadratic representation of x1/2 (see [104]). Let λmin(x, y, z) and λmax(x, y, z) be the
minimum and maximum eigenvalues in σ(x, y, z), respectively. By introducing the proximity measure

δ(µ, x, y, z) = max
{

1− λmin(x, y, z)
µ

, 1− µ

λmax(x, y, z)

}
(23)

the neighborhood (22) can be written as

N (β) = {(µ, x, y, z) ∈ (0, µ0]× intK × intK ×)m | δ(µ, x, y, z) ≤ 1− β}.

Each iteration of the algorithm consists of two steps, a corrector step and a predictor step.

The intent of the corrector step is to increase proximity to the central path. We choose γ ∈ [γ, γ̄] and
η = 1 − γ where 0 < γ < γ̄ < 1 are given parameters, compute the search directions (∆x,∆y, ∆z) at
(x, y, z), find

αc := arg min {δ (µ, x + α∆x, y + α∆y, z + α∆z))} ,

set (x, y, z) ← (x, y, z) + αc(∆x,∆y, ∆z) and proceed to the predictor step.

In contrast, the intent of the predictor step is to decrease the complementarity gap as much as pos-
sible while keeping the iterate in N (β). We choose γ = 0 and η = 1, compute the search directions
(∆x,∆y, ∆z) at (x, y, z), find

αp := max {ᾱ | (x, y, z) + α(∆x,∆y, ∆z) ∈ N (β) for each α ∈ [0, ᾱ]} ,

set (x, y, z) ← (x, y, z) + αp(∆x,∆y, ∆z) and proceed to the next iterate.

While the detailed proof has not been proposed, the author asserted that the algorithm generates a
sequence {(µk, xk, yk, yk)} satisfying (xk, yk, yk) ∈ N (β) and the polynomial convergence can be obtained
under general assumptions using general theoretical results from [107] and [104]. It has been also asserted
that the superlinear convergence is proved if the problem has a strictly complementary solution and the
sequence {(xk, yk, yk)} satisfies (xk ◦ yk) /

√
〈xk, yk〉 → 0.

There are several papers on infeasible interior point algorithms for solving the monotone and linear
SDCP, e.g., [53, 98].
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3.2.2 Homogeneous algorithm

Another approach to overcome the difficulty to find a feasible interior starting point is the homogeneous
algorithm proposed in [127] and [128] for solving the monotone standard SCCP (2) satisfying (8), which
is a generalization of the homogeneous algorithm in [2] for the classical symmetric cone K = )n

+.

The homogeneous algorithm is an infeasible interior point algorithm for the homogeneous model given
by

(HCP) Find (x, τ, y, κ) ∈ (K ×)++)× (K ×)+)
s.t. FH(x, τ, y, κ) = 0, (x, τ) ◦H (y,κ) = 0 (24)

where FH : (K ×)++)× (K ×)+) → (V ×)) and (x, τ) ◦H (y,κ) are defined as

FH(x, τ, y,κ) := (y, κ)− ψH(x, τ), ψH(x, τ) := (τψ(x/τ), −〈ψ(x/τ), x〉) (25)

and
(x, τ) ◦H (y, κ) := (x ◦ y, τκ) . (26)

The function ψH has the following property (see Proposition 5.3 of [127]).

Proposition 3.3 (Monotonicity of the homogeneous function ψH). If ψ : K → V is monotone, i.e.,
satisfies (8), then the function ψH is monotone on intK ×)++.

For ease of notation, we use the following symbols

VH := V ×), KH := K ×)+, xH := (x, τ) ∈ VH, yH := (y,κ) ∈ VH, eH := (e, 1).

Note that the set KH is a Cartesian product of two symmetric cones K and )+ given by

KH =
{
x2

H =
(
x2, τ2

)
: xH ∈ VH

}

which implies that KH is the symmetric cone of VH. It can be easily seen that intKH = intK ×)++.

A merit of the homogeneous model is that it can provide certifications on strong feasibility or strong
infeasibility of the original problem by adding the new variables τ and κ. The following theorem has
been shown (see Theorem 5.4 of [127]).

Theorem 3.4 (Properties of the homogeneous model). (i) The HCP (24) is asymptotically feasible,
i.e., there exists a bounded sequence {(x(k)

H , y(k)
H )} ⊆ intKH × intKH such that

lim
k→∞

FH(x(k)
H , y(k)

H ) = lim
k→∞

(
yH − ψH(x(k)

H )
)

= 0.

(ii) the monotone standard SCCP (2) has a solution if and only if the HCP (24) has an asymptotic
solution (x∗H, y∗H) = (x∗, τ∗, y∗,κ∗) with τ∗ > 0. In this case, (x∗/τ∗, y∗/τ∗) is a solution of the
monotone standard SCCP (2).

(iii) Suppose that ψ satisfies the Lipschitz condition on K, i.e., there exists a constant γ ≥ 0 such that

‖ψ(x + h)− ψ(x)‖ ≤ γ‖h‖ for any x ∈ K and h ∈ V such that x + h ∈ K.

If the monotone standard SCCP (2) is strongly infeasible, i.e., there is no sequence {x(k), y(k)} ⊆
intK×intK such that limk→∞

(
y(k) − ψ(x(k))

)
= 0, then the HCP (24) has an asymptotic solution

(x∗, τ∗, y∗,κ∗) with κ∗ > 0. Conversely, if the HCP (24) has an asymptotic solution (x∗, τ∗, y∗,κ∗)
with κ∗ > 0 then the monotone standard SCCP (2) is infeasible. In the latter case, (x∗/κ∗, y∗/κ∗)
is a certificate to prove infeasibility of the monotone standard SCCP (2).
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Unfortunately, the homogeneous function ψH undermines linearity of the original function ψ if it has.
Let us consider a simple example, ψ : ) → ), ψ(x) = x. Then the induced homogeneous function
ψH : ) × )++ → )2 is given by ψH(x, τ) = (x,−x2/τ). The function ψH is no longer linear, but ψH is
monotone as in Theorem 3.3 and satisfies the following assumption which can be considered as a scaled
Lipschitz condition.

Assumption 3.5. There exists a θ ≥ 0 such that
∥∥∥z̃(α) ◦

(
ψ̃(z̃(α))− ψ̃(z̃)− αDψ̃(z̃)∆̃z

)∥∥∥ ≤ α2θ〈∆̃z, Dψ̃(z̃)∆̃z〉

for all z ∈ intK, ∆z ∈ V, p ∈ C(x, y) and α ∈ [0, 1] such that z(α) ∈ intK, where

z̃(α) = Qp(z + α∆z), ψ̃(z̃) = Q−1
p • ψ •Q−1

p (z̃) = Q−1
p ψ(z).

Here, φ1 • φ2 denotes the composite function of φ1 and φ2.

Obviously, if ψ is affine then ψ satisfies the assumption with θ = 0.

The homogeneous algorithm in [128] is an infeasible interior point to the homogeneous model (24). It
employs the commutative class of search directions (see (21)) including the yx-direction (respectively,
xy-direction) with p = y1/2 (respectively, p = x−1/2) and the Nesterov-Todd (NT) direction with

p =
[
Qx1/2(Qx1/2y)−1/2

]−1/2
=

[
Qy−1/2(Qy−1/2x)1/2

]−1/2
.

so that x̃ = ỹ, and the following three types of neighborhoods

NF(β) := {(xH, yH) ∈ KH ×KH | dF(xH, yH) ≤ βµH},
N2(β) := {(xH, yH) ∈ KH ×KH | d2(xH, yH) ≤ βµH},
N−∞(β) := {(xH, yH) ∈ KH ×KH | d−∞(xH, yH) ≤ βµH}

(27)

where β ∈ (0, 1), wH = Q
x1/2
H

yH and

µH := 〈xH, yH〉/(r + 1)

dF(xH, yH) := ‖Q
x1/2
H

yH − µHeH‖F =

√√√√
r+1∑

i=1

(λi(wH)− µH)2

d2(xH, yH) := ‖Q
x1/2
H

yH − µHeH‖2
= max {|λi(wH)− µH| (i = 1, . . . , r + 1)}
= max {λmax(wH)− µH, µH − λmin(wH)} ,

d−∞(xH, yH) := µH − λmin(wH).

Since the inclusive relation NF(β) ⊆ N2(β) ⊆ N−∞(β) holds for any β ∈ (0, 1) (see Proposition 29 of
[107]), we call the algorithms using NF(β), N2(β) and N−∞(β) the short-step algorithm, the semi-long-
step algorithm and the long-step algorithm, respectively.

Under Assumption 3.5, we obtain the following results by analogous discussions as in [107] and in [104]
(see Corollary 7.3 of [127]).

Theorem 3.6 (Iteration bounds of homogeneous algorithms). Suppose that ψ : K → V satisfies As-
sumption 3.5, and we use the NT, xy or yx method for determining the search direction. Then the
number of iterations of each homogeneous algorithm is bounded as follows:

11



NT method xy or yx method

Short-step using NF(β) O
(√

r(1 +
√

r θ) log ε−1
)

O
(√

r(1 +
√

r θ) log ε−1
)

Semi-long-step using N2(β) O
(
r(1 +

√
r θ) log ε−1

)
O

(
r(1 +

√
r θ) log ε−1

)

Long-step using N−∞(β) O
(
r(1 +

√
r θ) log ε−1

)
O

(
r1.5(1 +

√
r θ) log ε−1

)

Here ε > 0 is the accuracy parameter and θ ≥ 0 is the scaled Lipschitz parameter appearing in Assumption
3.5, and θ = 0 holds if ψ is affine.

3.2.3 Other infeasible interior point algorithms

In [75], another infeasible interior point algorithm has been provided for solving the standard linear
SCCP. The algorithm is essentially a combination of the standard interior-point methods and the smooth-
ing Newton methods described in the next section, and can be regarded as an extension of the algorithm
proposed by Xu and Burke [124]. The algorithm is based on the Chen-Harker-Kanzow-Smale (CHKS)
smoothing function Ψµ : V × V → V (see Section 4.1) and the following target system

(
y − Px− a
Ψµ(x, y)

)
= 0 (28)

is considered with some parameter µ > 0. Each iteration employs an approximate Newton method with
the Nesterov-Todd direction and the semi-long step neighborhood N2(β) in (27) . The algorithm enjoys
the following theorem (see Theorem 4.7 of [75]).

Theorem 3.7 (Iteration bounds of combined algorithms). Let ε > 0 be a given accuracy parameter.
If the standard linear SCCP has a solution then the algorithm is polynomial-time convergent and the
iteration complexity is O(

√
r log ε−1) for the feasible version of the algorithm and O(r log ε−1) for the

infeasible version of the algorithm.

The subsequent iterated point by the combined algorithm automatically remains in the neighborhood
of central path for the full Newton step, which is a merit of the algorithm.

3.2.4 Local convergence properties

Very few studies on local convergence properties of interior point algorithms for the SCCP are yet
available while a description on this issue can be found in [101]. On the other hand, many studies have
been done on the monotone implicit linear SDCP (4) (called as the monotone implicit SDLCP).

There are two directions in the study of local convergence of interior point algorithms for the monotone
implicit SDLCP (4).

The first approach is to analyze the generated sequence by the infeasible interior point algorithms
employing several types of search directions and neighborhoods (see, e.g., [98, 55, 56, 74]).
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The second approach is to analyze the infeasible interior point trajectory (central path) [102] or a
neighboring off-central path of the monotone implicit SDLCP (4) with m = 0 (i.e., the variable z has
vanished) [109, 110, 111] which is defined by the following ordinary differential equations (ODEs)

HP (XV + UY ) = 1
µHP (XY ),

P (U) + Q(V ) = O,
(X(1), Y (1)) = (X0, Y0)

(29)

where µ > 0 is a parameter, X and Y are functions of µ, U and V are derivatives of X and Y , respectively,
X0 ∈ intK, Y0 ∈ intK, P (X0) + Q(Y0)− a = 0 and

HP (U) :=
1
2

(
PUP−1 + (PUP−1)T

)
.

While the above ODEs define a feasible off-central path, infeasible off central paths have been also
analyzed in [112].

At present, the following condition is indispensable to discuss superlinear or quadratic convergence of
the infeasible interior point algorithms or analyticity of off-central paths.

Condition 3.8 (Strictly complementarity solution). There exists a strictly complementary solution
(X∗, Y∗) which is a solution of the SDCP satisfying

X∗ + Y∗ ∈ intK = Sn
++ := {X ∈ Sn | X 6 O}

where X 6 O denotes that X is a positive definite matrix.

4 Merit or smoothing function methods for the SCCP

Another general class of algorithms is so called merit or smoothing function methods which have been
proposed especially for solving nonlinear complementarity problems. Let us consider the monotone
vertical SCCP (5) satisfying (7). Here we introduce some important notions in the study of the merit
function methods for the vertical SCCP.

Definition 4.1 (Merit function for the SCCP). A function f : V → [0,∞) is said to be a merit function
on U for the SCCP if it satisfies

x is a solution of the SCCP ⇐⇒ f(x) = 0

on a set U (typically U = V or U = G−1(K)) .

By using the merit function, we can reformulate the SCCP as the following minimization problem

inf{f(x) | x ∈ U}.

The merit function methods are to apply a feasible descent method to solve the above minimization
problem.

A desirable property for a merit function is that the level sets are bounded. Another desirable property
is that it gives an error bound defined as follows.
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Definition 4.2 (Error bound for the SCCP). Let S be the solution set of the SCCP and dist(x, S)
denote the distance between x ∈ V and the set S. A function f : V → ) is said to be a local error bound
for the SCCP if there exist three constants τ > 0, η ∈ (0, 1] and ε > 0 such that

dist(x, S) ≤ τf(x)η (30)

holds for any x ∈ S with f(x) ≤ ε.

The merit function is closely related to the following C-function (see, e.g., [25] in the case of the NCP).

Definition 4.3 (C-function for the SCCP). The function Φ : V × V → V satisfying

〈x, y〉 = 0, x ∈ K, y ∈ K ⇐⇒ Φ(x, y) = 0 (31)

is said to be a C-function for the SCCP.

It is clear that if Φ : V × V → [0,∞) is a C-function for the SCCP, then

f(x) := ‖Φ(F (x), G(x))‖2

is a merit function for the vertical SCCP (5). For a C-function Φ, the equation Φ(x, y) = 0 is called the
reformation equation of the complementarity condition of the SCCP.

The C-function Φ is typically nonsmooth but semismooth. In what follows, we introduce the notion
of semismoothness of a function according to a fundamental paper by Sun and Sun [117] where some
special functions (Löwner operator described in Section 4.1) over symmetric cones have been studied
intensively.

Let U and V be two finite dimensional inner product space over the field ). Let W ⊆ U be an open subset
of U and Φ : W → V be a locally Lipschitz continuous function on the open set W. By Rademachers
theorem, Φ is almost everywhere (in the sense of Lebesgue measure) differentiable (in the sense of Fréchet)
in W. Let DΦ be the set of points in W where Φ is differentiable. Let Φ′(x), which is a linear mapping
from U to V, denote the derivative of Φ at x ∈ DΦ. Then, the B-subdifferential of Φ at x ∈W, denoted
by ∂BΦ(x), is the set of {limk→∞ Φ′(xk)}, where {xk} ∈ DΦ is a sequence converging to x. Clarke’s
generalized Jacobian of Φ at x is the convex hull of ∂BΦ(x) (see [23]), i.e., ∂Φ(x) := conv{∂BΦ(x)}. If S
is any set of Lebesgue measure zero in U , then

∂Φ(x) = conv
{

lim
k→∞

Φ′(xk) | xk → x, xk ∈ DΦ, xk -∈ S

}
(32)

(see Theorem 2.5.1 in [23]). Semismoothness was originally introduced by Mifflin [81] for functionals, and
was used to analyze the convergence of bundle type methods for nondifferentiable optimization problems
[82].

Definition 4.4 (Semismoothness). Let Φ : W ⊆ U → V be a locally Lipschitz continuous function on
the open set W. Let us consider the following conditions for a fixed x ∈W.

(i) Φ is directionally differentiable at x.

(ii) For any y → x and Vy ∈ ∂Φ(y) which depends on y,

Φ(y)− Φ(x)− Vy(y − x) = o(‖y − x‖).
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(iii) There exists ρ > 0 such that for any y → x and Vy ∈ ∂Φ(y) which depends on y,

Φ(y)− Φ(x)− Vy(y − x) = O(‖y − x‖1+ρ).

If Φ satisfies (i) and (ii) at x then Φ is said to be semismooth at x.

If Φ is semismooth and satisfies (iii) at x then Φ is said to be ρ-order semismooth at x.

If Φ is 1-order semismooth at x then Φ is said to be strongly semismooth at x.

If Φ is semismooth (respectively, ρ-order semismooth) at any point of Q ⊆W then Φ is said to be
semismooth (respectively, ρ-order semismooth) on the set Q.

Many approaches have been proposed for approximating the C-function Φ by a so-called smoothing
function Φµ introducing a smoothing parameter µ > 0 in order to apply Newton-type methods to the
function. By using a C-function or a smoothing function, the vertical SCCP (5) can be reformulated or
approximated as the problem to find a solution of the system

Φ(F (x), G(x)) = 0 or Φµ(F (x), G(x)) = 0.

While the smoothness of the function suggests the Newton method to solve the system, the semismooth-
ness of the function allows us to adopt a Newton-type method, so-called semismooth Newton method,
which is a significant property of the semismooth functions (see Chapter 7 of [25] for the case K = )n

+).
We call such methods smoothing function methods. The smoothing parameter µ > 0 is often dealt as a
variable in smoothing function methods.

The merit or smoothing function methods for the SCCP were first proposed for the SDCP as a special
case, followed by the SOCCP and the SCCP. We will give a brief survey on the studies chronologically
according to research progress. Since the SCCP includes the SDCP and the SOCCP, the results obtained
for the SCCP hold for the SDCP and the SOCCP as well.

4.1 Merit or smoothing function methods for the SDCP

A pioneer work on the study of merit function method for solving the SDCP has been done by Tseng
[122]. For a while, we consider that Sn is the set of all n× n symmetric matrices and K is the positive
semidefinite cone. The inner product and the norm are given by

〈X, Y 〉 := Tr (XT Y ), ‖X‖ :=
√
〈X,X〉.

It has been shown in [122] that each of the following functions is a merit function for the vertical SDCP
(5).

Natural residual function (Proposition 2.1 of [122]) Let the function [·]+ denote the orthogonal
projection onto Sn

+, i.e.,
[X]+ = arg min

W∈Sn
+

‖X −W‖ (33)

and define the natural residual function on Sn as

ΦNR(A,B) := B − [B −A]+ (34)
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Then the function
f(X) := ‖ΦNR(F (X), G(X))‖2 (35)

is a merit function on Sn for the vertical SDCP (5). The natural residual function has been studied
in [24, 77, 73, 97] for the NCP.

Fischer-Burmeister function (Proposition 6.1 of [122]) Let φFB : Sn×Sn → Sn be the Fischer-
Burmeister function on Sn given by

ΦFB(A,B) := (A + B)− (A2 + B2)1/2. (36)

Then the function
f(X) :=

1
2
‖ΦFB(F (X), G(X))‖2 (37)

is a merit function on Sn for the vertical SDCP (5). The Fischer-Burmeister function has been
proposed by Fischer [30, 31, 32] for the NCP.

The fact that the functions (35) and (37) are merit functions of the vertical SDCP (5) implies that
ΦNR(x, y) and ΦFB(x, y) are C-function for the vertical SDCP (5).

For each of the above functions f , Tseng [122] derived conditions on F and G for f to be convex and/or
differentiable, and for the stationary point of f to be a solution of the SDCP.

On the other hand, Chen and Tseng [17] introduced a wide class of functions so called Chen and
Mangasarian smoothing functions [9, 10, 123].

Chen and Mangasarian smoothing functions Let g : ) → ) be a univariate function satisfying

lim
τ→−∞

g(τ) = 0, lim
τ→∞

g(τ)− τ = 0, 0 < g′(τ) < 1. (38)

For each symmetric matrix X having the spectral decomposition

X =
r∑

i=1

λi(X)uiu
T
i (39)

where λi(X) and ui are the eigenvalues and the corresponding eigenvectors of X, define the function
gSn : Sn → Sn as

gSn(X) :=
r∑

i=1

g(λi(X))uiu
T
i . (40)

Then the function
Φµ(X,Y ) := X − µgSn((X − Y )/µ) (41)

with a positive parameter µ > 0 is a function in the class of Chen and Mangasarian smoothing
functions.

The function Φµ can be regarded as a smoothed approximation to the natural residual function ΦNR by
a smoothing parameter µ > 0. The function Φµ is continuously differentiable having the property that

Φµ(A,B) → 0 and (A,B, µ) → (X,Y, 0) =⇒ X ∈ Sn
+, Y ∈ Sn

+, 〈X,Y 〉 = 0.

If we choose
g(τ) := ((τ2 + 4)1/2 + τ)/2 (42)
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then the function Φµ is an extension of Chen and Harker [7, 8], Kanzow [50, 51] and Smale [113] (CHKS)
smoothing function for the NCP and if we choose

g(τ) := ln(eτ + 1)

then the function Φµ is an extension of Chen and Mangasarian [9, 10] smoothing function for the NCP.
In [17], the authors provided a smoothing continuation method using the the function Φµ and studied
various issues on existence of Newton directions, boundedness of iterates, global convergence, and local
superlinear convergence. They also reported a preliminary numerical experience on semidefinite linear
programs.

Note that the function gSn : Sn → Sn in (40) is constructed from a univariate function g : ) → ).
Such a function has been introduced by Löwner [71] in 1934, and we call the function gSn the Löwner
operator. See also [117, 58]. It is known that the orthogonal projection (33) onto Sn

+ is given by

[X]+ =
n∑

i=1

[λi(X)]+uiu
T
i (43)

where X has the spectral decomposition (39) and [·]+ : ) → ) is the plus function [t]+ := max{0, t}
[122]. This fact implies that [·]+ is also a Löwner operator.

Several papers have been focused on the properties of Löwner operators. Sun and Sun [114] showed that
the projection function [·]+ : Sn → Sn and the function ΦNR in (34) are strongly semismooth on Sn(see
Definition 4.4). Chen and Tseng [18] extended the results and investigated that the Löwner operator
gSn inherits from g the properties of continuity, (local) Lipschitz continuity, directional differentiability,
Fréchet differentiability, continuous differentiability, as well as ρ-order semismoothness in the case of the
SDCP. These results have been extended to the function gV over the Euclidean Jordan algebra by Sun
and Sun [117], which we will describe in a little more detail in Section 4.3.

For the Fischer-Burmeister function ΦFB : Sn × Sn → Sn in (36), Sun and Sun [116] showed that ΦFB

is globally Lipschitz continuous, directionally differentiable, and strongly semismooth.

See [122] and [125] for other merit functions proposed for the SDCP. Further developments also can be
seen in [6, 47, 106, 130], etc. Meanwhile, besides the paper [17], there are many papers on smoothing
continuation methods for the SDCP, e.g., see [18, 46, 52, 115, 116].

4.2 Merit or smoothing function methods for the SOCCP

A first study on smoothing function methods for solving the SOCCP has been provided by Fukushima,
Luo and Tseng [33]. For the implicit SOCCP (3), the authors introduced the class of Chen and Man-
gasarian smoothing functions, studied the Lipschitzian and differential properties of the functions, and
derived computable formulas for the functions and their Jacobians. They also showed the existence and
uniqueness of the Newton direction when the mapping F is monotone.

In [19], the authors introduced a C-function for the standard SOCCP (2) and showed that the squared C-
function is strongly semismooth. They also reported numerical results of the squared smoothing Newton
algorithms.

Chen, Sun and Sun [11] showed that the Löwner operator gV for the standard SCCP (2) inherits from
g the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differen-
tiability, continuous differentiability, as well as ρ-order semismoothness.
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The SOCCP has a simple structure, i.e., the rank r of the second order cone is always r = 2. This may
be a reason why the SOCCP has many applications, e.g, the three dimensional quasi-static frictional
contact [49] and the robust Nash equilibria [44, 90].

See [12, 13, 14, 15, 16, 5, 26, 40, 91, 96, 94, 99, 118, 129] for many other merit function methods for
the SOCCP, [45, 116] for smoothing continuation methods for the SOCCP and [60] for the solution set
structure of the monotone SOCCP.

4.3 Merit or smoothing function methods for the SCCP

The merit or smoothing function methods for the SCCP have become a very active research area in
recent few years. Most of the results for the SDCP and the SOCCP have been extended to the SCCP.

A first C-function for the SCCP has been proposed by Gowda [36] where some P-properties for the
SCCP have been discussed (see Section 5). The following proposition ensures that the natural residual
function ΦNR(x, y) := x− [x− y]+ and the Fischer-Burmeister function ΦFB(x, y) := x + y −

√
x2 + y2

are C-functions for the SCCP (see Proposition 6 of [36]).

Proposition 4.5 (C-functions for the SCCP). For (x, y) ∈ V, the following conditions are equivalent.

(a) x− [x− y]+ = 0

(b) (x, y) ∈ K ×K and 〈x, y〉 = 0.

(c) (x, y) ∈ K ×K and x ◦ y = 0.

(d) x + y −
√

x2 + y2 = 0

(e) x + y ∈ K and x ◦ y = 0.

Here [x]+ denotes the orthogonal projection onto K, i.e., [x]+ = arg minw∈K ‖x− w‖.

Suppose that x ∈ V has the spectral decomposition x =
∑r

i=1 λi(x)ci (see Theorem 2.1). For a given
univariate function φ : ) → ), we define the vector-valued function φV : V → V associated with the
Euclidean Jordan algebra (V, ◦, 〈·, ·〉) by

φV(x) :=
r∑

i=1

φ(λi(x))ci. (44)

The function φV is the (extended) Löwner operator for which Korányi [65] extended Löwner’s results on
the monotonicity of φSn to φV . For an example, the projection function [·]+ : V → V can be represented
by

[x]+ =
r∑

i=1

[λi(x)]+ci

where [·]+ : ) → ) is the plus function [t]+ := max{0, t} (see [36]).

The fundamental paper of Sun and Sun [117] gives basic properties of Löwner operators over (V, ◦, 〈·, ·〉)
on differentiability and semismoothness. Here we refer the following important results (see Theorem 3.2,
Propositions 3.3, 3,4 and Theorem 3.3 of [117]).
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Theorem 4.6 (Differentiability of φV). Let x =
∑r

i=1 λi(x)ci. The function φV : V → V is differentiable
(respectively, continuously differentiable) at x if and only if for each i ∈ {1, 2, . . . , r}, φ : ) → ) is
differentiable (continuously differentiable) at λi(x).

Theorem 4.7 (Semismoothness of φV). (i) The projection [·]+ : V → V is strongly semismooth on V.

(ii) For ε ∈ ), define φµ : ) → ) by
φµ(t) :=

√
t2 + µ2.

The corresponding Löwner operator is given by

φµ
V(x) :=

r∑

i=1

√
λi(x)2 + µ2ci =

√
x2 + µ2e

which is a smoothed approximation to the absolute value function |x| :=
√

x2 (see also (41) and
(42) ). Let ψ(µ, x) := φµ

V(x). Then ψ : )× V → V is continuously differentiable at (µ, x) if µ -= 0
and is strongly semismooth at (0, x), x ∈ V.

(iii) Let ρ ∈ (0, 1] be a constant and x =
∑r

i=1 λi(x)ci. The function φV : V → V is semismooth
(respectively, ρ-order semismooth) if and only if for each i ∈ {1, 2, . . . , r}, φ : ) → ) is semismooth
(ρ-order semismooth) at λi(x).

Kong, Tunçel and Xiu [58] investigated the connection between the monotonicity of the function φ and
its corresponding Löwner operator. For a given real interval (a, b) with a < b (a, b ∈ )∪ {−∞}∪ {∞}),
denote by V(a, b) the set of all x ∈ V such that x − ae, be − x ∈ intK. They showed the following
properties (see Theorem 3 of [58]).

Theorem 4.8 (Convexity of φV). Let g be a locally Lipschitz function from (a, b) into ). φV is monotone
(respectively, strictly monotone, strongly monotone) on V(a, b) if and only if φ is monotone (respectively,
strictly monotone, strongly monotone) on (a, b).

Many studies have been conducted on merit or smoothing function methods for the SCCP and some of
them are still continuing even today. The subjects dealt in these studies are the natural residual function
[63], the Fischer-Burmeister (smoothing) function [4, 59, 70], Chen-Mangasarian smoothing functions
[22, 61, 48], other merit functions [42, 57, 62, 66, 67, 68, 69, 92, 95], and smoothing continuation methods
[48, 61, 89, 21, 22, 126], etc.

5 Properties of the SCCP

In the discussions so far, we assume that the SCCP is monotone. In this chapter, we observe other various
properties of the SCCP. We address the following two SCCPs, LCP(L, q) and NLCP(ψ, q), which are
alternate representations of the standard linear or nonlinear SCCP (2).

∣∣∣∣
LCP(L, q) Find x ∈ K

s.t. x ∈ K, Lx + q ∈ K, 〈x, Lx + q〉 = 0 (45)

where q ∈ V and L : V → V is a linear operator.

∣∣∣∣
NLCP(ψ, q) Find x ∈ K

s.t. x ∈ K, ψ(x) + q ∈ K, 〈x,ψ(x) + q〉 = 0 (46)
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where q ∈ V and ψ : V → V is a (nonlinear) continuous function.

The linear operator L and q ∈ V determine the property of LCP(L, q). Gowda, Sznajder and Tao [36]
focused their attention on the P-property of the linear operator L. If we restrict V = )n and K = )n

+

then the P-property of the linear operator L can be characterized as follows (see [3, 24, 25], etc.).

Proposition 5.1 (P-property of the LCP over )n
+). Let V = )n and K = )n

+. Then the following
properties of the linear operator L : )n → )n are equivalent.

(i) All principal minors of L are positive.

(ii)
x ∈ )n, x ◦ Lx ≤ 0 =⇒ x = 0

where a ◦ b denotes the componentwise product for a, b ∈ )n.

(iii)
x ∧ Lx ≤ 0 ≤ x ∨ Lx =⇒ x = 0

where a∧ b and a∨ b denote the componentwise minimum and maximum of a, b ∈ )n, respectively.

(iv) For all q ∈ )n, there exists a unique x ∈ )n such that

x ≥ 0, Lx + q ≥ 0, 〈x, Lx + q〉 = 0.

(v) The function F (x) := L[x]+ + x− [x]+ is invertible in a neighborhood of zero.

(vi) The function F (x) := L[x]+ + x − [x]+ is invertible in a neighborhood of zero with Lipschitzian
inverse.

Note that the function F (x) := L[x]+ + x− [x]+ is called the normal map of the SCCP and known as a
C-function for the SCCP (see [21] and also see Section 1.5 of [25] in the case of the NCP). In contrast,
the above properties are different for the SCCP in general. How should we define the P-property for the
SCCP? Gowda, Sznajder and Tao [36] introduced the following properties (i)-(viii) of the linear operator
L : V → V in the setting of a Euclidean Jordan algebra.

Definition 5.2 (P-properties of L : V → V ). The linear operator L : V → V is said to be (to have)

(i) monotone (respectively, strictly monotone) if 〈Lx, x〉 ≥ 0 (respectively, 〈Lx, x〉 > 0) for all
0 -= x ∈ V ,

(ii) the order P-property if
x ; Lx ∈ −K, x < Lx ∈ K =⇒ x = 0,

where x ; y := x− [x− y]+ and x < y := y + [x− y]+,

(iii) the Jordan P-property if
x ◦ Lx ∈ −K =⇒ x = 0,

(iv) the P-property if
x and Lx operator commute
x ◦ Lx ∈ −K

}
=⇒ x = 0,

(v) the Globally Uniquely Solvable (GUS) if any q ∈ V, LCP(L, q) has a unique solution.
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(vi) the Cross Commutative property (Cross Commutative) if for any q ∈ V and for any two
solution x1 and x2 of LCP(L, q), x1 operator commutes with y2 = Lx2+q and x2 operator commutes
with y1 = Lx1 + q.

(vii) the Lipschitzian GUS-property if the normal map F (x) := L[x]+ +x− [x]+ is a homeomorphism
of V and the inverse of F is Lipschitzian.

(viii) the positive principal minor (positive PM) if all principal minors of L are positive.

Gowda, Sznajder and Tao [36] showed the following implications (see Theorems 11, 12, 14, 17 and 23
and Examples 1.3 and 2.3 of [36]).

Proposition 5.3 (Implications among the properties on L).

(i) Strictly monotonicity =⇒ Order P =⇒ Jordan P.

(ii) If L has P-property then the every real eigenvalue of L is positive.

(iii) If L has P-property then for any q ∈ V, LCP(L, q) has a nonempty compact solution set.

(iv) GUS = P + Cross Commutative.

(v) Strictly monotone =⇒ Lipschitzian GUS =⇒ positive PM.

(vi) GUS -=⇒ Lipschitzian GUS.

(vii) Order P -=⇒ strong monotonicity.

(viii) If K is polyhedral then, order P = Jordan P = P = GUS = positive PM.

Moreover, Tao and Gowda [119] extended the above results to NLCP(ψ, q) introducing the following
properties.

Definition 5.4 (P-properties of ψ : V → V ). The continuous function ψ : V → V is said to be (to have)

(i) monotone if for all x, y ∈ V, 〈x− y,ψ(x)− ψ(y)〉 ≥ 0.

(ii) strictly monotone if for all x -= y ∈ V, 〈x− y, ψ(x)− ψ(y)〉 > 0.

(iii) strongly monotone if there is an α > 0 such that for all x, y ∈ V,

〈x− y, ψ(x)− ψ(y)〉 ≥ α‖x− y‖2,

(iv) the order P-property if

(x− y) ; (ψ(x)− ψ(y)) ∈ −K, (x− y) < (ψ(x)− ψ(y)) ∈ K =⇒ x = y,

(v) the Jordan P-property if

(x− y) ◦ (ψ(x)− ψ(y)) ∈ −K =⇒ x = y,

(vi) the P-property if

x− y and ψ(x)− ψ(y) operator commute
(x− y) ◦ (ψ(x)− ψ(y)) ∈ −K

}
=⇒ x = y,
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(vii) the uniform Jordan P-property if there is an α > 0 such that for all x, y ∈ V,

λmax ((x− y) ◦ (ψ(x)− ψ(y))) ≥ α‖x− y‖2,

(viii) the uniform P-property if there is an α > 0 such that for all x, y ∈ V with x − y operator
commuting with ψ(x)− ψ(y),

λmax ((x− y) ◦ (ψ(x)− ψ(y))) ≥ α‖x− y‖2,

(ix) the P0-property if ψ(x) + εx has the P-property for all ε > 0,

(x) the R0-property if for any sequence {xk} in V with

‖xk‖ → ∞, lim inf
k→∞

λmin(xk)
‖xk‖

≥ 0, lim inf
k→∞

λmin(ψ(xk))
‖xk‖

≥ 0,

we have
lim inf
k→∞

〈xk,ψ(xk)〉
‖xk‖2

≥ 0.

Here λmax(x) and λmin(x) denote the maximum and the minimum eigenvalues of x, respectively.

Tao and Gowda [119] showed the following implications (see Proposition 3.1, Theorem 3.1, Propositions
3.2 and 3.3, Corollary 3.1 and Theorem 4.1 of [119]).

Proposition 5.5 (Implications among the properties on ψ).

(i) Strong monotonicity =⇒ strict monotonicity =⇒ order P =⇒ Jordan P =⇒ P =⇒ P0.

(ii) Strong monotonicity =⇒ uniform Jordan P =⇒ uniform P.

(iii) Monotonicity =⇒ P0.

(iv) If ψ : V → V has the P0-property and for any δ > 0 in ) and the set

{x ∈ K | x solves NLCP(ψ, q), ‖q‖ ≤ δ} (47)

is bounded, then for any q ∈ V, NLCP(ψ, q) has a nonempty bounded solution set.

(v) If ψ : V → V has the R0-property, then for any δ > 0 in ), the set (47) is bounded,

(vi) If ψ : V → V has the P0 and R0 property, then for all q ∈ V, the solution set of NLCP(ψ, q) is
nonempty and bounded. Moreover, there exists an x ∈ intK such that ψ(x) + q ∈ intK.

(vii) If ψ : V → V has the GUS-property, then for any primitive idempotent c ∈ V, 〈ψ(c)−ψ(0), c〉 ≥ 0.

See also [34, 35] for the case of the SDCP.

Kong, Tunçel and Xiu [64] extended the P-property to the linear complementarity problem over homo-
geneous cones. Note that homogeneous cones properly include symmetric cones and if a homogeneous
cone is self-dual then it is a symmetric cone.

Tao and Gowda [119] also introduced an approach to construct a relaxation transformation based on
the Peirce decomposition of a given x ∈ V (see Theorem 2.2). Suppose we are given a Jordan frame
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{c1, c2, . . . , cr} in V and a continuous function φ : )r → )r, φ(u) := [φ1(u),φ2(u), . . . ,φr(u)] for u ∈ )r.
We can write any x ∈ V as the Peirce decomposition

x =
r∑

i=1

xici +
∑

i<j

xij .

where xi ∈ ) and xij ∈ Vij := {x ∈ V | x ◦ ci = 1
2x = x ◦ cj}. Then the relaxation transformation

Rφ : V → V is given by

Rφ(x) :=
r∑

i=1

φi([x1, x2, . . . , xr])ci +
∑

i<j

xij . (48)

The following P-properties of the relaxation transformation Rφ have been shown (see Propositions 5.1
and 5.2 of [119]).

Proposition 5.6 (P-properties of the relaxation transformation Rφ). The following statements are
equivalent.

(a) φ is a P-function.

(b) Rφ has the order P-property.

(c) Rφ has the Jordan P-property.

(d) Rφ has the P-property.

Proposition 5.7 (NLCP(Rφ, q) having a nonempty and bounded solution set). If φ : )r → )r has the
P0- and R0-property then for the relaxation transformation Rφ, the set (47) is bounded for any δ > 0.
Hence, by (iii) of Proposition 5.5, NLCP(Rφ, q) has a nonempty and bounded solution set.

Proposition 5.7 implies a significance of the relaxation transformation Rφ: Only by investigating the
vector valued function φ, we can find whether the solution set of the associated SCCP is nonempty and
bounded.

Lu, Huang and Han [72] stated the differences between the Löwner operator (44) and the relaxation
transformation (48) as follows.

Both the relaxation transformation and the Löwner operator are the generalization of func-
tions defined in the Euclidean vector space. However, they are more difficult to be discussed
than those in the Euclidean vector space. The main difficulty from the Löwner operator is
that different elements are given by the different Jordan frames; while the main difficulty
from the relaxation transformation is that every transformation Rφ has an additional item∑

i<j xij though a common Jordan frame is used. In addition, there are many differences
between the relaxation transformation and the Löwner operator. For example, the Löwner
operator φV(x) is defined based on the spectral decomposition of x, and hence, φV(x) opera-
tor commutes with x; while the relaxation transformation Rφ is defined based on the Peirce
decomposition of x, and it is easy to see that Rφ operator does not commute with x because
of the existence of an additional item

∑
i<j xij .

They investigated some inter connections between φ and Rφ concerning continuity, differentiability,
semismoothness, monotonicity and P-properties. They also provided a smoothing method for solving
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NLCP(Rφ, q) based on the CHKS smoothing function and showed its global convergence. See [37, 38,
39, 120, 121] for more recent results on these functions.

Another property, sufficiency, of the linear operator L in LCP(Rφ, q) has been observed in [103].

Definition 5.8 (Sufficient properties of L : V → V ). The linear operator L : V → V is said to have

(i) the Jordan column-sufficient (Jordan CSU) property if

x ◦ Lx ∈ −K =⇒ x ◦ Lx = 0,

(ii) the column-sufficient (CSU) property if

x and Lx operator commute
x ◦ Lx ∈ −K

}
=⇒ x ◦ Lx = 0,

(iii) the Jordan row-sufficient (Jordan RSU) property if the adjoint operator L∗ of L has the Jordan
column-sufficient property,

(iii) the row-sufficient (RSU) property if the adjoint operator L∗ of L has the column-sufficient
property.

Then the following implications hold (see Remark (iii), Theorems 3.5, 4.3 of [103]).

Theorem 5.9 (Implications among sufficient properties on L). (i) P =⇒ CSU =⇒ P0.

(ii) For a linear operator L : V → V, the following statements are equivalent

(a) L has the CSU and Cross Commutative properties.
(b) For any q ∈ V, the solution set of LCP(L, q) is convex (possibly empty).

(iii) For a linear operator L : V → V, the following statements are equivalent

(a) L has the RSU property.
(b) For any q ∈ V, if the KKT point (x, u) of the problem

min 1
2 〈x, Lx + L∗x〉+ 〈q, x〉

s.t.x ∈ K, Lx + q ∈ K

satisfies that (x− u) and L∗(x− u) operator commute, then x solves LCP(L, q).

Suppose that V is the Cartesian product space V := V1 × V2 × · · · Vm with its symmetric cone K :=
K1×K2× · · · Km. Then the following properties of the linear operator L in LCP(L, q) and the nonlinear
function ψ in NLCP(ψ, q) have been introduced in [20, 62, 76, 93], etc.

Definition 5.10 (Cartesian P properties of L and ψ). The linear operator L : V → V is said to have

(i) the Cartesian P-property if for any nonzero x = (x1, x2, . . . , xm) ∈ V with xi ∈ Vi, there exists an
index ν ∈ {1, 2, . . . , m} such that 〈xν , (Lx)ν〉 > 0,

(ii) the Cartesian P0-property if for any nonzero x = (x1, x2, . . . , xm) ∈ V with xi ∈ Vi, there exists
an index ν ∈ {1, 2, . . . ,m} such that xν -= 0 and 〈xν , (Lx)ν〉 ≥ 0,
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(iii) the Cartesian P∗(κ)-property if for any x = (x1, x2, . . . , xm) ∈ V with xi ∈ Vi,

(1 + 4κ)
∑

ν∈I+(x)

〈xν , (Lx)ν〉+
∑

ν∈I−(x)

〈xν , (Lx)ν〉 ≥ 0

where
I+(x) := {ν | 〈xν , (Lx)ν〉 > 0}, I+(x) := {ν | 〈xν , (Lx)ν〉 < 0}.

The function ψ : V → V is said to have

(iv) the uniform Cartesian P-property if there exists a constant α such that for any x, y ∈ V, there
exists an index ν ∈ {1, 2, . . . , m} such that 〈xν − yν , (ψ(x))ν − (ψ(y))ν〉 ≥ α‖x− y‖2,

(iv) the Cartesian P-property if for any x -= y ∈ Vi, there exists an index ν ∈ {1, 2, . . . , m} such that
〈xν − yν , (ψ(x))ν − (ψ(y))ν〉 > 0,

(v) the Cartesian P0-property if for any x -= y ∈ Vi, there exists an index ν ∈ {1, 2, . . . , m} such that
〈xν − yν , (ψ(x))ν − (ψ(y))ν〉 ≥ 0,

(vi) the Cartesian P∗(κ)-property if for any x, y ∈ V,

(1 + 4κ)
∑

ν∈I+(x)

〈xν − yν , (ψ(x))ν − (ψ(y))ν〉

+
∑

ν∈I−(x)

〈xν − yν , (ψ(x))ν − (ψ(y))ν〉 ≥ 0

where

I+(x) := {ν | 〈xν − yν , (ψ(x))ν − (ψ(y))ν〉 > 0},
I+(x) := {ν | 〈xν − yν , (ψ(x))ν − (ψ(y))ν〉 < 0}.

The above properties have been motivated by a complete characterization of Euclidean Jordan algebras
(see the chapter by Farid Alizadeh in this handbook or Chapter V of [27]). For LCP(L, q) over the
semidefinite cone K = Sn

+, it has been shown that the following implications

Strong monotonicity =⇒ Cartesian P =⇒
{

P,
GUS.

hold for any L : V → V [20]. In [93], a merit function based on the Fischer-Burmeister function has been
proposed for solving NLCP(ψ, q) where K is the second order cone Ln and ψ has the Cartesian P0-
property. In [76], a theoretical framework of path-following interior point algorithms has been established
for solving LCP(L, q) in the setting of a Euclidean Jordan algebra, where L has the Cartesian P∗(κ)-
property. The global convergence and the iteration complexities have been also discussed.

Furthermore, Chua, Lin and Yi [22] (see also [21]) introduced the following property, uniform nonsigu-
larity, of the nonlinear operator ψ : V → V in NLCP(ψ, q),

Definition 5.11 (Uniform nonsigularity). The function ψ : V → V is said to be uniformly nonsingular
if there exists α > 0 such that for any d1, d2, . . . , dr ≥ 0 and dij ≥ 0, any Jordan frame {c1, c2, . . . , cr}
and any x, y ∈ V,

∥∥∥∥∥∥
f(x)− f(y) +

r∑

i=1

di(xi − yi)ci +
∑

i<j

dij(xij − yij)

∥∥∥∥∥∥
≥ α‖x− y‖.
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Note that the uniform nonsigularity is an extension of P-properties, i.e., if V = )n the uniform nonsigu-
larity is equivalent to P-function property (see Proposition 4.1 of [21]). In [21], a Chen and Mangasarian
smoothing method has been proposed for solving NLCP(ψ, q) where ψ is uniformly nonsingular. In [22],
the authors showed several implications among the Cartesian P properties and uniform nonsigularity
and discussed the existence of Newton directions and the boundedness of iterates of some merit function
methods. The authors also showed that LCP(L, q) is globally uniquely solvable under the assumption
of uniform nonsigularity.

Some geometrical properties on the solution set of the SCCP have been explored in [78, 79]. Let us
denote by SOL(L, q) the solution set of LCP(L, q). A nonempty subset F is said to be a face of a closed
convex cone, denoted by K ! K, if F is a convex cone and

x ∈ K, y − x ∈ K and y ∈ K =⇒ x ∈ F .

The complementary face of F is defined as

F( := {y ∈ K∗ | 〈x, y〉 = 0 for all x ∈ F .

Malik and Mohan [78] introduced the notion of the complementary cone which was originally introduced
in [87] for K = )n

+.

Definition 5.12 (Complementary cone of L). For a given linear operator L : V → V, a complementary
cone of L corresponding to the face F of K is defined as

CF := {y − Lx | x ∈ F , y ∈ F(}.

The linear complementarity problem LCP(L, q) has a solution if and only if there exists a face F of K
such that q ∈ CF (see Observation 1 of [78]). Thus the union of all complementary cones is the set of
all vectors q for which LCP(L, q) has a solution, Using these observations, the authors characterized the
finiteness of the solution set of LCP(L, q).

6 Concluding remarks

In this chapter, we provide a brief survey on the recent developments related to the symmetric cone
complementarity problems. By viewing this, we strongly recognize the outstanding contribution of Paul
Tseng to the area. We hope that this manuscript will help to leave his achievement for posterity.
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